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Abstract

We describe a model of a discrete time dynamic system with active elements
(players). All the system states are contained in a set of a metric space. Each
state is associated with the common system utility value and player shares. Fea-
sible coalitions of players can change the system state, but each move requires
certain expenses. We suppose that the players may have only restricted and
local knowledge about the system. We define the concept of an equilibrium
state in this dynamic game and present iterative algorithms that create feasible
trajectories tending to equilibrium states under rather general conditions.

Key words: Dynamic games, discrete time, incomplete knowledge, utility
shares distributions, equilibrium states, solution trajectories.

1 Introduction

The usual approach to formulation of various decision making problems is to choose
the best variant under the current knowledge about the problem under solution. This
means that all the necessary knowledge about the problem data and all the parameters
should be derived beforehand. In this situation, the solution of the basic problem can
be treated as absolute. This approach may admit proper corrections caused by possible
data perturbations, but the model remains the same in general. At the same time, the
presentation of all the model functions, constraints, and parameters may vary together
with changes of the real system states. Moreover, only some limited information about
the system may be known at each state. Therefore, our decisions will be then dependent
on the current state and this fact should be reflected in the mathematical formulation
of the decision making problem.

Recently, a new approach to optimization formulations of decision making prob-
lems was proposed in [1] where they are treated as relative or subjective optimization
problems with respect to system states and give (quasi-)equilibrium problems. In [2],
a rather general class of relative optimization problems in metric spaces was presented.
It was shown that the quasi-equilibrium type formulations of relative optimization
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problems admit rather simple descent solution methods and give suitable trajectories
tending to a relatively optimal state.

In this paper, we apply the above approach to game problems. The basic model
represents a discrete time dynamic system with active elements (players). Each state
of the system is associated with the common system utility value and shares for all
the players. Feasible coalitions of the players can change system states, but each move
requires certain expenses. The players may have only restricted and local knowledge
about the system. We define the concept of an equilibrium state in this dynamic game
and propose a simple descent type solution method for creating suitable trajectories
converging to an equilibrium state under mild conditions.

2 Basic Problem Formulations

We describe a general model of a system whose possible states are contained in a set
X ⊆ E where E is a metric space. The system involves m active elements (players).
Let M = {1, . . . ,m} and let M ⊆ Π(M) denote the set of feasible coalitions that can
change system states. Here and below Π(F ) denotes the family of all nonempty subsets
of a set F . Each state x ∈ X is associated with the common system utility value φ(x)
and a set of player shares

A(x) ⊆ Sm
+ =

{
u ∈ Rm

m∑
i=1

ui = 1, ui ≥ 0, i = 1, . . . ,m

}
.

This means that the set-valued shares mapping x 7→ A(x) is defined on X. The actual
vector of player shares a(x) ∈ A(x) becomes known only after arrival to the state x.
Each feasible coalition I ∈ M can define its set of feasible states DI(x) at state x in the
sense that this coalition I can move the system from x to y and evaluate the common
system utility value φ(y) if y ∈ DI(x). Next, each move (x → y) accomplished by
coalition I requires its common expenses cI(x, y). We suppose that cI(x, y) is non-
negative and known at x to any player of this coalition for any y ∈ DI(x). Hence, we
can define the estimate of pure expenses of coalition I for the move (x → y) as follows

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y),

where
aI(x) =

∑
i∈I

ai(x).

This means all the players of any active coalition agree to bear the expenses related to
the corresponding system move. Then we can define the following equilibrium problem.

Problem (P1) Find a point x∗ ∈ X such that

fI(x
∗, y) ≥ 0 ∀y ∈ DI(x

∗), ∀I ∈ M. (1)
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Therefore, if x∗ is an equilibrium state in the sense of (1), no active coalition has
a positive profit estimate for any feasible move from this state. Solution of Problem
(P1) may be found by an iterative sequence with non-negative profit estimates. The
starting state x0 ∈ X is supposed to be known. We will say that a sequence {xk} ⊂ X
is a feasible trajectory if xk+1 ∈ DI(x

k) and I ∈ M for each number k. Then we can
define the dynamic equilibrium problem.

Problem (P2) Find a feasible trajectory {xk} with the initial state x0 ∈ X and
negative pure move expenses estimates for the corresponding active coalitions such that
it either terminates at a solution of Problem (P1) or its limit points are solutions of
Problem (P1).

The above framework is rather general and admits various implementation rules.
For instance, many rules can be taken for distribution of coalition move expenses among
the players. However, any rule should provide positive personal profit estimates if so is
the common coalition profit estimate. For instance, if fI(x, y) < 0, we can define the
i-th player personal profit estimate

µi
I(x, y) = ai(x)[φ(y)− φ(x)]− ai(x)cI(x, y)/aI(x) = −ai(x)fI(x, y)/aI(x) > 0

if ai(x) > 0. Clearly, coalition I may be profitable for the move (x → y) if

cI(x, y) <
∑
i∈I

ci(x, y), (2)

especially for any player j such that aj(x) = 0. In general, if I ′′ = I ′
∪
{j} and

cI′′(x, y) < cI′(x, y), then coalition I ′′ is more profitable for all the players from coalition
I ′ with respect to move (x → y) under the same cost distribution rule.

It should be observed that the family M determines the kind of the presented game
model. In fact, if M = ({1}, . . . , {m}), we have a non-cooperative game, whereas
M = Π(M) together with (2) corresponds to a complete cooperative game setting. At
the same time, the players can also behave in a non-cooperative manner if (2) does not
hold, i.e. then

cI(x, y) ≥
∑
i∈I

ci(x, y).

The set-valued mappings x 7→ DI(x) enable us to determine all the gaming restrictions.
It seems rather natural to suppose that x ∈ DI(x) for any x ∈ X and I ∈ M, but this
condition is not obligatory. Next, setting DI(x) = {x} means that coalition I can not
change the system state x. The choice of the set-valued shares mapping x 7→ A(x) is
also determined by the rules of the game under consideration. For example, they can
involve the condition

aI(x) ≤ aI(y) if y ∈ DI(x),
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or
aI(y) = argmax{aI | a ∈ A(y)}.

We observe that a solution of the global optimization problem

max
x∈X

→ φ(x) (3)

is always a solution of Problem (P1) in this setting, but Problem (P1) may have other
solutions as the following simple examples illustrate.

Example 1 Let X = [0, 1] and φ(x) = x + 1, then the point x∗ = 1 is a unique
solution of (3). Next, let M = {1, 2}, M = ({1}, {2}, {1, 2}), a(x) ≡ (0.5, 0.5)⊤,
DI(x) = [x − 0.1, x + 0.1)]

∩
X for any I ∈ M, and x0 = 0. Also, set cI(x, y) =

2(x− y)2 + 8x|x− y| for I = {1, 2} and cI(x, y) = 3(x− y)2 + 10x|x− y| for I = {1}
and I = {2}. Then the cooperative behaviour is more reasonable for both the players
and we fix I = {1, 2}. Take the first move (x0 → x1) where x1 = x0 + 0.1 = 0.1, then
we have the estimate

fI(x
0, x1) = −0.1 + 0.02 < 0,

i.e. it is profitable. However, this is not the case for the next similar move (x1 → x′)
where x′ = x1 + 0.1 = 0.2 since

fI(x
1, x′) = −0.1 + 0.02 + 0.08 = 0.

We take the next move (x1 → x2) with the reduced step and choose x2 = x1 + 0.05 =
0.15. It is profitable since

fI(x
1, x2) = −0.05 + 0.005 + 0.04 = −0.005 < 0.

It appears that x2 is a solution of Problem (P1) since

fI(x
2, x) ≥ 0 ∀x ∈ DI(x

2).

The trajectory {x0, x1, x2} is feasible, therefore, it is a solution of Problem (P2).

The next example also shows that solutions may depend on trajectories.

Example 2 We take a system with a finite number of states, namely, we set X =
{v1, v2, v3, v4}, φ(v1) = 10, φ(v2) = φ(v3) = 11, φ(v4) = 12; see Figure 1. The arcs
indicate feasible profitable moves. Also, we can determine the distance d(v, v) = 0
for any v ∈ X, d(u, v) = 1 for any pair of different vertices u, v ∈ X joined by one
arc, and d(u, v) = 2 for any other different vertices u, v ∈ X. Then the set X is a
metric space. Next, let M = {1, 2}, M = ({1}, {2}), hence the players will behave in
a non-cooperative manner. We define their state shares as follows:

a(v1) = (0.5, 0.5)⊤, a(v2) = (0.9, 0.1)⊤, a(v3) = a(v4) = (0.1, 0.9)⊤,
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and the feasible sets:

D{1}(v
1) = D{2}(v

1) = {v2, v3},
D{1}(v

2) = D{2}(v
2) = {v4}, D{1}(v

3) = D{2}(v
3) = {v4}.

Next, we define the move expenses as follows:

c{1}(v
1, v2) = c{2}(v

1, v3) = 0.25, c{1}(v
1, v3) = c{2}(v

1, v2) = 1, c{2}(v
2, v4) = 0.5,

c{1}(v
2, v4) = c{2}(v

3, v4) = 1, c{1}(v
3, v4) = 0.2.

We denote by pi(x) the pure profit of player i at system state x, which is equal to
his/her profit at x minus the trajectory expenses. If x0 = v1, then p1(x

0) = p2(x
0) = 5.

However, x0 is not a solution of Problem (P1).

Let us take the first move (v1 → v2). Then we have the estimates

f{1}(v
1, v2) = −0.5 + 0.25 < 0 and f{2}(v

1, v2) = −0.5 + 1 > 0,

i.e. the move may be profitable for the first player. Hence, we can check the second
move (v2 → v4). We have the estimates

f{1}(v
2, v4) = −0.9 + 1 > 0 and f{2}(v

2, v4) = −0.1 + 0.05 < 0,

i.e. the move may be profitable for the second player. Therefore, v4 is a solution of
Problem (P1) and the trajectory {v1, v2, v4} is a solution of Problem (P2). Besides,
v4 is a solution of (3). Let us compare the pure profits of the players:

p1(v
2) = 9.65 > 5, p2(v

2) = 1.1 < 5, p1(v
4) = 0.95 < 5, p2(v

4) = 10.75 > 5.

Let us take the other first move (v1 → v3). Then we have the estimates

f{1}(v
1, v3) = −0.5 + 1 > 0 and f{2}(v

1, v3) = −0.5 + 0.25 < 0,

i.e. the move may be profitable for the second player. Hence, we can check the second
move (v3 → v4). We have the estimates

f{1}(v
3, v4) = −0.1 + 0.2 > 0 and f{2}(v

3, v4) = −0.9 + 1 > 0,

i.e. they are not profitable. Therefore, v3 is a solution of Problem (P1) and the
trajectory {v1, v3} is a solution of Problem (P2). Let us compare the pure profits of
the players:

p1(v
3) = 1.1 < 5, p2(v

3) = 9.65 > 5.
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Figure 1: An equilibrium problem on a graph

3 The Basic Method and Its Convergence

We will use the following set of basic assumptions.
(A1) The set X ⊆ E is nonempty and closed, the function φ : X → R is continuous,
for each I ∈ M the bi-function cI : X ×X → R is non-negative and continuous.
(A2) For some number α ≤ u(x0) the set

Xα = {x ∈ X | φ(x) ≥ α}

is compact.
(A3) For each I ∈ M the mapping DI : X → Π(X) is lower semi-continuous on X.
(A4) The mapping A : X → Π(Sm

+ ) is upper semi-continuous on X and has closed
values on X.

We recall that a set-valued mapping T : X → Π(X) is said to be
(a) upper semicontinuous on X, if for each point v ∈ X and for each open set

U such that U ⊇ T (v), there is an open neighborhood Ṽ of v such that T (w) ⊂ U
whenever w ∈ Ṽ

∩
X;

(b) lower semicontinuous on X, if for each point v ∈ X and for each open set U such
that U

∩
T (v) ̸= ∅, there is an open neighborhood Ṽ of v such that U

∩
T (w) ̸= ∅

whenever w ∈ Ṽ
∩
X.

Clearly, (A2) is a general coercivity condition, which together with continuity of φ
implies that the global optimization problem (3) has a solution and that

φ∗ = sup
x∈X

φ(x) < +∞. (4)

Hence, Problem (P1) also has a solution. The solutions of both (P1) and (P2) can
be found by the following threshold descent method (TDM).
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Method (TDM).
Initialization: Take the given point x0, choose a sequence {δl} ↘ 0. Set l = 1, k = 0,
z0 = x0.

Step 1: Given a point zk ∈ X and a vector a(zk) ∈ A(zk), find a coalition J =
J(k) ∈ M such that

∃zk+1 ∈ DJ(z
k), fJ(z

k, zk+1) < −δl, (5)

set k = k + 1 and go to the beginning of Step 1. Otherwise, i.e., if this coalition does
not exist, go to Step 2.

Step 2: Set xl = zk, l = l + 1 and go to Step 1.

Therefore, δl stands for the current descent threshold, which determines the suf-
ficient profit for the movement. The index l is a counter for the number of restarts
(threshold changes). The choice of zk+1 in accordance with (5) depends on peculiarities
of the problem. In particular, it can be based on a solution of the auxiliary problem

min
z∈DJ (zk)

→ {cJ(zk, z)− aJ(z
k)φ(z)}. (6)

Theorem 1 Let assumptions (A1)–(A4) be fulfilled. Then the sequence {xl} gener-
ated by Method (TDM) has limit points, all these limit points are solutions of Problem
(P1), and the sequence {zk} solves Problem (P2).

Proof. The assertion will be proved in several steps.
Step 1: For each fixed k relation (5) implies

aJ(k)(z
k) > 0 (7)

and
φ(zk+1)− φ(zk) > δl. (8)

If (7) does not hold (5) gives

0 ≤ cJ(k)(z
k, zk+1) < −δl < 0,

which is a contradiction. Next, by definition,

φ(zk+1)− φ(zk) = [cJ(k)(z
k, zk+1)− fJ(k)(z

k, zk+1)]/aJ(k)(z
k)

> [cJ(k)(z
k, zk+1) + δl]/aJ(k)(z

k) ≥ δl.

Step 2: For each l the number of changes of the index k is finite.
The assertion follows from (8) and (A2).

Step 3: The sequence {xl} has limit points, all these limit points are solutions of
Problem (P1).
From Steps 1–2 it follows that the sequence {xl} is infinite and is contained in the
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compact set Xα due to (A2). It follows that {xl} has limit points. For each l from the
definition we have

a(xl) ∈ A(xl), fI(x
l, y) ≥ −δl ∀y ∈ DI(x

l), ∀I ∈ M. (9)

Let x̄ be an arbitrary limit point of {xl}, i.e. {xls} → x̄. Then x̄ ∈ X since X is closed.
Since the sequence {a(xls)} is bounded, it has limit points. Without loss of generality
we can suppose that

lim
s→∞

a(xls) = ā,

then ā ∈ A(x̄) due to (A4).
Take any coalition I ∈ M and any ȳ ∈ DI(x̄), then there exists a sequence of points

{yls}, {yls} → ȳ such that yls ∈ DI(x
ls) since the mapping DI is lower semi-continuous

on X due to (A3). Setting l = ls and y = yls in (9) and taking the limit s → ∞ give

ā ∈ A(x̄), fI(x̄, ȳ) ≥ 0,

i.e. x̄ is a solution of Problem (P1). It follows that {zk} is a solution of Problem (P2).
�

The assumptions of Theorem 1 can be modified in a complete metric space setting.
In particular, we can then remove the compactness assumption.

(B1) The set X ⊆ E is nonempty and closed, E is a complete metric space with the
metric bi-function d : X ×X → R, the function φ : X → R is continuous, relation (4)
holds.
(B2) For each I ∈ M the bi-function cI : X×X → R is non-negative and continuous,
there exists an increasing continuous function θ : R → R such that θ(0) = 0 and that
for all x, y ∈ X we have θ[d(x, y)] ≤ cI(x, y) for any I ∈ M.
(B3) The cost bi-functions cI : X × X → R, I ∈ M satisfy the coalitional triangle
inequality, i.e., for any I, J ∈ M and for any x, y, z ∈ X there exists K ∈ M such
that

cI(x, z) + cJ(z, y) ≥ cK(x, y).

Theorem 2 Let assumptions (B1)–(B3) and (A3)–(A4) be fulfilled. Then the se-
quence {xl} generated by Method (TDM) converges to a solution of Problem (P1), and
the sequence {zk} solves Problem (P2).

Proof. The assertion will be proved in several steps.
Step 1: For each fixed k relation (5) implies (7) and (8).

This is proved as in Step 1 of Theorem 1.
Step 2: For each l the number of changes of the index k is finite.

The assertion follows from (8) and (B1).
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Step 3: The sequence {zk} converges to a point x̄ ∈ X.
It also follows from (8) and (B1) that

lim
k→∞

φ(zk) = φ̃ < +∞, (10)

besides, (5) now gives

cJ(k)(z
k, zk+1) < aJ(k)(z

k)[φ(zk+1)− φ(zk)] ≤ φ(zk+1)− φ(zk).

Take any indices k and m = k + p, then we have

θ[d(zk, zk+p)] ≤ cI(k)(z
k, zk+p) ≤ cJ(k)(z

k, zk+1) + . . .+ cJ(k+p−1)(z
k+p−1, zk+p)

≤ φ(zk+p)− φ(zk)

for some I(k) ∈ M due to (B2) and (B3). On account of (10) we now obtain that
for any number α > 0 there exists an index k′ such that d(zk, zm) < α if min{k,m} =
k > k′. Hence, {zk} is a Cauchy sequence and it converges to a point x̄ ∈ X since X
is closed.

Step 4: The sequence {xl} converges to a point x̄ ∈ X, which is a solution of
Problem (P1).
Since the sequence {xl} is contained in {zk} and is infinite due to Step 2, Step 3 implies
that {xl} converges to the point x̄ ∈ X. The rest part of the proof is the same as in
Step 3 of Theorem 1. �

Remark 1 Let us replace condition (A3) with the following.

(A3′) For each I ∈ M the mapping DI : X → Π(X) is lower semi-continuous on X
and x ∈ DI(x) for any x ∈ X.

Similarly, we can take the somewhat stronger formulations of Problems (P1) and
(P2).

Problem (P1′) Find a point x∗ ∈ X such that

x∗ ∈ DI(x
∗), fI(x

∗, y) ≥ 0 ∀y ∈ DI(x
∗), ∀I ∈ M. (11)

Problem (P2′) Find a feasible trajectory {xk} with the initial state x0 ∈ X and
negative pure move expenses estimates for the corresponding active coalitions such that
it either terminates at a solution of Problem (P1′) or its limit points are solutions of
Problem (P1′).

Then the assertions of Theorems 1 and 2 remain true where (A3), (P1), and (P2)
are replaced with (A3′), (P1′), and (P2′), respectively.
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4 The Simple Descent Method

Let us now take the simple descent method (SDM) for Problems (P1) and (P2), which
does not involve any threshold.

Method (SDM).
Initialization: Take the given point x0 ∈ X, set k = 0.

Step 1: Given a point xk ∈ X and a vector a(xk) ∈ A(xk), find a coalition J =
J(k) ∈ M such that

∃xk+1 ∈ DJ(x
k), fJ(x

k, xk+1) < 0, (12)

set k = k + 1 and go to the beginning of Step 1. Otherwise, i.e., if this coalition does
not exist, stop.

However, it does not converge to a solution under the assumptions of the previous
section even in case m = 1; see e.g. [2, Example 4.1]. However, (SDM) can be useful
in the case when there exists a lower positive threshold for move expenses. Then we
can relax essentially the other assumptions.

(C1) The set X ⊆ E is nonempty, relation (4) holds. The mapping A : X → Π(Sm
+ )

has non-empty values on X.
(C2) For each I ∈ M the bi-function cI : X ×X → R is non-negative, there exists a
number δ > 0 such that cI(x, y) ≥ δ for all x, y ∈ X, x ̸= y and for any I ∈ M.
(C3) For each I ∈ M the mapping DI : X → Π(X) has non-empty values on X.

We can thus remove all the continuity and compactness assumptions. Then, Method
(SDM) solves both the problems in a finite number of iterations, as the following
theorem states.

Theorem 3 Let assumptions (C1)–(C3) be fulfilled. Then the sequence {xk} gener-
ated by Method (SDM) solves Problem (P2). It is finite and stops at a solution of
Problem (P1).

Proof. It suffices to prove the finiteness of Method (SDM). For each k relation (12)
implies aJ(k)(x

k) > 0. In fact, otherwise we have

0 ≤ cJ(k)(x
k, xk+1) < 0,

which is a contradiction. Next, by definition,

φ(xk+1)− φ(xk) = [cJ(k)(x
k, xk+1)− fJ(k)(x

k, xk+1)]/aJ(k)(x
k)

> cJ(k)(z
k, zk+1) ≥ δ > 0.

If the sequence {xk} is infinite, the above inequality implies φ(xk) → +∞ as k → ∞,
which contradicts (4). �
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Remark 2 As in Remark 1, we can replace condition (C3) with the following.
(C3′) For each I ∈ M it holds that x ∈ DI(x) for any x ∈ X.

Similarly, we can take the formulations (P1′) and (P2′) instead of (P1) and (P2).
Then the assertion of Theorem 3 remains true where (C3), (P1), and (P2) are replaced
with (C3′), (P1′), and (P2′), respectively.

5 Examples of Models

We now describe some applied models, which can be formulated within the proposed
framework.

Example 3 (Dynamic oligopoly with coalitions). In the classical oligopoly model
(see e.g. [3]), it is assumed that there are m industrial firms supplying a homogeneous
commodity and that the price p depends on its total quantity x, i.e. p = p(x). Next,
the value hi(zi) represents the i-th firm individual expenses of supplying zi units of the
product. It follows that

x = x(z) =
m∑
i=1

zi,

where z = (z1, z2, . . . , zm)
⊤. In such a way, we obtain a noncooperative static game

where the i-th player (firm) has its particular strategy set R+ and a payoff (profit)
function

µi(z) = zip(x(z))− hi(zi),

i = 1, . . . ,m.
It is natural to suppose that the firms may create coalitions in order to reduce their

common production transition expenses. Then we can define the model of the system
whose states are determined by the total supply quantity x, so that X = [0, b] gives
the set of all the feasible states, and define the common system utility (profit) function
φ : X → R, which is also supposed to be non-decreasing. In general, φ(x) may involve
industrial and pollution treatment expenses at the production level x. For the sake of
simplicity, we take the fixed value of the player shares set

A(x) ≡ Sm
+ ,

then some chosen a(x) ∈ A(x) gives the i-th individual utility φi(x) = ai(x)φ(x) at x.
As above, we choose the set of feasible coalitions M ⊆ Π(M) that can change

system states. For each coalition I ∈ M we define the set of feasible states DI(x) =
[x−εI , x+εI ]

∩
X at state x ∈ X where εI > 0. Also, each move (x → y) accomplished

by coalition I implies its common transition expenses cI(x, y) ≥ 0, but the move
estimate must be profitable, i.e.,

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y) < 0.
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The actual vector of player shares a(y) is determined by coalition I after arrival to the
state y, where one of the suitable distribution rules or their combination can be taken.
For instance, the individual utilities can be first calculated as follows:

φi(y) = ai(x)φ(y) if i /∈ I and φi(y) = φi(x) + qi[φ(y)− φ(x)] if i ∈ I,

where qi ∈ (0, 1) is a chosen parameter. It is possible to take qi = 1/|I| where |I| is the
number of elements in I, or set qi = ai(x)/aI(x). Then we can set ai(y) = φi(y)/φ(y)
for i = 1, . . . ,m. We can now formulate Problems (P1) and (P2) that determine
relative equilibrium states and trajectories of the system. The pure profits will depend
on the movement trajectory. If the function φ is continuous, and for each I ∈ M the
bi-function cI : X ×X → R is continuous, then assumptions (A1)–(A4) are fulfilled,
and we can apply Method (TDM). Clearly, this approach can be easily extended to
the multi-commodity case.

Example 4 (Resource allocation in telecommunication networks). We first
describe an optimal flow distribution problem in telecommunication networks; see e.g.
[4]. The network contains n transmission links (arcs) and accomplishes some submit-
ted data transmission requirements from n selected pairs of origin-destination vertices
within a fixed time period. Denote by ui and di the current and maximal value of data
transmission for pair demand i, respectively, and by xj the current network capacity
of link j. Each pair demand is associated with a unique data transmission path, hence
each link j is associated uniquely with the set N(j) of pairs of origin-destination ver-
tices, whose transmission paths contain this link. For each pair demand i we denote
by hi(ui) the network profit value at the data transmission volume ui. Then we can
write the network income maximization problem as follows:

max →
m∑
i=1

hi(ui) (13)

subject to ∑
i∈N(j)

ui ≤ xj, j = 1, . . . , n; (14)

0 ≤ ui ≤ di, i = 1, . . . ,m. (15)

Denote by α(x) the optimal value of problem (13)–(15) depending on the right-hand
sides x of the constraints as parameters. Also, let β(x) denote the network facility
maintenance expenses at the capacity vector x. Then we can define the network utility
(profit) function value

φ(x) = α(x)− β(x).

Let X denote the set of all the feasible capacity profiles, for instance, we can take

X = {x ∈ Rn 0 ≤ xj ≤ bj, j = 1, . . . , n} .
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That is, X stands for the set of feasible states of the system. Here bj denotes the
maximal capacity of link j.

However, it is natural to suppose that each link can be served by different telecom-
munication providers (see e.g. [5]), which leads to a more general setting of the choice
of the link capacities. Hence, the providers may create coalitions in order to reduce
their common capacity transition expenses. More precisely, it is assumed that there
are m providers (players), they can supply telecommunication services to the users.
For the sake of simplicity, we again take the fixed value of the player shares set

A(x) ≡ Sm
+ ,

then some chosen a(x) ∈ A(x) gives the i-th individual utility φi(x) = ai(x)φ(x) at
x ∈ X.

As above, we choose the set of feasible coalitions M ⊆ Π(M) that can change
system states. For each coalition I ∈ M we define the set of feasible states DI(x) =
[x− εIe, x + εIe)]

∩
X at state x ∈ X where e = (1, . . . , 1)⊤ ∈ Rm and εI > 0. Next,

each move (x → y) accomplished by coalition I implies its common capacity transition
expenses cI(x, y) ≥ 0. This requires for the move estimate to be profitable, i.e.,

fI(x, y) = aI(x)[φ(x)− φ(y)] + cI(x, y) < 0.

The actual vector of player shares a(y) is also determined by coalition I after arrival
to the state y, where a suitable distribution rule can be taken. Some of these dis-
tribution rules are given in Example 3. We can formulate Problems (P1) and (P2)
that determine equilibrium allocations and trajectories of the system. The pure profits
will depend on the movement trajectory. If the function φ is continuous, and for each
I ∈ M the bi-function cI : X ×X → R is continuous, then assumptions (A1)–(A4)
are fulfilled, and we can apply Method (TDM).
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