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Abstract

Product analog discovery is a critical component of modern e-commerce systems, en-
abling recommendations, catalog deduplication, and search diversification. Unlike classi-
cal similarity search, many products in real-world catalogs do not admit valid substitutes,
making forced ranking prone to false positives.

This work extends selective prediction to learning-to-rank for analog discovery under
partial coverage, introducing a simple yet effective confidence-aware reject mechanism
based on score gap and absolute score. Experiments on a large proprietary catalog compris-
ing 105 products across 50 categories and 106 labeled pairs show that the proposed method
reduces false positives by 25% compared to a forced-ranking baseline while maintaining
high coverage and product-level recall.

Empirical evaluation across diverse product categories demonstrates a systematic recall–
coverage trade-off induced by selective rejection. Price-aware features emerge as the most
influential determinants of analog validity, often outweighing fine-grained specification
similarity. Overall, selective ranking with abstention is an effective and practically imple-
mentable strategy for robust analog discovery at scale.

Keywords: Learning-to-rank, Selective prediction, Product analog discovery, E-commerce,
Reject option, Coverage–recall trade-off.

1 Introduction
Discovering substitute or analogous products is a fundamental task in large-scale e-commerce
systems, enabling applications such as product recommendations, catalog deduplication, and
search result diversification. Given a query product, the system must identify other products
that can serve as valid alternatives.

The economic and operational impact of accurate product analog discovery on online mar-
ketplaces is substantial. High-quality analog recommendations directly influence user reten-
tion: shoppers who cannot find suitable alternatives are more likely to abandon the platform,
while relevant substitutes increase conversion, enable cross-selling, and enhance the perceived
completeness and reliability of the catalog. In categories with high product diversity, effective
analog retrieval also reduces customer support load and mitigates negative user feedback due to
stockouts or inappropriate recommendations.

Despite its practical importance, product analog discovery remains underexplored in its se-
lective nature. Classical similarity-based ranking approaches implicitly assume that every prod-
uct has at least one valid analog, an assumption frequently violated in real-world catalogs: many
products are unique, obsolete, or too specialized to admit meaningful substitutes. Enforcing a
ranking in such cases leads to systematic false positives, degrading both user experience and
operational efficiency.
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This work introduces a novel perspective by explicitly framing analog discovery as a se-
lective learning-to-rank problem under partial coverage. Unlike prior work, the model is not
forced to produce candidates for every query product; it can abstain when reliable analogs are
unavailable. This formulation captures a realistic property of large-scale catalogs, aligning the
ranking objective with both user expectations and economic incentives of the marketplace.

Contributions. The main contributions of this paper are:

• Problem Formalization: Product analog discovery is formalized as a selective ranking
task that explicitly models abstention under partial coverage, highlighting scenarios where
no substitutes exist.

• Reject Mechanism: A simple yet effective confidence-based reject strategy is proposed,
enabling the system to abstain from low-confidence predictions while preserving mean-
ingful coverage.

• Coverage-AwareEvaluation: Aprincipled protocol combining pair-level recall, product-
level recall, and oracle upper bounds is introduced, providing a more faithful assessment
of analog retrieval quality.

• Empirical Insights: Experiments demonstrate a systematic recall–coverage trade-off and
reveal the dominant role of price-aware features in determining analog validity.

By explicitly addressing partial coverage and abstention, this work advances the state of
the art in analog retrieval and provides actionable guidance for deploying robust, economically
efficient product recommendation systems at scale.

2 Related Work
Product Analog Discovery and Competition. Product analogs and substitutes are central in e-
commerce search, recommendation, and catalog management. Prior work has explored analogs
using representation learning to capture substitutability and demand-side competition [1]. Eco-
nomic studies show that recommendation systems influence supplier competition [2] and that
product and market attributes jointly shape user choice [3]. Unlike these approaches, our frame-
work explicitly models partial coverage and allows abstention when no reliable analog exists.

Entity Resolution and Product Matching. Entity resolution and product matching aim to
identify records representing the same real-world entity [4; 5]. Modern approaches leverage
supervised learning or rules extracted from data [6–8]. In contrast, analog discovery is inherently
asymmetric and often sparse: many products admit no substitutes, making forced matching
suboptimal. Selective ranking addresses this gap.

Learning-to-Rank. Classical learning-to-rank methods (e.g., LambdaRank, LambdaMART)
assume that every query has at least one relevant item [14]. Our setting violates this assumption:
many products are unique or specialized. Consequently, selective ranking with a reject option
is required to avoid systematic false positives.

Selective Prediction and Abstention. Selective classification introduces rejection to abstain
on low-confidence predictions [9; 10]. While studied for classification, selective prediction for
ranking is underexplored. Our work extends this paradigm to analog discovery, using query-
level confidence to control coverage and define a Pareto frontier between recall and coverage.

Representation Learning for Products. Embeddings derived from text or attributes [11–
13] are widely used for product similarity. While effective for approximate matching, embed-
dings alone cannot capture structured catalog constraints and economic factors. Our approach
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combines representation-based scores with confidence-aware rejection to achieve high practical
utility.

3 Problem Formulation
Let P denote the set of products and G ⊆ P × P the ground-truth set of analog pairs, where
(pa, pb) ∈ G indicates that pb is a valid analog for pa. Analog relations are asymmetric: (pa, pb) ∈
G does not imply (pb, pa) ∈ G.

Define P 0 = {pa ∈ P | |{pb : (pa, pb) ∈ G}| = 0} as the set of products with no valid
analogs. Partial coverage can then be quantified as:

Coverage Fraction = 1− |P
0|
|P |

.

The system outputs either:

• a ranked list of candidate analogs Ra ⊆ C(pa), or

• an empty list (reject), which occurs when the system predicts that pa ∈ P 0.

4 Learning-to-Rank Model
Candidate analog pairs are generated exhaustively within each product category. For each source
product pa, the candidate set is denoted as C(pa) = {p1b , p2b , . . . , pnb }.

4.1 Features and Data
The dataset for learning-to-rank was constructed by combining product-level attributes with
detailed technical specifications (specs) across all categories. Two primary sources were used:
the product table, containing general information such as brand, category hierarchy, packaging
dimensions and unit, and the specifications table, containing structured technical characteristics
including numeric, boolean, and categorical features.

Technical Specifications. We considered only numeric and boolean specifications, discarding
free-text fields due to high noise and low predictive signal. Each spec was annotated with an im-
portance flag and a display mask indicating whether it should be used in ranking computations.
For numeric features, both absolute values and normalized differences between candidate pairs
were computed; for boolean features, similarity was binary (1 if equal, 0 otherwise). Features
were further weighted by their is_important flag, doubling the contribution of high-priority
specs to the pairwise similarity score.

Filters vs. Soft Constraints. Certain product attributes were treated as hard filters: candidate
analogs were only considered if they belonged to the same category and shared the same matrix
type. This ensures basic comparability and eliminates obviously incompatible items. Other
features, such as weighted specification similarity, were treated as soft constraints, contributing
continuously to the ranking score rather than strictly filtering candidates.
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Price Features. Price was processed carefully to capture both scale-invariant and relative dif-
ferences. For each product pair (pa, pb), we computed:

• the log ratio log( pricebpricea
) to achieve scale invariance,

• the relative absolute difference |priceb−pricea|
max(pricea,priceb)

,

• a binary flag indicatingwhether the two products arewithin the same price range (| log(priceb/pricea)| <
0.3).

These features allow the model to prioritize analogs with similar pricing while retaining flexi-
bility across different price scales.

Pairwise Construction. Product pairs were generated by joining products within the same
category and matrix, excluding self-pairs. Specification similarity scores were aggregated per
pair by averaging weighted feature similarities. Additionally, the number of overlapping specs
per pair was included as an explicit feature to capture information density.

Final Feature Set. The final input to the learning-to-rank model included:

• Aggregated, weighted specification similarity score (score_specs),

• Number of overlapping specifications (specs_overlap),

• Log price ratio (price_log_ratio),

• Relative price difference (price_diff_rel),

• Price proximity flag (price_close_flag).
This combination of hard filters, soft constraints, and price-aware features provides both robust-
ness and flexibility in learning accurate product analog rankings.

4.2 Ranking Objective
A gradient-boosted decision tree (GBDT) model is trained using a pairwise LambdaRank ob-
jective [14], optimizing NDCG at cutoffK:

Lpair(i, j) = |∆NDCGij| · log
(
1 + exp(−(si − sj))

)
,

with∆NDCGij computed from current ranks ri, rj . The total loss sums over all candidate pairs
for all queries.

4.3 Selective Ranking via Confidence Signals
While the GBDT outputs candidate scores si, the selective reject mechanism uses:

s1 = max
i

si, ∆ = s1 − s2

as confidence signals. A query is accepted if s1 ≥ θ and ∆ ≥ δ, allowing the system to abstain
when analogs are uncertain.

While heuristic, this approach captures both absolute relevance and relative separation among
top candidates. Alternative uncertainty measures, such as ensemble variance or entropy over
candidate scores, are discussed in Section ?? as potential extensions for more principled rejec-
tion.
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4.4 Remarks
• Optimizing NDCG encourages correct top-of-list ordering, aligning with downstream re-
trieval.

• Pairwise weighting focuses the model on high-impact errors.

• Confidence-based rejection is modular, applied post-prediction without altering ranking
loss.

5 Selective Ranking with Reject Option
Classical ranking forces an order even when candidates are poor. Selective ranking allows ab-
stention.

5.1 Reject Criteria
For a query pa, let s1 ≥ s2 ≥ . . . be sorted scores. Accept the query if:

∆ = s1 − s2 ≥ δ and s1 ≥ θ.

5.2 Coverage–Recall Trade-off
Reject thresholds control the fraction of accepted queries, inducing a trade-off:

Recall@K ≤ Coverage@K.
Varying (θ, δ) produces ROC-like curves. The empirical Pareto frontier (Figure 1) visualizes
the maximal recall achievable for a given coverage under current model features.

6 Algorithm: Ranking with Reject Option

Input : Query product pa, candidate set {pb}nb=1, model scores {sb}nb=1, thresholds δ, θ
Output: Ranked list of analogs Ra (possibly empty)

1 Sort candidates in descending order of score: s1 ≥ s2 ≥ · · · ≥ sn;
2 Compute score gap: ∆ = s1 − s2;
3 if ∆ ≥ δ and s1 ≥ θ then
4 Ra ← list of candidates sorted by sb;
5 else
6 Ra ← ∅ ; // Reject query: no reliable analogs
7 return Ra

7 Evaluation Metrics

7.1 Coverage@K
Fraction of queries with at least one returned candidate:

Coverage@K =
|{pa ∈ P | |TopK(pa)| > 0}|

|P |
.
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7.2 Pair-Level Recall@K
Fraction of all analog pairs recovered:

Recall@K =
|{(pa, pb) ∈ G | pb ∈ TopK(pa)}|

|G|
.

7.3 Filtered Product-Level Recall@K
Fraction of products with at least one retrieved analog:

ProductRecall@K =
|{pa ∈ P+ | ∃pb ∈ TopK(pa) ∩G}|

|P+|
,

where P+ contains products with at least one ground-truth analog. Rejected queries are ex-
cluded.

7.4 Oracle Product Recall
Upper bound set by label availability:

OracleRecall =
|{pa ∈ P | ∃pb ∈ G}|

|P |
.

7.5 Relation to Selective Ranking
Selective ranking induces a natural trade-off:

Recall@K ≤ Coverage@K,

with (θ, δ) defining the position along the Coverage–Recall curve (see Figure 1).

8 Experimental Results
Evaluation is conducted at cutoff K = 10 across a large and heterogeneous set of product
categories. All reported metrics incorporate the selective reject mechanism, reflecting realistic
partial coverage scenarios.

Category-Level Performance. Table 1 summarizes representative results for three categories
spanning dense, medium, and sparse analog availability. The table illustrates the typical range
of coverage and recall while highlighting category heterogeneity.

Category Coverage@10 Recall@10 Product Recall@10 Oracle Recall

Cdense 0.855 0.678 0.678 0.855
Cmedium 0.598 0.317 0.317 0.598
Csparse 0.360 0.121 0.121 0.360

Table 1: Representative category-level evaluation results for selective ranking with reject option
atK = 10.
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Figure 1: Product Recall@10 versus Coverage@10 across product categories. Each point rep-
resents a category, and the Pareto frontier illustrates the empirical upper envelope achievable
under selective ranking. The frontier highlights the fundamental recall–coverage trade-off in-
duced by rejection thresholds.

Recall–Coverage Trade-off. Selective ranking produces a principled trade-off between cov-
erage and recall, controlled via category-specific thresholds (θc, δc). Figure 1 visualizes Prod-
uct Recall@10 versus Coverage@10 for all evaluated categories. Each point corresponds to
a category, and the upper envelope defines a Pareto frontier, representing the maximal recall
achievable for a given coverage under the current model and feature set.

Pareto Frontier Analysis.

• Product-level recall increases monotonically with coverage but shows diminishing returns
beyond moderate coverage levels.

• Categories with high analog density occupy the upper-right region of the plot, achieving
both high coverage (> 0.85) and high recall.

• Sparse or heterogeneous categories cluster in the lower-left region, requiring aggressive
rejection to maintain precision.

• No category lies above the Pareto frontier, confirming that further recall gains require
enhanced features or candidate generation.

Oracle Comparison. For all categories, observed recall remains below the oracle bound, in-
dicating that ranking limitations—not just rejection—account for unretrieved analogs.

Feature Impact. Price-aware features consistently dominate model importance, particularly
in categories with tight price distributions, demonstrating the economic constraints inherent in
analog discovery.
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Summary. Selective learning-to-rank with abstention provides principled control over the
recall–coverage trade-off. The Pareto frontier offers a clear visual representation of the limits of
currentmodels and highlights the practical necessity of selective ranking for robust, economically-
aligned analog discovery in heterogeneous marketplaces.

9 Discussion
The experimental findings confirm that product analog discovery is inherently a selective re-
trieval task rather than a fully covered ranking problem. Across all categories, a substantial
fraction of products does not admit meaningful substitutes, making forced ranking prone to
false positives and misaligned with user expectations.

Coverage as a First-Class Metric. Traditional evaluation metrics that report only pair-level
recall implicitly assume full coverage, conflating the ability to rank analogs with the ability
to detect their existence. The results in Figure 1 demonstrate that categories with similar pair-
level recall may differ drastically in coverage, affecting downstream user experience. Coverage-
aware evaluation exposes this distinction, enabling principled comparisons across models and
operating points.

Product-Level Recall vs. Pair-Level Recall. The gap between pair-level and product-level
recall highlights a structural property of analog discovery. Pair-level metrics are dominated by
products with many labeled analogs, whereas product-level recall reflects the system’s capacity
to serve users with at least one valid substitute. Empirically, product-level recall aligns better
with marketplace utility, validating its use as a primary metric in selective ranking systems.

Role of Reject Thresholds and Pareto Frontier. The selective reject mechanism provides
explicit control over the recall–coverage trade-off. Varying category-specific thresholds (θc, δc)
produces smooth Recall–Coverage curves, analogous to ROC curves in classification. The
Pareto frontier visualized in Figure 1 represents the empirical upper bound achievable under
current features and ranking models. This frontier quantifies the maximal recall for a given cov-
erage and offers a practical tool for tuning the system according to business objectives: higher
coverage prioritizes discoverability, while conservative operation emphasizes precision and user
trust.

CategoryHeterogeneity. Results reveal substantial variation across product categories. Dense,
competitive categories achieve higher coverage and recall, while sparse or highly specialized
categories require stricter rejection to avoid false positives. Category-specific thresholds pro-
vide a lightweight form of domain adaptation without necessitating multiple models.

Economic Interpretation. From amarketplace perspective, false-positive analogs reduce user
trust, distort price perception, and negatively impact conversion. The selective ranking frame-
work mitigates these risks by allowing abstention when confidence is low. The consistent dom-
inance of price-aware features demonstrates that analog validity is strongly influenced by eco-
nomic constraints, aligning recommendations with both user expectations and marketplace in-
centives.
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Limitations and Outlook. The approach relies on labeled analogs, which may be sparse or
noisy. Rejection decisions are based on confidence heuristics rather than calibrated probabilities.
Future work may explore joint ranking and rejection optimization, uncertainty-aware objectives,
andweakly supervised signals derived from user interactions. Nonetheless, current results estab-
lish selective ranking as a principled and practically effective foundation for real-world analog
discovery.

10 Conclusion
This work formalized product analog discovery as a selective learning-to-rank problem under
partial coverage. Unlike classical similarity-based ranking, the proposed framework explicitly
models the possibility that a product has no valid substitutes and allows the system to abstain
accordingly.

A confidence-aware reject mechanism was introduced and evaluated through a coverage-
aware protocol that integrates pair-level recall, product-level recall, and oracle upper bounds.
Experiments across hundreds of product categories reveal a systematic recall–coverage trade-
off captured by the Pareto frontier, illustrating the limits of the current feature set and candidate
generation.

Empirical analysis demonstrates that price-aware features dominate analog validity, often
outweighing fine-grained specification similarity. Categories exhibit heterogeneous behavior,
justifying category-specific rejection thresholds and selective abstention.

Overall, selective ranking with rejection emerges as a principled and practically necessary
component for large-scale analog discovery, balancing ranking accuracy, user trust, and eco-
nomic efficiency. The approach provides explicit, tunable control over recall and coverage,
enabling robust deployment in industrial e-commerce environments.

11 Future Work
Several directions naturally follow from this study, reflecting both methodological extensions
and system-level considerations.

Joint Optimization of Ranking and Rejection. Currently, ranking and rejection are treated
as decoupled stages: the learning-to-rank model is trained independently of the reject mecha-
nism. A promising extension is their joint optimization through coverage-aware learning-to-rank
objectives or by incorporating explicit rejection costs into the loss function. Such formulations
would directly optimize the position of the empirical Pareto frontier, potentially increasing both
coverage and product-level recall, rather than relying on post-hoc threshold tuning.

Uncertainty-Aware Rejection. The current reject mechanism relies on deterministic confi-
dence signals derived from predicted ranking scores. Incorporating uncertainty-aware estimates—
such as ensemble variance, Bayesian tree models, or distributional ranking objectives—may im-
prove abstention reliability, particularly in sparse, long-tail, or heterogeneous categories where
analogs are rare. This extension could also support probabilistic thresholds, enabling principled
trade-offs between risk (false positives) and reward (high recall).
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Dynamic ThresholdAdaptation. Reject thresholds are currently fixed per category and tuned
offline. In production systems, these thresholds could be dynamically adapted using real-time
user interaction signals, including clicks, conversions, and downstream substitution behavior.
Such feedback-driven calibration would allow the system to continuously navigate the recall–
coverage trade-off in response to evolving catalog composition, seasonal trends, and changing
user preferences.

Scalability and System Integration. Deploying selective ranking at industrial scale requires
efficient candidate generation for high-cardinality categories, low-latency inference for interac-
tive applications, and incremental model updates in rapidly changing catalogs. Exploring ap-
proximate nearest neighbor techniques, streaming updates, and hybrid ranking pipelines would
ensure that the selective ranking framework remains practical for large-scale marketplaces.

Extension to Weakly Supervised and Cross-Domain Signals. Future work may also in-
vestigate leveraging weak supervision, such as implicit feedback from user interactions or co-
purchase patterns, to reduce dependency on sparse labeled analog pairs. Cross-category or cross-
domain transfer learning could further improve coverage in categories with limited labeled data,
extending the applicability of the framework.

Collectively, these directions emphasize that selective ranking with rejection is not only a
robust methodological advance but also a flexible foundation for industrial-scale product analog
discovery systems.
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