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Abstract
In this paper we analyze the asymptotics of the Schrödinger equation

solutions with respect to a small parameter ~. It is well known, that short-
wave asymptotics to solutions of this equation leads to the pair of equations—
the Hamilton–Jacobi equation for the phase and the continuity equation.
These equations coincide with the ones for the potential flows of an ideal
fluid. The wave function is invariant with respect to the complex plane
rotations group, and the asymptotics is constructed as a point-dependent
action of this group on some function that is found by solving the transfer
equation. It is shown in the paper, that if the Heisenberg group is used
instead of the rotation group, then the limit of the equations solutions with
~ tending to zero leads to the equations for vortex flows of an ideal fluid in
a potential field of forces. If the original Schrödinger equation is nonlinear,
then equations for barotropic processes in an ideal fluid are obtained.

Keywords: Schrödinger equation, Euler equations, short-wave asymptotics,
quasi-classical approximation, quasi-classical limit

The structure of the message

Quasi-potential To clarify the result of the work, first in 1 section it is noted, that
the class of the external differential of the energy-momentum form α = pdx−Hdt,
used in classical Hamiltonian mechanics, does not exceed n on an arbitrary integral
surface of dimension n+1. It follows from this, that on an arbitrary integral surface
of dimension four in the expanded phase space R7, the form dα is decomposable.
For the form α, this means, that it can be represented on this surface as dS − mdn
with some functions S , m and n. This triplet of scalar functions is referred to as
the energy-momentum form α in the work. There is given an example in which

α = vdx −
(

v2

2
+ U(x, t)

)
dt. In this case the quasi-potential satisfies a system of

equations, which is equivalent to the Euler system of equations of an ideal fluid,
and the triple S , m, and n are known as Klebsch potentials.
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Heisenberg group In the next 2 section the main object is entered—the Schrödin-
ger equation, the solution of which is the function ψ of the point (x, y, z, t) with
values in the Hilbert space L2(R), and the Heisenberg group H. We write out
solutions of the Schrödinger equation by using elements of the group H.

Asimptotics In the last 3 section, the behavior of solutions of the Schrödinger
equation with respect to h tending to zero is investigated, and, as a consequence, it
is shown there, that the asymptotics obey the equations for the quasi-potential of
the Euler model of an ideal fluid.

1 Quasi-potential

Let’s take the index form for partial derivatives notation for brevity: ft instead of
∂ f
∂t

, fyy instead of
∂2 f
∂y2 , etc., ∆— Laplace operator on variables (x, y, z).

Further the presentation has a local character, that is, it is assumed, that the
variables belong to some sufficiently small neighborhood of a fixed point, in which
all the functions under consideration and their derivatives are continuous up to the
order used. The goal here is to obtain a more convenient form of the Euler model
of an ideal fluid. It is made by introducing the “quasi-potential”. The nature of the
objects is general, and it is necessary to explicitly reproduce partially well-known
facts, “folklore”, putting them in order.

1.1 On the energy-momentum form class

Consider a Hamilton system with the Hamiltonian
H(x, p, t), defined in the expanded phase space R2n+1

ẋi = Hpi ; ṗi = −Hxi ; i = 1, 2. . . . , n.

Let Λn+1 be a smooth integral surface of dimension n + 1, with respect to which
the Hamiltonian vector field ∂ =

∂

∂t
+ Hp

∂

∂x
− Hx

∂

∂p
(with implied summation) is

tangent. Denote α∗ the narrowing of the form α by Λn+1. Next, the dot above the
function name is the result of the field ∂ applying. Takes place
Observation. If Λn+1 is a smooth integral surface for ∂, then the class of the
differential form [1] dα∗ does not exceed n. In particular, if n=3, then the form
dα∗ is decomposable, and hence there is a triple S , m, n of such smooth functions,
defined on Λ4 surface, that ds − mdn = pdx − Hdt. These functions satisfy the
system of equations

ṁ = ṅ = 0; Ṡ = pHp − H.

Indeed, the form dα = dp∧dx−dH∧dt is, according to E. Kartan, absolute integral
invariant of the field ∂ ([1],[2]), that is, on Λn+1surface the inner product i∂dα = 0.
The field ∂ is not degenerated by Λn+1. It follows from this, that the class of the
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form (dα)∗, narrowed to the surface Λn+1, does not exceed n. In the case n = 3
form (dα)∗ is decomposable. This means that there are a pair of such functions m
and n defined on Λ4 surface, that (dα)∗ = dα∗ = dn ∧ dm, and α∗ = dS − mdn for
some function S . Assuming that (dα)∗ , 0 on Λ4 surface, then from the equality
0 = i∂dα = i∂(dα)∗ = i∂ (dn ∧ dm) it now follows that ṁ = ṅ = 0, and from the
fact that α = dS − mdn follows the equality Ṡ = pHp − H.

1.2 Integral surface building and quasi-potential

On the reduction of the Cauchy problem for a quasi-potential to the Cauchy problem
for a system of ordinary differential equations.

Let the Hamiltonian H(x, t, p) be given. In accordance with the above, the
following possible way of solving a system of equations for a quasi-potential is
formed:

1) The initial manifold Λ3
0 of 3 dimension in R7 is constructed according to the

momentum distribution p(x, 0) given at t = 0.
2) Using the flow specified by the vector field ∂, a manifold Λ4 =

⋃
t≥0

Λ3
t is

constructed from the initial manifold Λ3
0.

3) For t = 0 we define S , m, n from the equality dS − mdn = pdx. Field ∂ is
tangent to the surface Λ4, and, we find the quasi-potential S , m, n, defined on Λ4

surface, by solving the equations ṁ = ṅ = 0, Ṡ = pHp − H.
Thus, this approach is a double of the characteristics method for solving the

Hamilton–Jacobi equation, and the variety Λ4 plays the role of a Lagrangian mani-
folds Λ in constructing the velocity potential of a vortex-free flow [3].

We also note the property of the gauge invariance of the resulting system for
the quasi-potential. It consists in the fact, that the existing distribution of pulses on
the variety Λ4, the quasi-potential S , m, n is not uniquely defined: any transfor-
mation of the triplet S ,m, n, leaving the form dS −mdn = dS ′ −m′dn′ unchanged,
leads us to the same system of equations for the new quasi-potential S ′,m′, n′.

Consider an example. Moving on to the notation usually accepted (p ↔ v),

take the Hamiltonian H = U(x, y, z, t) +
v2

2
, α = vdx −

(
v2

2
+ U(x, t)

)
dt. Euler

equations for fluid flows in the potential field of forces ([4], [5]) are{
v̇ + ∇U(x, y, z, t) = 0;
ρt + div(ρv) = 0.(

U(x, y, z, t) = U(ρ) for barotropic processes.
)

The first three equations of this system are Hamiltonian, and the Observation
given above The first three equations of this system are Hamiltonian, and the
Observation given above refers to them. Suppose that the surface Λ4 is diffeomor-
phically projected into R4

(x,t). In this case, we come to the Clebsch representation,
known in hydrodynamics ([6], 167; [7], Sect. 29) solutions of the Euler equations.

We formulate explicitly the sentence used further ([6], 167; [7], Sect. 29).
Proposition. The vector function v and the scalar ρ are Euler equations solution
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if and only if there exist such functions S , m, n, for which ∇S − m∇n ≡ v and
S t − mnt +

v2

2
+ U(x, y, z, t) ≡ 0;

mt + (v · ∇)m = 0;
nt + (v · ∇)n = 0;
ρt + div(ρv) = 0.

(U(x, y, z, t) = P(ρ) f or barotropic processes.)
The triple of functions S , m, n will be called a quasi-potential for the original

Euler equations solution, and the obtained system—a system of equations for a
quasi-potential. Such a quasi-potential by Proposition always exists for Euler
equations solution, its existence has a local character.

2 Schrödinger equation and Heisenberg group

Consider the Schrödinger equation

i~ψt +
~2

2M
∆ψ − U(x, y, z, t)ψ = 0.

It is usually assumed, that ψ is a complex-valued state function, and the square
of its module |ψ|2 is interpreted as the density of the distribution probability for a
particle of mass M to be at time t in the point with coordinates (x, y, z).

If we proceed from the requirement, that the state function reflects the presence
of spin, or some charge and the like, then within the framework of the idea of
introducing calibration fields, we can consider the function ψ as a vector of the
unitary representation space of the corresponding Lie group G and, accordingly,
its Lie algebra a. Further steps are associated with the construction of gauge
invariant equations and so on. Another option is—building a model, “using” group
asymptotically. Thus, for the classical short-wave asymptotics of solutions of
the Schrödinger equation, the group G = U(1) = {eiS } and the one-dimensional
space C1 of its representation are used. The construction of asymptotics means,
in particular, the determination of the dependence of the group element eiS on
the point (x, y, z, t). If the dimension of the unitary space of the ψ representation
is greater than one, but finite, then the form of the equation Schrödinger and the
interpretation of it’s solutions practically do not change. What is convenient—with
this approach, we can use all the results on the solvability of the Cauchy problem
for the Schrödinger equation in suitable functional spaces. There are no problems
with solutions interpreting in both the classical and generalized sense.

Construction the quasi-classical approximation implies the use of the classical

Hamiltonian H = U(x, y, z, t) +
v2

2
and the integral surface Λ4 of the corresponding

Hamiltonian system. The surface Λ4 is Lagrangian, that is, the form dα vanishes
on it. The requirement for surface Λ4 to be Lagrangian is related to the group
G = U(1), used for the construction.
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It is proposed to abandon the requirement of a surface Λ4 to be Lagrangian and
reduce these requirements for Λ4 to the minimum for the classical Hamiltonian
mechanics, that is, to the decomposability of the form dα on Λ4, what is necessary,
according to the Observation of the previous section. To represent solutions of the
Schrödinger equation and construct the asymptotics with ~ tending to zero, a wider
Lie group H is used instead of the group G = U(1). It is the Heisenberg group
of upper triangular 3 × 3 matrices, that does not have finite-dimensional unitary
representations. Unitary representations of the group H are possible in an infinite-
dimensional Hilbert space, so further ψ—is a function of variables (x, y, z, t) with
values in space L2(R), |ψ|—the norm in this space defined by the scalar product

〈ψ1, ψ2〉 =

∫
R
ψ1(ξ)ψ2(ξ)dξ.

We will assume, that the Schrödinger equation solution ψ is defined, has classical
partial derivatives included in the equation, and they are continuous. Next, in the
Schrödinger equation, M = 1.

So, the symbol H means the Heisenberg group of triangular matrices

g(m, n, S ) =

 1 m S
0 1 n
0 0 1

. Its unitary representation is realized by the left action

of an arbitrary element g(S ,m, n) ∈ H on the elements of u ∈ L2(R) by the formula
[8]

(g(S ,m, n)u) (ξ) = e(S +nξ)iu(ξ + m).

In these notations, (g(S ,m, n))−1 = g(−S + mn,−m,−n). For the selected repre-
sentation, the basis of the Lie algebra of the group H can be chosen as follows:{
i, p =

d
dξ
, q = iξ

}
.

Let (S ,m, n) are the scalar functions of variables (x, y, z, t), and u is the function
of variables (x, y, z, t) with a values in L2(R). In these notations it is convenient
when calculating derivatives to leave elements of g(S ,m, n) ∈ H on the left. So, for
example, the result of differentiation by the variable t looks like:

(g(S ,m, n)u)t = g(S ,m, n) (mt p + ntq + i(S t − mnt)) u + g(S ,m, n)ut. (1)

It also turns out (with the notation v = ∇S − m∇n)

∇ (g(S ,m, n)u) = g(S ,m, n) (iv + (∇m) p + (∇n) q + ∇) u.

Now we calculate ∆ (g(S ,m, n)u) by the same way

∆(g(S ,m, n)u) = div(g(S ,m, n)(iv + (∇m)p + (∇n)q + ∇)u) =

= g(S ,m, n)(iv · ((iv + (∇m)p + (∇n)q + ∇))u+

+ g(S ,m, n)(((∇m)p + (∇n)q) · (iv + (∇m)p+

+ (∇n)q))u + g(S ,m, n)(((∇m)p + (∇n)q) · ∇)u+

+ g(S ,m, n) div((iv + (∇m)p + (∇n)q + ∇)u)
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If we denote mv = (v · ∇) m, nv = (v · ∇) n, then

∆ (g(S ,m, n)u) = g(S ,m, n)
(
−v2 + imv p + invq + i (v · ∇)

)
u+

+ g(S ,m, n)
(
imv p + invq + ((∇m) p + (∇n) q)2

)
u+

+ g(S ,m, n) ((∇m · ∇) p + (∇n · ∇) q) u+

+ g(S ,m, n) (i div v + (∆m) p + (∆n) q + ∆) u+

+ g(S ,m, n) ((iv + (∇m) p + (∇n) q) · ∇) u

Combining like terms, we obtain an expression for the Laplacian:

∆ (g(S ,m, n)u) = g(S ,m, n)
((

((∇m) p + (∇n) q)2 − v2+

+ 2imv p + 2invq + (∆m) p + (∆n) q + i div v
)
u+

+ ((2 (∇m) p + 2 (∇n) q + 2iv) · ∇) u + ∆u
) (2)

3 Generalized quasi-classical asymptotics

Let us proceed to the construction of the formal asymptotics of solutions of the
Schrödinger equation. Let’s introduce the notation ε =

√
~, ~—“the Planck cons-

tant”, a small parameter, that we will aim at zero, while monitoring the behavior of
the solution ψ[ε].

We are looking for the solution ∀ε > 0 in the form

ψ[ε](x, y, z, t) = g
(
ε−2S (x, y, z, t), ε−1m(x, y, z, t), ε−1n(x, y, z, t)

)
u(x, y, z, t),

where u(x, y, z, t) is a function with values in L2(R), g ∈ H.
Further it assume that u belongs to L—the subspace of L2(R), which is the

common part of the domains of the operators p2 and q2 with the graph norms. Also
we will assume, that the Schrödinger equation solution ψ is defined, has classical
partial derivatives included in the equation, and they are continuous as functions
with values in L.

Proposition 1 The function ψ[ε](x, y, z, t) is an asymptotic solution of the Schrö-
dinger equation up to the second order with respect to ε tending to zero if and only
if the functions S , m, n and u are the solution of a system of equations

S t − mnt +
v2

2
+ U(x, y, z, t) = 0;

mt + mv = 0;
nt + nv = 0;

iut+
i
2

(div v)u+i (v · ∇) u+
1
2

((∇m) p+ (∇n) q)2 u=0.

(3)

Proof. Substitute the ψ[ε] ansatz into the Schrödinger equation and apply to both
parts of the equation

(
g
(
ε−2S , ε−1m, ε−1n

))−1
. Using (1) and (2), we arrive at the
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following equality:(
− (S t − mnt) −

v2

2
− U(x, y, z, t)

)
u+

+ εi
(
(mt + mv) p + (nt + nv) q

)
u+

+ ε2i
((
∂

∂t
+

1
2

div v
)

u + (v · ∇) u − i ((∇m) p + (∇n) q)2 u
)
+

+
ε3

2
(
(∆m) p + (∆n) q + 2 (((∇m) p + (∇n) q) · ∇)

)
u+

+ ε4∆u = 0,

(4)

where v = ∇S − m∇n. The conditions ensuring the fulfillment of this equality
up to the second order of smallness with respect to ε tending to zero coincide with
the system equations of the formulated sentence.

We obtain a consequence of the last equation of this system. Denote ρ = |ψ|2 =

|u|2. Considering, that the first three equalities take place (asymptotics up to the first
order by ε), multiply ∀(x, y, z, t) both parts of the fourth equation for asymptotics
scalar by u (that is, 〈. . . , u〉) and extract the imaginary part as a result. The first three
terms give the expression ρt + div (ρv). For the last one

1
2

((∇m) p + (∇n) q)2 u we
get

Im〈((∇m) p + (∇n)q)2u, u〉 =

= −
i
2

∫
R

((∇m) p + (∇n) q)2 u(ξ)u(ξ)dξ+

+
i
2

∫
R

((∇m) p + (∇n) q)2 u(ξ)u(ξ)dξ =

=
∣∣∣integration by parts

∣∣∣ =

=
i
2

∫
R

((∇m) p + (∇n) q) u(ξ)((∇m) p + (∇n) q) u(ξ)dξ−

−
i
2

∫
R

((∇m) p + (∇n) q) u(ξ) ((∇m) p + (∇n) q) u(ξ)dξ=0.

We have the continuity equation for ρ : ρt + div (ρv) = 0.
Together with the first three equations satisfied by the asymptotics, this gives a

system of Euler equations for the quasi-potential
S t − mnt +

v2

2
+ U(x, y, z, t) = 0;

mt + mv = 0;
nt + nv = 0;
ρt + div (ρv) = 0.

From here we conclude:

Theorem 1 If the function

ψ[ε](x, y, z, t) = g
(
ε−2S , ε−1m, ε−1n

)
u(x, y, z, t)
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is an asymptotic solution of the Schrödinger equation up to the second order with
respect to ε tending to zero, then the functions S , m, n and ρ = |u|2 satisfy the
system of Euler equations for a quasi-potential, describing the flow of an ideal
fluid in a potential field of forces. In particular, if the potential U = P

(
|ψ|2

)
, then

these equations describe vortex flows for barotropic processes.
S t − mnt +

v2

2
+ P(ρ) = 0;

mt + mv = 0;
nt + nv = 0;
ρt + div (ρv) = 0

(5)

It is not difficult to write out conditions for ψ[ε] that ensure the fulfillment
of the Schrödinger equation with an accuracy higher, than the second power of
the parameter ε. To do this, apply

(
g
(
ε−2S , ε−1m, ε−1n

))−1
to both parts of the

Schrödinger equation, in which was substituted ψ = ψ[ε]. Grouping coefficients at
powers of ε as in (4), and using short notation L2 and L3, we get(

− (S t − mnt) −
v2

2
− U(x, y, z, t)

)
u + εi

(
(mt + mv) p+

+ (nt + nv) q
)
u + ε2L2u + ε3L3u + ε4∆u = 0.

(6)

Let’s represent in (6) u(x, y, x, t) as u = u0 + εu1 + . . . + εnun

Proposition 2 For n = 1, the triple S , m, n is an asymptotic solution of the
Schrödinger equation up to the third order with respect to ε tending to zero if
and only if the functions S , m, n and u are the solution of a system of equations

S t − mnt +
v2

2
+ U(x, y, z, t) = 0;

mt + mv = 0;
nt + nv = 0;
L2u0 = 0;
L2u1 +L3u0 = 0.

For n > 1, the triple S , m, n is an asymptotic solution of the equation Schrödinger
up to n + 2 order with respect to ε, tending to zero if and only if the functions
S , m, n and u are the solution of a system of equations

S t − mnt +
v2

2
+ U(x, y, z, t) = 0;

mt + mv = 0;
nt + nv = 0;
L2u0 = 0;
L2u1 +L3u0 = 0;
L2u2 +L3u1 + ∆u0 = 0;
. . . . . . . . . . . . . . . . . . . . . .

L2un +L3un−1 + ∆un−2 = 0.

(7)
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The proof consists in equating to zero the coefficients for all degrees ε of the
left side of the equation (6)

Corollary 1 If for n ≥ 0 the function ψ[ε](x, y, z, t) with u = u0 +εu1 + . . .+εnun is
an asymptotic solution of the Schrödinger equation up to n + 2 order with respect
to ε tending to zero, then(

− (S t − mnt) −
v2

2
− U(x, y, z, t)

)
u + εi

(
(mt + mv) p + (nt + nv) q

)
u+

+ ε2L2u+ε3L3u+ε4∆u=O(εn+3).
(8)

Proof. If we multiply the first equation of the system (7) by −1, the second — by
εip, the third — by εiq, the fourth — by ε2, the fifth — by ε3, and so on, then add
everything up, then you get the ratio (8).

Corollary 2 If the function

ψ[ε](x, y, z, t) = g
(
ε−2S , ε−1m, ε−1n

)
u(x, y, z, t)

is an asymptotic solution of the Schrödinger equation up to n + 2 of order (n > 1)
with respect to ε tending to zero, then the functions S , m, n and ρ = |u|2 satisfy a
system of Euler equations for a quasi-potential describing the flow of an ideal fluid
in a potential field of forces.

S t − mnt +
v2

2
+ U(x, y, z, t) = 0;

mt + mv = 0;
nt + nv = 0;
ρt + div (ρv) = O(εn+1).

In particular, if the potential U = P
(
|ψ|2

)
, then these equations describe vortex

flows for barotropic processes.
S t − mnt +

v2

2
+ P(ρ) = 0;

mt + mv = 0;
nt + nv = 0;
ρt + div (ρv) = O(εn+1).

The proof steps repeat the output of Theorems 1.

Conclusions

1. For the classical object of Hamiltonian mechanics — differential form energy-
momentum α = pdx − Hdt, the emphasis is placed on the fact that the class of
external differential of this form does not exceed n on an arbitrary integral surface
of dimension n + 1. It follows from this that for the case n = 3 on an arbitrary
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integral surface of dimension four in an expanded phase space R7 the form dα
is decomposable. For the form α, this means the possibility of its representation
on this surface as α = dS − mdn with some functions S , m and n. This triple
of scalar functions is called the quasipotential of the energy–momentum form α.

For the case of the form α = vdx −
(

v2

2
+ U(x, t)

)
dt the quasi-potential of S , m

and n satisfies system of equations equivalent to the system of Euler equations of
an ideal fluid and gives Clebsch representation of solutions to the Euler system
(Proposition in Section 1).
2. As the initial quantum objects, it is proposed to use the Schrödinger equation
for the wave function ψ with values in the L2(R) Hilbert space. This makes it
possible to use a non-trivial unitary representation of the Heisenberg group in this
space and use it to construct asymptotic solutions of the Schrödinger equation. The
proposed construction generalizes the widely used quasi-classical approximation.
The generalization form ψ[ε](x, y, z, t) is given at the beginning section 3.
3. It was proved (Proposition 1) that the first three conditions for the existence
of an asymptotic solutions of the Schrödinger equation in the form ψ[ε](x, y, z, t)
coincide with the corresponding equations of the system for the quasi-potential,
and the consequence of the last condition is continuity equation. Theorem 1
generalizes this statement to the case of dependence U = P(|ψ|2) potential in the
Schrödinger equation. Asymptotic triple S , m and n in this case leads to equations
for barotropic processes. In Proposition 2 and Corollaries, ways of increasing the
accuracy of the asymptotics to powers ε =

√
~ above the second.

4. Note that from the above results it follows the possibility of constructing an
“incomplete” asymptotics of solutions of the Schrödinger equation. Meaning that
you can find S , m, n and ρ = |ψ|2, that is, the action of the elements of the
Heisenberg group on the initial wave function and module of that function without
finding the function itself. This can be done by first finding solution of the Euler
system of equations {

v̇ + ∇U(x, y, z, t) = 0;
ρt + div(ρv) = 0.(

U(x, y, z, t) = P(ρ) for barotropic processes.
)

Then find S , m and n from the con-
dition dα = dS − mdn. Alternatively search for S , m, n and ρ from the equations
for the quasi-potential.
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