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Abstract The article considers Legendre type op-
erators acting in the corresponding weight separable
Hilbert spaces. The choice of these spaces is due to the
fact that these operators preserve all properties of the
Legendre operator acting on L2(−1, 1). In particular,
1) the Legendre type operators, operating in respective
weight separable Hilbert spaces, remain discrete, 2)
the spectrum does not change relative to the classical
Legendre operator, 3) the corresponding eigenfunctions
are compositions of Legendre polynomials and some
functions.
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1 Introduction

Retrieval of operators which have known spectral prop-
erties in advance is one of the most important problems
for contemporary mathematics. If we construct two op-
erators, P+(ν) and P−(ν), in a certain separable Hilbert
space (hereinafter referred to as SHS), and one of them
will recurrently find certain sequence of functions from
SHS, while the other will find the same sequence but in
reverse order, though recurrently as well, when we multi-
ply these two operators, we may get explicitly operative
operator in SHS having the following peculiarities: the
constructed functions turn out to be the eigenfunctions
for this operator.

The article also describes the construction of some of
the weighted separable Hilbert spaces Lω2 (a, b), ω = ω(x),
x ∈ [a, b], denoted by Hω,a,b. These spaces Hω,a,b are
homeomorphic to the space H. The homeomorphism will
be proved by the properties of the operator Â hereinafter.
We will also study the action of the operator Â in Hω,a,b.

2 Construction of the Legendre
type operator

Let us assume that in a certain separable Hilbert space
H = L2(−1, 1), the following differential operators are
operative:

P+(ν) := −f1(x)

ν + 1

d

dx
+ f2(x)I,

P−(ν) := −f1(x)

ν

d

dx
+ f2(x)I,

(1)

where the functions f1 = f1(x) and f2 = f2(x) meet the
following requirements:
1) f2 is doubly continuously differentiable function within

[−1, 1];
2) For any x ∈ [−1, 1] the following equation will be true:
f1(x)f2

′(x) + f22 (x) = 1;
3) f2(x) is a function of fixed signs for any x ∈ [−1, 1].

Operator I is an identity operator. The definition range
for P+(ν) (−1 6= ν ∈ R1) and P−(ν) (0 6= ν ∈ R1) oper-
ators includes all the functions which are absolutely con-
tinuous together with their first-order derivatives within
the range of [−1, 1], while second-order derivatives within
[−1, 1] must be square summable. It is easy to verify that
the definition ranges for P−(ν + 1)P+(ν) (−1 6= ν ∈ R1)
and P+(ν−1)P−(ν) (0 6= ν ∈ R1) operators include all the
functions which are absolutely continuous together with
their first-order derivatives within the range of [−1, 1],
herewith, within the same range, second-order deriva-
tives must be square summable. In this case, it is ob-
vious that D(P−(ν + 1)P+(ν)) = D(P+(ν − 1)P−(ν)) and
D(P−(ν + 1)P+(ν)) = D(P+(ν − 1)P−(ν)) = H, where
the line above them means norm closure in H.

Definition 1. Operator Â which is operative in H is
such that

D(Â) = D(P−(ν + 1)P+(ν)) = D(P+(ν − 1)P−(ν))

and for Dν(Â) := D(Â)∩Tν ∀ν ∈ C the following operator
equations are simultaneously true:

(ν + 1)2(P−(ν + 1)P+(ν)− I) = f1f
′

2(Â−
ν(ν + 1)I) = O,
ν2(P+(ν − 1)P−(ν)− I) = f1f

′

2(Â−
ν(ν + 1)I) = O,

(2)

will be called the Legendre type operator. Here O is
the annihilator in H,

Tν := {g ∈ D(Â) : (ν + 1)2(P−(ν + 1)P+(ν)− I)g = 0∧
ν2(P+(ν − 1)P−(ν)− I)g = 0}.

Let us prove that this definition is correct. At first, let
us consider the operator multiplications:

P−(ν + 1)P+(ν) =

− f1
(ν + 1)2

(
f

′

1

d

dx
+ f1

d2

dx2

)
+
( f1f ′

2

ν + 1
+ f22

)
I,

(3)

P+(ν − 1)P−(ν) =

− f1
ν2

(
f

′

1

d

dx
+ f1

d2

dx2

)
+
(
− f1f

′

2

ν
+ f22

)
I.

(4)

Given that P−(ν + 1)P+(ν) = I and P+(ν − 1)P−(ν) = I
for Dν(Â), we will multiply expression (3) by (ν + 1)2:

(ν + 1)2P−(ν + 1)P+(ν) =

−f1f
′

1

d

dx
− f21

d2

dx2
+ (ν + 1)f1f

′

2I+
(ν + 1)2f22 I = (ν + 1)2I,

(5)
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and expression (4) we will multiply by ν2:

ν2P+(ν − 1)P−(ν) =

−f1f
′

1

d

dx
− f21

d2

dx2
− νf1f

′

2I+
ν2f22 I = ν2I.

(6)

From (5) and (6), for any ν ∈ C the following equation
will be true:

(2ν + 1)(f1f
′

2 + f22 − 1) = 0. (7)

Based on (7), from (5) and (6) we have as follows:

(ν + 1)f1f
′

2I + (ν + 1)2f22 I− (ν + 1)2I =

−νf1f
′

2I + ν2f22 I− ν2I =

ν(ν + 1)(f22 − 1)I = −ν(ν + 1)f1f
′

2I.
(8)

Taking into account (8), from (5) and (6) we will get:

O = (ν + 1)2(P−(ν + 1)P+(ν)− I) =

−f1
(
f

′

1
d
dx + f1

d2

dx2 + ν(ν + 1)f
′

2I
)
,

O = ν2(P+(ν − 1)P−(ν)− I) =

−f1
(
f

′

1
d
dx + f1

d2

dx2 + ν(ν + 1)f
′

2I
)
.

Right-hand members of the last two operator equations
are equal. It is easy to extract the Legendre operator
from them:

Â := −f1
f

′
2

d2

dx2
− f

′

1

f
′
2

d

dx

thus, the correctness of the above definition is obvious.

3 Several properties of
the operator Â

3.1 Equivalence

Statement 1. For any complex number ν, the opera-
tor equation

Â = ν(ν + 1)I (9)

and the equations set{
(ν + 1)2(P−(ν + 1)P+(ν)− I) = O,
ν2(P+(ν − 1)P−(ν)− I) = O, (10)

shall be equivalent within the set of all the functions from
Dν(Â) ⊂ H ∀ν ∈ C.
The above Statement may be proved obviously using (2).

3.2 Self-adjointness of operator Â

Let’s look at the identity:

−(f1y)
′
+ f

′

2y ≡ f
′

2

(
Â+ I

)
y

and define as follows: y[1] = f1
dy

dx
, y[2] = f

′

1y −
d

dx
y[1].

In this case, y[1] and y[2] are quasiderivatives which cor-
respond to the differential expression −(f1y)′ + f2

′y. In
this can we can introduce the following operator By :=
y[2] whose properties have been well studied in [2], which,

in its turn, will allow us to look at the operator Â from

’classic’ point of view. To do so we will need some data
from [2, Chapter 5], [3]. Let us remind them:
a) Quasiderivative functions y = y(x) (= y[0](x)), corre-
sponding to the expression below

l(y) := (−1)n(p0y
(n))(n)+

(−1)n−1(p1y
(n−1))(n−1) + ...+ pny,

are the functions y[1], y[2], . . . , y[2n] which are defined be
the following formulas:

y[k] =
dky

dxk
,

y[n] = p0
dny

dxn
,

y[n+k] = pk
dn−ky

dxn−k
− d

dx
(y[n+k−1]), k = 1, 2, ..., n− 1,

from this it follows that l(y) = y[2n];
b) l(y) is a self-adjoint differential expression, if its co-
efficients are real-valued functions differentiable sufficient
number of times;
c) If (a, b) is the range where the differential expression

l(y) is considered, and functions
1

p0(x)
, p1(x), . . . , pn(x)

are measurable within (a, b) and summable in its every
isolated finate subinterval [α, β], then l(y) is a regular dif-
ferential expression;
d) If the above item c) will have at least one of the condi-
tions violated, with the conditions being the measurabil-

ity of functions
1

p0(x)
, p1(x), . . . , pn(x) within the range of

(a, b) and summability within its every finate subinterval
[α, β], then l(y) is singular differential expression.

In our case, if the function
1

f1(x)
is summable within

(-1;1), then the operator B := f
′

2

(
Â+I

) (
:= y[2]

)
will be

called regular (according to Naimark, compare to item
c) of the above paragraph); if the summability condition

is violated for the function
1

f1(x)
, it will be a singular

operator (compare to item d) of the above paragraph).

Statement 2. Operators Â :=
1

f
′
2

B − I and B are

self-adjoint in H, if functions f1 and f2 meet conditions
1) - 3) specified in the definition for operators P+(ν) and
P−(ν).
This property can be proved using item b) for the self-
adjoint differential expression l(y).

3.3 Eigenvalues and eigenfunctions of op-

erator Â

Throrem 1. The following multitudes

{λn = n(n+ 1)}∞n=0, (11)

{ϕn = Pn(f2)}∞n=0 (12)

are sets of eigenvalues and corresponding eigenfunctions
of operator Â which is operative in H; Pn(·) is Legendre’s
polynomial.
Proof. The operator is known (see [1, c.180]):

A := −(1− x2)
d2

dx2
+ 2x

d

dx
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is classic Legendre operator which is operative in H, here-
with, the following equations are true:

APn(x) = λnPn(x) ∀x ∈ [−1, 1].

It means that {λn = n(n + 1)}∞n=0 and {yn = Pn(x)}∞n=0

are sets of eigenvalues and corresponding eigenfunctions
of the operator A.

Based on requirements 1)-3) for functions f1(x) and
f2(x) it appears that

f1(x) =
1− f22 (x)

f
′
2(x)

,

f
′

1(x) = −2f2(x)− (1− f22 (x))
f

′′

2 (x)

[f
′
2(x)]2

.

Then

Â = −1− f22 (x)

[f
′
2(x)]2

d2

dx2
+
(2f2(x)

f
′
2(x)

+
(1− f22 (x))f

′′

2 (x)

[f
′
2(x)]3

) d
dx
.

Therefore:

ÂPn(f2) = −1− f22
[f

′
2]2

(P
′′

n (f2)(f
′

2)2 + P
′

n(f2)f
′′

2 )+

2f2
f

′
2

P
′

n(f2)f
′

2 +
(1− f22 )f

′′

2

(f
′
2)3

P
′

n(f2)f
′

2 = −(1− f22 )P
′′

n (f2)+

2f2P
′

n(f2), f1 = f1(x), f2 = f2(x).

Meaning that:

ÂPn(f2(x)) = −(1− f22 (x))P
′′

n (f2(x))+

2f2(x)P
′

n(f2(x)).
(13)

And since

APn(x) = −(1− x2)P
′′

n (x) + 2xP
′

n(x)

and
APn(x) = λnPn(x) ∀x ∈ [−1, 1],

then, taking into account (13), we get

ÂPn(f2(x)) = λnPn(f2(x)) ∀x ∈ [−1, 1]

for function f2(x), which meet the requirements 1)-3).
The theorem is proved.

3.4 The differentiation formula

We know (see [1, c.180]) the following differentiation
formula:

(1− x2)
dPn(x)

dx
= n[Pn−1(x)− xPn(x)]

= (n+ 1)[xPn(x)− Pn+1(x)].
(14)

Then

Pn+1(x) = D+(n)Pn(x), Pn−1(x) = D−(n)Pn(x), (15)

where

D+(n) := − (1− x2)

(n+ 1)

d

dx
+ xI, n ∈ N ∪ {0}, (16)

D−(n) :=
(1− x2)

n

d

dx
+ xI, n ∈ N. (17)

In items (15)-(17) we will replace x with f2(x). Then
d

dx
will be replaced with

1

f
′
2(x)

d

dx
, and oprators D+(n),

D−(n) will be replaced with operators P+(n), P−(n). It
follows from the above that:
Statement 3.

Pn+1(f2) = P+(n)Pn(f2),

Pn−1(f2) = P−(n)Pn(f2), n ∈ N ∪ {0},

are the formulas for recurrent calculation of eigenfunc-
tions Pn(f2) of the operator Â.

4 Examples of Legendre type
operator acting in H

Let us consider several particular examples for the Leg-
endre type operators which are operative in SHS H :=
L2(−1, 1). Since the type and properties of operators are
significantly dependent on the type and properties of func-
tions f1 and f2 which may be of an unlimited choice (as
long as the requirements 1)-3) are met for them), the num-
ber of Legendre type operators is quite vast. Eigenvalues
and eigenfunctions for these operators may be found using
formulas (11) and (12), accordingly.

Example 1. Â = A := −(1 − x2)
d2

dx2
+ 2x

d

dx
is a

classic Legendre operator. Here f2(x) = x, then f1(x) =
1− x2.

Example 2. Let us assume that f2(x) = (β + x)α,
β > 1, α ∈ R \ {0}. Then

f1(x) = − (β + x)(−(β + x)−α + (β + x)α)

α
.

The operator Â will become as follows:

Â := − (β + x)2((β + x)−2α − 1)

α2

d2

dx2
−

((β + x)−2α+1(1− α)− β − x− βα− xα)

α2

d

dx
.

Its eigenfunctions are: Pn((β + x)α), n ∈ N ∪ {0}.

Example 3. Let us assume that f2(x) = ln(2 + x).

Then f1(x) = (1− ln2(2 +x))(2 +x). The operator Â will
become as follows:

Â := (−1 + ln2(2 + x))(2 + x)2
d2

dx2
+

(2 ln(2 + x)− 1 + ln2(2 + x))(2 + x)
d

dx
.

Its eigenfunctions are: Pn(ln(2 + x)), n ∈ N ∪ {0}.

5 About homeomorphism of
spaces

We will prove the following lemma.
Lemma 1. For every interval [a, b] (a < b) of finite length
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and every continuously differentiable function f̃2(x) with
a derivative of fixed sign on this interval, there exist α
and β such that every monotone, continuously differen-
tiable function f2(x) = αf̃2(x) + β on [a, b] will have the
following values: f(a) = −1, f(b) = 1.

Proof. Let f̃2(a) = c, f̃2(b) = d, then c 6= d and we have
to solve a linear system{

−1 = α · c+ β,
1 = α · d+ β,

where α and β: α =
2

d− c
, β = 1− 2d

d− c
. This concludes

the proof of the Lemma.
Theorem 2. Let [a, b] be a random interval of finite

length (a < b) and f̃2(x) is any continuously differentiable
function with a derivative of fixed sign on this interval.

Next we have f̃2(a) = c, f̃2(b) = d, α =
2

d− c
. Then the

spaces Hω,a,b, ω = αf̃
′
2(x), and H are homeomorphic.

Proof. In a Hilbert space H the functions ϕn =
Pn
‖Pn‖L2

,

n ∈ N ∪ {0}, form an orthonormal basis.
According to the lemma, there exists β, such that the

function f2(x) = αf̃2(x) + β have the values: f2(a) = −1
and f2(b) = 1 at the ends of the interval [a, b].

Let’s take the function f(x) ∈ H. Then g(t) =
f(f2(t)) ∈ Hω,a,b:∫ b

a
|f(f2(t))|2f ′

2(t)dt =

α
∫ b
a
|f(f2(t))|2f̃ ′

2(t)dt =
∫ 1

−1 |f(x)|2dx <∞.
(18)

Now let us consider the function g(t) ∈ Hω,a,b. We
can see from the properties of f2 that t = f−12 (y) is a
monotone, continuously differentiable function on [−1, 1].

It is obvious that f(y) = g(f−12 (y)) ∈ H:∫ 1

−1 |f(y)|2dy =
∫ 1

−1 |g(f−12 (y))|2dy =∫ b
a
|g(t)|2f ′

2(t)dt = α
∫ b
a
|g(t)|2f̃ ′

2(t)dt <∞.
(19)

We can see that the spaces H and Hω,a,b are isomorphic.
Considering∫ b

a

Pn(f2(x))Pm(f2(x))f
′

2(x)dx =

∫ 1

−1
Pn(u)Pm(u)du = δnm

we get that

ψn(t) =
Pn(f2(t))

‖Pn(f2(t))‖Lω2
, n ∈ N ∪ {0},

is an orthonormal basis in Hω,a,b; δnm it is the symbol of
Kronecker.

It is then easy to verify usingthe Lebesgue integral prop-
erties that

G(f) : H 3 f(x) 7→ f(f2(t)) ∈ Hω,a,b

it is not only bijective relationship of spaces, but also con-
tinuous together with its inverse relation. This is possible
if the elements considered spaces to take classes of func-
tions that differ from each other on the set of measure
zero.

Let functions fn are a Cauchy sequence in H and f ∈ H,
with ‖fn − f‖ → 0, n → ∞, then (18): ‖gn − g‖ω → 0,
where gn(t) = fn(f2(t)), g(t) = f(f2(t)).

If the functions gn are a Cauchy sequence in Hω,a,b and
g ∈ Hω,a,b, with
‖gn − g‖ω → 0, n → ∞, then (19): ‖fn − f‖ → 0, where
fn(y) = gn(f−12 (y)),
f(y) = g(f−12 (y)).

Thus, G(·) is a homeomorphism. This finishes the
proof.

6 Legendre operator Â in weight
space Hω,a,b.

Let functions f1 = f1(t) and f2 = f2(t) on a random
interval [a, b] (a < b) of finite length have the following
properties:
1) f2 is a twice continuously differentiable function sup-
ported on [a, b];
2) equality t ∈ [a, b] is true for any f1(t)f

′

2(t) + f22 (t) = 1;
3) f

′

2 is a function of fixed sign on [a, b] and
4) f2(a) = −1, f2(b) = 1.
It is easy to construct the function f2 using the lemma.

Let the operator

Â := −f1
f

′
2

d2

dt2
− f

′

1

f
′
2

d

dt

acts in Hω,a,b, ω = f
′

2(t). The domain of definition of the

operator Â includes all functions and their first derivatives
that are absolutely continuous on the interval [a, b]. The
second derivatives (functions must have a second deriva-
tive at each point of [a, b]) are with integrable square on
this interval.

Let f(t) ∈ D(Â) ⊂ Hω,a,b. Then f(f−12 (x)) = g(x) ∈
D(A) ⊂ H:

∞ >

∫ b

a

|f(t)|2f
′

2(t)dt =

∫ 1

−1
|f(f−12 (x))|2dx.

A := −(1− x2)
d2

dx2
+ 2x

d

dx

is the Legendre operator (see, for example, [1]), acting

in H (note that A = Â, if f2(x) = x, a = −1, b = 1).
Considering the equality f1(t)f

′

2(t) + f22 (t) = 1 (t ∈ [a, b])
and the function x = f2(t) (t ∈ [a, b], x ∈ [−1, 1]), we get
that

Af(f−12 (x)) = −(1− f22 (t))·

·
( f

′′
(t)

(f
′
2(t))2

− f
′
(t)f

′′

2 (t)

(f
′
2(t))3

)
+ 2f2(t)

f
′
(t)

f
′
2(t)

= . . . =

(
− f1(t)

f
′
2(t)

d2

dt2
− f

′

1(t)

f
′
2(t)

d

dt

)
f(t) = Âf(t).

That is H 3 Af(f−12 (x)) = Âf(t) ∈ Hω,a,b, ω = f
′

2(t),
t ∈ [a, b], x = f2(t) ∈ [−1, 1].

The action of the operator Â in Hω,a,b can be therefore
replaced with the action of the operator A in H, only in-
stead of f(t) ∈ D(Â) ⊂ Hω,a,b there should be f(f−12 (x))
= g(x) ∈ D(A) ⊂ H. The result of the action v(t) =

Âf(t) will be equal to Ag(x) = w(x) = w(f2(t)), that is
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v(t) = w(f2(t)). This completes the proof of the following
theorem.

Theorem 3. Let the function x = f2(t) have the
properties specified in items 1)-4). Then the equality

f(t) ∈ D(Â) ⊂ Hω,a,b is true for any function

H 3 Af(f−12 (x)) = Âf(t) ∈ Hω,a,b.

Here ω = f
′

2(t), t ∈ [a, b].

7 Examples of Legendre type
operator acting in Hω,a,b

In each of the following examples for the given function
f2(t) we have found values of a and b and the weigh ω
such that the conditions of theorem 1 are applied, i.e. the
spaces Hω,a,b and H are homeomorphic.

Example 1. Let us consider the function f̃2(t) =

ctg(et). Then let a = ln
π

4
, b = ln

π

2
, as

f̃2
′

(t) = − et

sin2 et
< 0 on [a, b]. Using

c = f̃2(a) = ctg(eln
π
4 ) = 1, d = f̃2(b) = ctg(eln

π
2 ) = 0

by the lemma, we will find α and β: α = −2, β = 1.
It therefore follows that f2(t) = −2ctg(et + 1), and the
weight is

ω = f
′

2(t) = 2
et

sin2 et
.

Example 2. Let us consider the function f̃2(t) =
log2(1 + t2). Let a = 0, b = 1. Considering that

c = f̃2(a) = 0, d = f̃2(b) = 1,

α = 2, β = −1.

As a result, we have f2(t) = 2 log2(1 + t2) − 1, and the
weight

ω =
4t

(1 + t2) ln 2
.

Example 3. Let us consider the function f̃2(t) =
arctan

√
t, t ≥ 0. Then let a = 1, b = 3. Considering

c = f̃2(a) =
π

4
, d = f̃2(b) =

π

3
,

α =
24

π
, β = −7.

In the result, we have f2(t) =
24

π
arctan

√
t − 7, and the

weight

ω =
12

π
√
t(1 + t)

.

Remark. Having calculated f1(t) using the formula

f1(t) =
1− f22 (t)

f ′2(t)
, in examples 1-3, we can explicitly

present the operator Â, for which functions Pn(f2(t))
are eigenfunctions corresponding to the eigenvalues λn =
n(n+ 1), n ∈ N ∪ {0} .

8 Conclusions

The article presents a new class of differential operators.
It is obtained through a generalization of the classical Leg-
endre type operators. The action of operators from this
class is best viewed in separable weighted Hilbert spaces.
I think that Legendre type operators can be well used in
mathematical physics.

If we substitute the basic elementary functions instead
of the function f2(x), then we can obtain a classification
of Legendre type operators. For example, if we take a
polynomial instead of f2(x), then expressing the function
f1(x) from the equation f1(t)f

′

2(t) + f22 (t) = 1, we obtain
a Legendre type operator with coefficients in the form
of rational functions. And so on. The selection of the
corresponding weighted Hilbert space is described in detail
in paragraphs 6 and 7.
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