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Abstract 

In this article, we propose a new approach for studying the patterns of size distribution in 

settlement systems, based on the analysis of the shape of the Pareto curve (PC). To study the shape 

of the PC, we used the Gini coefficient, the asymmetry coefficient, and, by analogy with the physics 

of phase transitions, critical exponent — the index of the PC degree in the neighborhood of zero. 

An empirical analysis of the PC of various levels of aggregation in the US settlement system has 

been performed. The form of size distribution of states was studied by decades from 1790 to 2010. 

The spatial analysis of the PC shape for counties and cities was performed for 2010. The results of 

an empirical study showed that the PC of the states had left-hand asymmetry over 220 years. The 

PC of districts and cities had both right-hand and left-hand asymmetries. The obtained results 

explain in which cases the Pareto distribution having a PC with right-hand asymmetry, and the 

lognormal distribution with a symmetric PC may not correspond objectively to real settlement 

systems. As an alternative to power-series distribution and lognormal distribution, we considered 

an analytically simple two-parameter model with a wide range of PC asymmetry that combines the 

properties of power-series distribution and lognormal distribution. Verification of the model 

showed that it adequately described the size of settlements in homogeneous settlement systems.  

Keywords: Pareto (Lorentz) curve, Saez inequality Shape, Gini coefficient, asymmetry coefficient, 

critical exponent, Pareto curve model.  
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1. Introduction 

The relevance of studying the order regularities for settlement systems is determined by the 

search for optimal ways to develop production, distribution and consumption. In the first half of the 

20th century, empirical studies of this problem focused on the distribution of cities by size 

(population) in developed countries, especially in the United States. The fundamental principles in 

size distribution were formulated by Felix Auerbach(Auerbach, 1913) and Robert Gibrat (Gibrat, 

1931). Having compared lists of cities ranked in descending order of size in five European countries 

and the United States, Auerbach concluded that for large cities, the product of city size by city rank 

is approximately equal to the size of the largest city (the rank-size rule) in the country, which 

formally corresponds to the Pareto distribution with an exponent equal to 1. Gibrat proposed a 

proportional growth rule, which states, if applied to urban settlement systems, that large cities 

would not, on average, grow faster or slower than smaller cities. The proportional growth rule 

results in a logarithmically normal distribution. The problem is that if true distribution is lognormal, 

then the entire distribution can never simultaneously correspond to the Pareto distribution. All 

subsequent studies of settlement systems can be briefly described as an analysis of situations where 

one of these two distributions is preferable to the other (for example, see (Rosen and Resnick, 1980; 

Carroll, 1982; Clauset, Shalizi and Newman, 2009; Berry and Okulicz-Kozaryn, 2012; Soo, 2012; Bee 

et al., 2013; Arshad, Hu and Ashraf, 2018; Bee, Riccaboni and Schiavo, 2019)). However, in many 

cases, neither power-series distribution nor lognormal distribution describe settlement systems in 

a satisfactory way (for example, see (Soo, 2012)). Given this fact, as early as in 1982, Glenn Carroll 

aimed at extracting new information (the basis) from the existing empirical data to explain the 

reason for this discrepancy (Carroll, 1982).  

This paper suggests that the missing information can be obtained from the analysis of the 

shape of the Pareto curve (PC).  

The objective of this paper is to select tools for studying the form of inequality of empirical 

PC and to analyze the shape of the PC at various levels of aggregation in the US settlement system.  

The paper is structured as follows. Section 2 briefly outlines the theoretical issues underlying 

subsequent empirical analysis. For a description of the empirical data and its processing methods, 

see Section 3. The results of the analysis of the PC shape for three-level settlement system in the US 

are presented in Section 4. Section 5 deals with the discussion of the results obtained.  
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2. Mathematical symbols and definitions  

2.1. Pareto Curve 

Let the settlement system consist of n elements (states, counties, cities) that have iw shares 

of population. Let us arrange the system elements in descending order of w. As a result, we have a 

sorted (ranked) list of elements, in which the ordinal number of each element is called its rank and 

is denoted by the letter r. The settlement with the largest population will have rank 1, the second 

most populous settlement will have rank 2, and so on. The function  rwwr   is called discrete rank 

distribution of the settlement system. The share of population  kS  living in k settlements with ranks 

1, 2, ..., k is equal to 



k

r
rk wS

1

. By convention, 1
1




n

r
rw . The graph of dependency kS  on the 

percentage of settlements  nkpk   is called a discrete Pareto function.  

A Pareto curve (PC) is a non-negative non-decreasing differentiable function  pS  that 

interpolates the discrete function kS . From the definition of PC, the inequality   1 pSp  for 

],[ 10p  follows, as also boundary conditions: 1100  )(,)( SS .  

The PC shape characterizes the degree of uneven size distribution of settlements. The 

steeper the curve and the further it is from the line of absolute equality, the greater the inequality 

in the size distribution, and vice versa. 

Despite the fact that PC does not depend on the number of settlements, for a given n, it 

enables to calculate the shares of population using the formula below:  

      1 rrr pSpSpw . (1) 

Formally, for 1n , the approximate equality is valid: 

 ),(),()( 10 ppSpw , (2) 

where n1 . 

At the same time, the ratio (2) applies only to small-sized settlements, where relative 

difference between two sequential elements is very small. The first ranking elements of the system 

that differ significantly in size cannot be expressed in terms of a PC derivative (Grachev, 2009, 

2010). Consequently, even formally, the proportions of the first ranking elements of the system 

cannot be described by the rank-size rule, which is confirmed by numerous empirical studies (for 

example, see the review (Arshad, Hu and Ashraf, 2018)).  
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It follows from (2) that at the point p  that satisfies the equation 1
 )(pS , the equality 

)(pw  is valid. In other words, the average-sized element of the system has a coordinate on 

the axis of shares of ranks at the point p . The point  )(,  pSp  at which the PC derivative is equal 

to 1 is at the maximum distance from the egalitarian line xy   (Kakwani, 1980). 

2.2. Measuring the form of inequality 

2.2.1. Gini coefficient 

The most common integral measure of size inequality is the Gini coefficient (Gini, 1921): 

      122

1

0

1

0

  dppSdpppSG . (3) 

When integrating (2) by parts, we have: 

 RdppSpppSG 2112

1

0

1

0















  )()( , (4) 

where 
1

0

dpppwR )( . 

From relations (3) and (4), it can be seen that G can be interpreted as the average distance 

from the PC to the egalitarian line, as the double area between the PC and the egalitarian line (Xu, 

2005), and as the normalized coordinate of the center of mass of the system.  

The Gini coefficient ranges from a minimum value of zero, where all elements are equal, to 

a theoretical maximum of 1, where all elements except one have a size of zero.  

The main disadvantage of G is that it sums up PCs of different shapes in the same way 

(Voitchovsky, 2005; Osberg, 2017; Clementi et al., 2019).  

2.2.2. PC asymmetry coefficient  

Let us specify  )(, aa pSp  a point where the PC intersects the alternative diagonal xy 1  

(Kakwani, 1980). By convention:  

  1 )( aa pSp .  (5) 

Pareto curves are symmetric with respect to the alternative diagonal when the equality 

app   from which the PC symmetry condition (Kakwani, 1980) follows is satisfied:  
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 1  )(pSp . (6) 

PCs have a right-hand asymmetry when app  , and a left-hand asymmetry when app  . 

Thus, the difference app   can serve as an indicator of PC asymmetry. The larger the difference 

modulus, the greater the asymmetry. 

There are three single-parameter PCs with different asymmetries in Table 1. In the first line, 

there is a power-series PC with a right-hand asymmetry, in the second line — a power-series PC 

with a left-hand asymmetry, in the third line — a symmetric PC of the Burr III distribution (Burr, 

1942). 

Table 1. Single-parameter PCs 

Parameters PC G p  )( pS  app   

10   p      11  1

1

 



1  <0 

1    p11     11   
 1

1

1  



 11  >0 

1    


1

11 p  
 
 

1
2

1
2






Γ

Γ
 

1

501 .  

1

50.  0 

 

The dependencies p  on G for these PCs are shown in Fig. 1.  

 

Fig. 1. Dependencies p  on G 
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From the curves presented in Fig. 1, it can be seen that the maximum of the asymmetry is at 

0G , and the minimum is at 1G . Consequently, an increase in size differentiation in the system 

leads to a decrease in the PC asymmetry.  

Most often, the classical coefficient of asymmetry (A) is used to measure the PC asymmetry 

(Dagum, 1980; Kakwani, 1980; Damgaard and Weiner, 2000):  

 )(   pSpA . (7) 

For symmetric PCs, 1A . If 1A , then the PC has a left-hand asymmetry, and a right-hand 

asymmetry — when 1A . When calculating the lower and upper boundaries of A, we will find: 

 7360
21

1

1

1
.limmin 














 



 e
A ; (8) 

  26412 1

1

1

1
.limmax 













 




A . (9) 

We introduce the normalized asymmetry coefficient (γ), which has values in a finite interval 

 11, : 

 
2640

1

2640

1

.

)(

.







 pSpA
. (10) 

For symmetric PCs 0 , for PCs with a left-hand asymmetry — 0 , for PCs with a right-

hand asymmetry — 0 .  

Note that it follows from the dependencies presented in Fig. 1 that the 80/20 ratio (Pareto, 

1897) obtained by Wilfredo Pareto when studying the distribution of land in Italy only occurs when 

7870.G  (Grachev, 2009), which explains why the Pareto principle does not apply in all cases 

(Grachev, 2010, 2011c, 2011d, 2011a, 2011e, 2011b, 2012, 2013a, 2013b; Verbitsky and Grachev, 

2013).  

 2.2.3. Critical exponent of PC 

The decrease in the symmetry of the system during the transition from the state of a lack 

of order   ppS   to the state of order   10  pppS ,  can be interpreted as a second-kind 

phase transition. Based on this analogy, we represent  pS  in the neighborhood of zero  1p  as 

a power function (Stanley, 1971): 
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   1

1

 pforAppS D , (11) 

where A, D are constants specific to each settlement system. 

The parameter D is interpreted as the fractal dimension of the order parameter, and the 

reciprocal  D1  is called critical exponent (Stanley, 1971). Note that the fractal dimension in (11) 

differs from the fractal dimension of Yanguang Chen (Chen, 2016) not only in size, but also in 

physical meaning. 

The critical exponent provides objective information about the shape of the PC in the 

neighborhood of zero and can be used to compare the size of the first ranking elements of the 

system. For example, the primacy index — the ratio of the size of the two first ranking settlements 

— can be calculated using the formula: 

 

12

1
1

12

1

2

1








D
SS

S

w

w
. (12) 

From the rank-size rule,  221 ww we find: 58501 .D . Thus, a primate city that has a 

size of 21 2ww   (Jefferson, 1939) appears in settlement systems when their fractal dimension 

711.D ; accordingly, the critical exponent is less than or equal to 0.585. The emergence of 

primates can be viewed as the result of asymmetric size competition, in which larger elements of 

the system suppress the growth of their smaller neighbors. Models of such competition can be 

found in ecology (for example, see (Weiner and Damgaard, 2006)). 

2.2.4. The Pareto curve model 

The search for distributions that replace the lognormal distribution and combine the 

properties of the power-series distribution and lognormal distribution has been going on for several 

decades (for example, see (Champernowne, 1956; Ghosh and Basu, 2019; Sánchez, 2019)). An 

analytically simple two-parameter PC model that gives a wide range of asymmetries can be obtained 

by generalizing the single-parameter PCs presented in Table 1 (Antoniou et al., 2004):  

      10111 
 ,,ppS . (13) 

The obvious advantages of the model (13) are a simple formula to calculate the PC and an 

explicit analytical expression for the Gini coefficient:  
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  
 

1

1
1

1
1

2




























Γ

ΓΓ

,G . (14) 

It is known that the model(13) has shown good results in the study of inequality of incomes of the 

population(Sarabia, Jordá and Trueba, 2013).  

To estimate the critical exponent of the model (13), we use the limit (Stanley, 1971): 

 
 
p

pS

D p ln

ln
lim

0

1


 . (15) 

When applying L'Hôpital's rule, we will find: 

 
  








 p

p

D p ln

ln
lim

111

0
. (16) 

The relation .(16) suggests that in the neighborhood of zero, the two-parameter PC (13) does 

not depend on the parameter α and can be approximated by power function with a critical exponent 

β.  

According to an empirical study (Ghosh, Chattopadhyay and Chakrabarti, 2014; Inoue et al., 

2015; Chatterjee, Ghosh and Chakrabarti, 2017; Banerjee et al., 2020), with 60.G  all PCs that 

have the same G value intersect the alternative diagonal at a single point. From the PCs presented 

in Fig. 2, which have the same values 50.G , it can be seen that the model (13) describes this 

phenomenon adequately. 

  

Fig. 2. PC and rank distributions of the two-parameter model 
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Fig. 2 is also interesting because it clearly demonstrates the possibility of unambiguously 

determining the critical exponent and the ambiguity of evaluating the exponent of the Pareto 

distribution over rank distributions. 

3. Empirical data and processing methodology 

3.1.  Data  

The main source of empirical data for state sizes (the first level of aggregation) is the US 

census (Historic US Census data). This census has been conducted every decade since 1790. In the 

first census in 1790, there were only 18 states. Since 1959, the United States comprise 50 States. 

However, data for all 51 states, including the district of Columbia, has been present in the census 

since 1900.  

As a database of sizes of counties (the second level of aggregation) and cities (the third 

level), the United States used website http://www.citypopulation.de/en/usa/.   

3.2. Data processing methodology  

To calculate the Gini coefficient, the ratio (4) was used, which for a discrete data set was 

calculated using the formula (Sen, 1973): 

 






n

r

rrw
nn

n
G

1

21
. (17) 

The estimates of the parameters α and β were obtained using the Solution Search function 

in Microsoft Excel. As an objective function, we have used the minimum of the Kolmogorov — 

Smirnov statistics that is most common for abnormal data, which is equal to the maximum of 

differences between the empirical and theoretical PCs: 

     ˆ,ˆ;sup ii
x

xSxSKS , (18) 

where   ˆ,ˆ;ixS  represents the estimated Pareto curve.  

4. Results 

4.1. The system of settlement in states 

The first and most aggregated level of the US settlement system is the settlement in states. 

The rank distributions of states in 1800, 1850, 1900, 1950, and 2000 in the bilogarithmic coordinate 

system are shown by markers in Fig. 3. The results of their approximation by the model (13) are 

indicated with a dotted line.  

http://www.census.gov/population/www/censusdata/hiscendata.html
http://www.citypopulation.de/en/usa/
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Fig. 3. Rank distributions of state sizes  

It can be seen from the rank distributions presented in Fig. 3 that the model (13) adequately 

describes the sizes of states in the entire range of ranks.  

The dynamics of the parameters G, β, ap  and p is indicated in Fig. 4 by markers, and the 

linear trends — by a dashed line. The standard error of the exponent does not exceed 0.005, and 

the asymmetry coefficient – 0.01.  

 

Fig. 4. Behavior of the order of settlement in states 
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The behavior of PC shape parameters presented in Fig. 4 shows that for 220 years, the PC of 

the state settlement system had a left-hand asymmetry  app   decreasing as the settlement 

system developed. 

4.2. County-based and city-based systems of settlement in states 

The empirical dependences of β and γ on G for county-based 14n  and city-based 

settlement systems are shown in Fig. 5. 

County-based settlement system  City-based settlement system 

 

 

 

 

 

 
 

Fig. 5. The dependences of the asymmetry coefficient and the critical exponent of PC for 
counties and cities on G 
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occurrence of a primate.  

Ranked population distributions by county and city in the states of California, Florida and 

Connecticut are shown in Fig. 6. 
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County-based settlement system City-based settlement system 
California State 

  
Florida State 

  
Connecticut State 

  
 

Fig. 6. County-based and city-based settlement systems of the United States in 2010 

It can be seen from the empirical rank distributions presented in Fig. 6, that the uniformity 
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5. Discussion of the results. Conclusions 

The initial premise of this paper is the assumption that the inadequacy of describing 

settlement systems by a Pareto distribution having a PC with a right-hand asymmetry and by a 

lognormal distribution having a symmetric PC occurs in cases where real Pareto curves have a left-

hand asymmetry. 

To test this hypothesis, the paper provides analysis of behavior of the Pareto curve shape in 

the system of settlement in states and spatial analysis of the PC shape of the county-based and city-

based settlement systems of the United States. The Gini coefficient, the asymmetry coefficient and 

the critical exponent of the PC were used as indicators of the PC shape.  

An empirical analysis of the behavior of the PC shape in the system of settlement in states 

showed that the PC had a left-sided asymmetry between 1790 and 2010, which explains why the 

Pareto and lognormal distributions do not describe the system of settlement in states in a 

satisfactory way (Soo, 2012).  

Spatial analysis of the systems of settlement in counties and cities in 2010 showed that both 

systems have approximately equal PC with left-hand and right-hand asymmetries, which explains 

why Pareto and lognormal distributions are not applicable to these systems in half of the cases.  

When analyzing the influence of aggregation of settlement systems on the parameters of 

the PC shape (see Table 2), we can see that the system of settlement in states has the lowest 

average of the Gini coefficient and the highest average of the critical exponent. The average values 

of G and β fall on the system of settlement in counties, while the system of settlement in cities has 

the highest average Gini coefficient and the lowest average critical exponent. Given that primates 

can only occur in systems with a critical exponent 5850. , the result explains why they appear 

primarily in city-based settlement systems in the United States. However, excluding them from the 

data sample when evaluating model parameters, as suggested in the paper (Benguigui and 

Blumenfeld-Lieberthal, 2007), is allowed only in exceptional cases.  

Table 2 Parameters of the PC shape for three levels of the US settlement system  

  Average  G β γ 

  G β γ min max min max min max 

State 0.51 0.78 0.18 0.42 0.56 0.70 0.88 0.05 0.37 

Counties 0.63 0.60 -0.04 0.37 0.82 0.22 0.95 -0.48 0.52 

City 0.71 0.54 -0.03 0.43 0.89 0.06 0.98 -0.68 0.96 
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A verification of a two-parameter model built in (Antoniou et al., 2004) that combines the 

properties of power-series distribution and lognormal distribution, based on empirical data of the 

US settlement system, has shown that it adequately describes homogeneous settlement systems.  

A comparison of the uniformity of the size of counties and cities in the States showed that 

the uniformity of the size distribution in the city-based settlement system is higher than that of the 

district-based settlement system. Most likely, this is due to the fact that the city-based settlement 

system is self-organized under the influence of objective laws of geographical systems (Batty, 2008), 

while the aggregation of settlements into counties depends not only on objective historical and local 

events, but also on subjective views of state leaders on ways to improve the efficiency of the region 

(Allen, 1996).  

Since the government can influence the areas of development of settlement systems (for 

example, various tax benefits for certain territories, federal subsidies to small cities to attract 

residents, etc.), the question arises: which asymmetry of the Pareto curves is appropriate to take as 

a basis for managing the development of settlement systems? 

According to the isoperimetric inequality, the more "regular" shape of a flat figure of a given 

area is, the smaller its perimeter will be (Polya and Szegö, 1951). Or, by the same token, for the 

same value of the Gini coefficient, the length of the symmetric PC is less than that of asymmetric 

PC. Given that the isoperimetric inequality is conceptually related to the principle of least action, 

which explains why oil spots on water surface have the shape of a circle, and a drop of water has 

the shape of a ball, as well as the decrease in the PC asymmetry of the state-based settlement 

system over time and the equality of the average asymmetry of counties and state cities to zero, it 

is logical to assume that a normally functioning system should have a symmetrical PC.  

Thus, the study confirmed that in settlement systems, the shape of the Pareto curve has a 

wide range of asymmetries that cannot be described by Pareto and lognormal distributions. 

It has been established that primates in settlement systems occur when the critical 

exponent is less than 0.585. An increase in the Gini coefficient usually leads to an increase in the 

probability of a primate occurring.   

The well-proven tools for evaluating the PC shape and the two-parameter PC model in this 

study can be used in other fields of knowledge.  

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors.  
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