ДРЕВНЕЙШИЕ ИСКОПАЕМЫЕ ДИАТОМЕИ Беляев А.М., Юхалин П.В.

действительные члены Палеонтологического общества при РАН Paleovirusology group, ООО «Сидосе», С.-Петербург

Email: paleovirusology@mail.ru, abel-7-777@yandex.ru, http://www.paleovirusology.ru/

Структуры, подобные современным и ископаемым диатомеям найдены в кремнистых породах среди базальтов и риолитов с возрастом 1640 миллионов лет.

Ключевые слова: диатомеи, микрофоссилии, кремнистые породы, Палеопротерозой.

THE OLDEST FOSSIL DIATOMS

Anatoly. M. Belyaev, Paul V. Yukhalin

full members of the Paleontological Society of the Russian Academy of Sciences Paleovirusology group, Sidose LLC, St. Petersburg, Russia

Email: paleovirusology@mail.ru, abel-7-777@yandex.ru, http://www.paleovirusology.ru/

Structures similar to modern and fossil diatoms are found in siliceous rocks among basalts and rhyolites with an age of 1640 million years

Диатомовые водоросли – диатомеи (Diatomeae), — группа одноклеточных и колониальных водорослей, составляющая основную часть фитопланктона океанов и морей.

Рис. 1. Диатомеи современного морского фитопланктона (fotostrana.ru).

Описано более 25 тысяч ныне живущих видов. Для диатомей характерно наличие особого покрова — «панциря», состоящего из кремнезёма. Являясь основной частью фитопланктона, диатомеи составляют около половины всей массы органического вещества океанов и морей. На долю диатомей приходится почти четверть всей продукции живого вещества на нашей планете (Белякова и др., 2006).

1. Ископаемые диатомеи

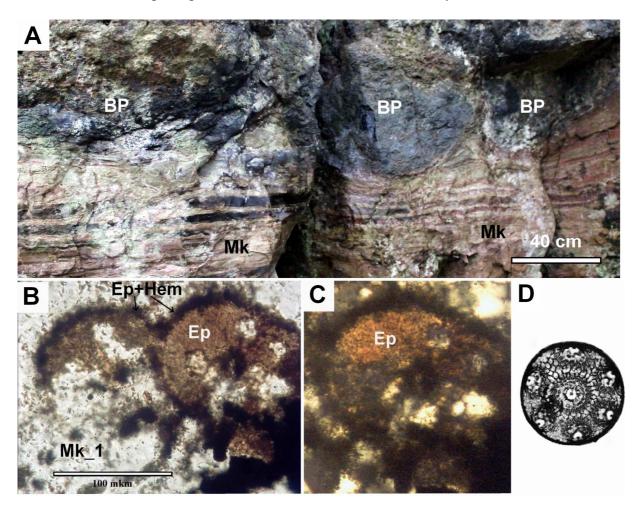
Кремнистые породы, состоящие не менее чем на 50% из скелетных диатомовых водорослей называются диатомитами (Атлас..., 1973). Иногда они образуют мощные толщи, достигающие 1600 м, известные в Калифорнии в отложениях свиты Монтерей (Laurent at., 2015). Однако, наиболее древние ископаемые останки диатомей известны в породах нижнего Мела (145 – 66 миллионов лет). В те времена господствовали рода

Hemiaulus и Triceratium (Стрельникова, 1992), хотя эти эукариоты, несомненно, имели более раннее происхождение.

Рис. 2. Ископаемые диатомовые водоросли: **A**. *Corona retinervis*, Неоген (Глезер, 1992); **B**. *Hemiaulus tschestnovii*, Неоген (Глезер, 1992); **C**. *Triceratium cellulosum*, Мел (Стрельникова, 1992); **D**. *Triceratium morlandii* (Новая Зеландия), Палеоген (40 млн. лет., http://club.foto.ru/gallery/photos/2337091).

Вместе с тем, до сих пор не были известны достоверные находки диатомей в более древних метаморфизованных породах Палеозоя и Протерозоя.

2. Структуры диатомей в кремнистых породах среди вулканитов с возрастом 1640 миллионов лет на острове Гогланд


Минеральные структуры, подобные по внешней морфологии микрофоссилиям современных и ископаемых мезозойских и кайнозойских диатомей, найдены в микрокварцитах из линзовидных прослоев в базальтах и риолитах Палеопротерозоя (1640 ± 14 миллионов лет) на острове Гогланд в Финском заливе (Belyaev, 2018; Беляев, 2019). Микрокварциты образовались при контактовом метаморфизме хемогенных кремнистых осадков (Mk), и окремненных планктонных биопленок (Mk-1). Графит выделенный из микрокварцитов обогащен лёгким изотопом углерода 12 C (δ^{13} C до -29.5%), что указывает на присутствие в породах субстанций биологического происхождения, которыми, возможно, являются остатки и останки древних планктонных микроорганизмов (Belyaev, 2018; Беляев, Юхалин, 2021).

Вещество оболочек диатомееподобных структур сложено эпидотом, который мог образоваться в результате контактового метаморфизма (перекристаллизации) кремнистых панцирей древних диатомей. Диатомееподобные структуры находятся в тесной ассоциации с минерализованными структурами, которые рассматриваются нами как микрофоссилии планктонных микроорганизмов — цианобактерий и эукариотов (Belyaev, 2018; Беляев, 2019; Беляев, Юхалин, 2021). По внешней морфологии диатомееподобные структуры в микрокварцитах могут быть сопоставлены с некоторыми видами мезозойских и кайнозойских микрофоссилий диатомей. Поэтому для описания протерозойских микрофоссилий предварительно использованы названия сходных родов ископаемых диатомей: *Corona, Hemiaulus и Triceratium*.

3. Кремнистые породы в базальтах и структуры, подобные неогеновым диатомеям Corona retinervis

Среди базальтовых толщ присутствуют линзовидные прослои полосчатых кремнистых пород до 2 метров мощности. В некоторых местах на полосчатых кремнистых сланцах микрокварцитах (Мк) залегают базальтовые шары-подушки (ВР) (Рис. 3. А). В микрокварцитах присутствуют участки, сформировавшиеся по веществу окремненных планктонных биопленок (Мк-1), содержащие микрофоссилии планктонных микроорганизмов — цианобактерий и эукариотов (Belyaev, 2018; Беляев, 2019; Беляев, Юхалин, 2021). В них наблюдаются минеральные образования в форме дисков, диаметром около 100 микрометров с несколькими отверстиями по перефирии. Внешние контуры сложены агрегатом тонкозернистого гематита и эпидота,

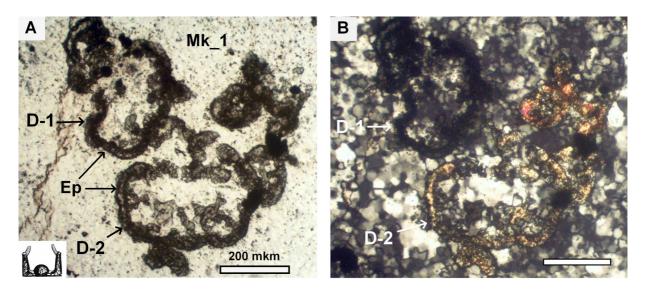
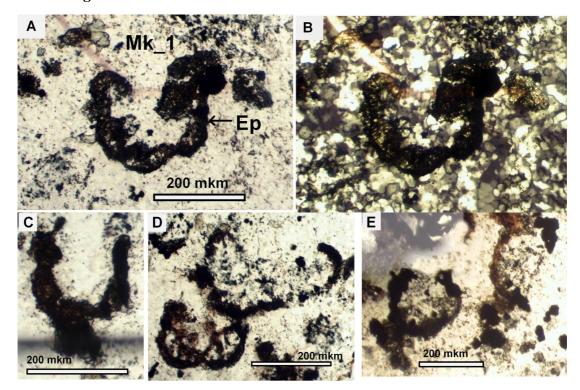

центральные части эпидотом (Рис. 3, фото В,С). На фото D показана диатомея *Corona retinervis*, Неоген (Глезер, 1992), очень похожая на структуры на фото В и С. Это позволило рассматривать диатомеи из микрокварцитов, как принадлежащие роду *Corona*, и дать им предварительное название *Corona admiralsvyatov*.

Рис 3. А) Полосчатые кремнистые сланцы (микрокварциты – Мк), темные полосы – слои обогащенные эпидотом. Сверху шаровые образования базальтовых лав (ВР) вдавлены в микроквациты. Обнажение, стенка. **В)** Структуры *Corona admiralsvyatov* из микрокварцитов в базальтах. Шлиф, в проходящем свете, без анализатора. Мк-1 – микрокварцит по слизистому веществу биопленок; Ер – эпидот; Ер+Нет – эпидот и гематит. **С)** Фрагмент фото В, с анализатором; **D)** Диатомея *Corona retinervis*, Неоген (Глезер, 1992).


4. Структуры в кремнистых породах из базальтов, подобные по морфологии меловым диатомеям рода *Hemiaulus*

В шлифах микрокварцитов из базальтов встречаются минеральные образования с контурами в форме чашек с загнутыми внутрь краями, и сложенные агрегатами зерен эпидота с характерной интерференционной окраской при скрещенных николях (Рис. 4, Фото А,В). По внешней морфологии они похожи на структуры ископаемых неогеновых диатомей - Hemiaulus tschestnovii (Рис. 4. А, слева внизу), и, поэтому, предварительно названы Hemiaulus belgennadius. От донышка некоторых чашечек отходят хорошо выраженные выросты с серповидными фрагментами на концах (Рис. 4, Фото А,В; Рис. 5, Фото С,Е). Возможно, эти выросты служили для скрепления клеток в цепочки. При этом, структура D-2 в полтора раза меньше D-1 (Рис. 4, Фото А,В), и, быть может, являлась дочерней клеткой, так как у диатомей дочерние клетки всегда меньше материнских. Зерна эпидота, слагающие более мелкую структуру D-2 (Рис. 4, Фото В, слева вверху), находятся на погасании, тогда как зерна эпидота в более крупной структуре D-1 и ее сателлитах, находятся на просветлении и, следовательно, имеют одинаковую ориентацию кристаллов в пространстве.

Рис. 4. Структуры микрофоссилий диатомей *Hemiaulus belgennadius* в микрокварцитах из базальтов. Контуры «раковин» сложены агрегатом зерен эпидота (Ер), снаружи и внутри раковин микрокварциты (Мк-1, Мк-0). На фото **A**, слева внизу для сравнения — рисунок неогеновой диатомеи *Hemiaulus tschestnovii* (Глезер, 1992). На фото **B**, тоже, что на фото **A**, с анализатором.

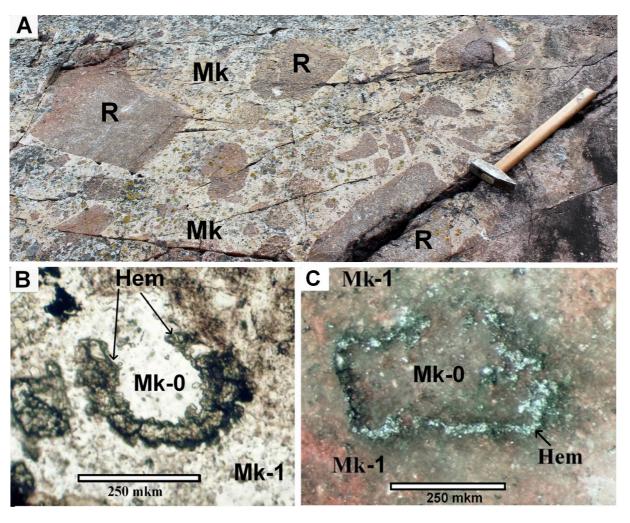

Минеральные структуры в форме чашек с загнутыми внутрь краями (Рис. 5. фото A,B,C,D,E) встречаются в микрокварцитах из базальтов поодиночке и группами. Они также сложены цепочками зерен эпидота, снаружи и внутри раковин микрокварцит, с характерной мозаичной структурой. По внешнему виду они также подобны диатомеям *Hemiaulus*, и, возможно, несмотря на некоторые отличия, относятся к роду и виду *Hemiaulus belgennadius*.

Рис. 5. Минеральные структуры в форме чашек с загнутыми внутрь краями, сложенные агрегатом зерен эпидота (Ер), снаружи и внутри раковин микрокварцит (Mk-1, Mk-0). Фото A,C,D,E в проходящем свете без анализатора, фото B, тоже, что на фото A, c анализатором.

5. Кремнистые породы в риолитах, и структуры, подобные меловым диатомеям рода *Hemiaulus*

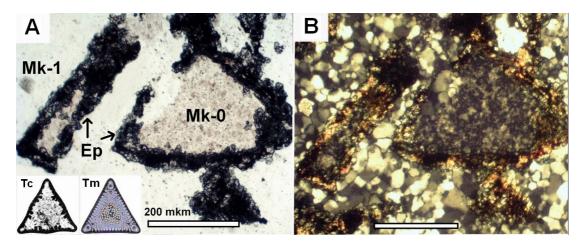
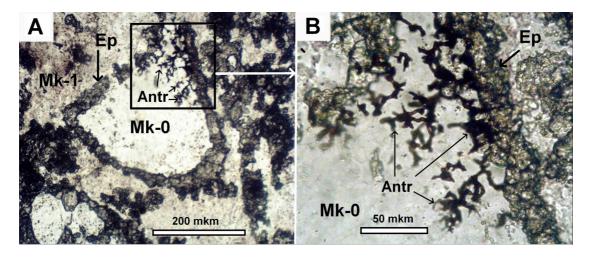
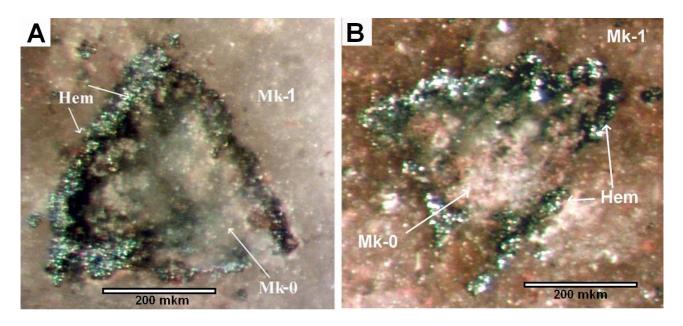

Кремнистые породы – микрокварциты (Мк) присутствуют среди риолитовых лав в виде маломощных линз, а также слагают цемент в эруптивных брекчиях. Микрокварциты образовались в результате коагуляции растворенного кремнезема и выпадения кремнистых частиц на поверхность лавовых потоков. В брекчированных участках они заполняли промежутки между обломками риолитов – R (Рис. 6.А). В микрокварцитах из линзовидных прослоек в риолитах степень контактового метаморфизма кремнистых осадков и окремненных биопленок достигала уровня эпидот-амфиболитовой фации, в результате чего вещество оболочек (кремнистые панцири) диатомей были замещены эпидотом (Рис. 6. В). В микрокварцитах из цемента брекчий в риолитах степень контактового метаморфизма кремнистых осадков и окремненных биопленок была ниже, и достигала уровня лишь зеленосланцевой фации, поэтому гидроокислы железа, отсорбированные на поверхности диатомей, были превращены в цепочи зерен гематита (Рис. 6. С).

Рис. 6. Брекчии в риолитах и структуры, подобные по морфологии диатомеям рода *Hemiaulus*. **A)** Обломки риолитов (R), сцементированные микроквацитом (Mk). **B)** Подковообразная структура из линзовидных микрокварцитов в риолитах, с контурами сложенными агрегатом зерен эпидота, снаружи и внутри раковин микрокварциты (Mk-1, Mk-0). Шлиф, в проходящем свете, без анализатора. **C)** Чашеподобная структура в микрокварцитах из цемента брекчий в риолитах, с контурами, сложенными агрегатом зерен гематита, внутри структуры (Mk0) и снаружи (Mk1) микрокварцит. Пришлифованный образец.


6. Структуры в кремнистых породах риолитов, подобные диатомеям рода *Triceratium*

В микрокварцитах из линзовидных прослоек в риолитах встречаются образования в форме треугольников размером 200-400 мкм. Их контуры сложены агрегатом зерен эпидота — Ер (Рис. 8, 26). По внешней морфологии они напоминают структуры ископаемых меловых диатомей родов *Triceratium* (Рис. 7, Фото А,В), поэтому получили предварительное название *Triceratium asvoinovi*.


Рис. 7. Структура *Triceratium asvoinovi* из кремнистых пород в риолитах. Контуры сложены агрегатом зерен эпидота (Ep), снаружи и внутри раковин микрокварциты (Mk-1, Mk-0). На Фото A, слева от треугольного, возможно, поперечное сечение крышечки диатомеи. На Фото A слева внизу для сравнения показаны: меловая диатомея *Triceratium cellulosum — Тс* (Стрельникова, 1992), и палеогеновой диатомеи *Triceratium morlandii — Тт* (Новая Зеландия). Фото A и B проходящем свете: A — без анализатора; B — тоже, что A, C анализатором.

В некоторых сечениях *Triceratium asvoinovi* на внутренней границе раковины наблюдаются ветвистые выделения твердого асфальтита — изотропного антраксолита (Antr), выходящие из оболочки раковины диатомеи и локализованные между кристаллами кварца (Фото 7, 8). Они могли образоваться в результате метаморфического преобразования органического вещества в составе раковины. У современных диатомей снаружи и внутри кремнистых оболочек клеток располагается тонкий слой органического вещества.

Рис. 8. Фото A и B - структура с предварительным названием *Triceratium asvoinovi* из микрокварцитов в риолитах. В проходящем свете, без анализатора. Контуры «раковины» сложены агрегатом зерен эпидота (Ер), снаружи и внутри раковин микрокварциты (Mk-1, Mk-0). На Фото В – фрагмент фото A, ветвистые выделения изотропного антраксолита (Antr).

В микрокварцитах из цемента брекчий в риолитах также встречаются образования в форме треугольников размером 200-400 мкм, которые по внешней морфологии сопоставимы со структурами ископаемых меловых диатомей - *Triceratium* (Рис. 9). Их контуры сложены цепочками зерен гематита, который, вероятно, образовался в результате ракристаллизации гидроокислов железа, адсорбированных на поверхности диатомей. Внутри и снаружи контуров микрофоссилий микрокварциты.

Рис. 9. На Фото A и B структуры в кремнистых породах из цемента брекчий в риолитах подобные по морфологии диатомеям рода *Triceratium*. Контуры «раковин» сложены цепочками зерен гематита. Снаружи и внутри раковин микрокварцит (Mk-1, Mk-0). Пришлифованный образец.

Дискуссия

В отложениях Мезозоя было выявлено уже около 200 родов и более 2000 видов диатомей с достаточно сложной структурой панцирей. Это позволяет предположить, что эта группа водорослей возникла в более раннюю геологическую эпоху и к тому времени прошла длительный эволюционный путь развития (Стрельникова, 1992). Однако, несмотря на то, что кремнеземные панцири или створки диатомей способны сохраняться в ископаемом состоянии длительное время, их останки пока не были обнаружены в породах Палеозоя и Протерозоя. Отсутствие достоверных находок ископаемых диатомей в более ранние геологические периоды может быть вызвано несколькими причинами:

Так, Н. М. Страхов (1966) допускал возможность существования и широкого развития диатомовых в древних бассейнах, и объяснял отсутствие их остатков в древних кремнистых породах раскристаллизацией слагавшего их опала, а также быстротой растворения створок.

Возможно древние диатомеи, как и многие современные пелагические планктонные виды, имели тонкие или рыхлые кремнеземные панцири, которые растворялись в недосыщенной кремнеземом морской воде после отмирания клеток. А в процессе эволюции, начиная с Мела, их кремнистые панцири стали более устойчивыми к растворению и могли быть обнаружены в осадочных породах.

Панцири древних диатомеи могли формироваться не только путем поглощения из воды растворенного кремнезема или сгустков SiO_2 , но и в результате агглютинации мельчайших глинистых, или иных минеральных частиц, прилипших к слизистому веществу внешних оболочек. При отмирании клеток, такие агглютинированные панцири не были устойчивы к фоссилизации и захоронению и распадались на составляющие их минеральные частицы.

Можно также предположить, что обнаруженные останки древних диатомей были найдены, но не были определены как представители живого мира, или были отнесены к группе одноклеточных организмов неясного происхождения – акритархам. В микропалеонтологии описаны сотни видов окаменевших микроскопических останков (микрофоссилий) акритархов, среди которых есть структуры, похожие микрофоссилии диатомей, в частности акритархи палиноморфы из отложений Кембрия форме похожи на диатомеи рода Triceratium. https://paleonerdish.wordpress.com/2013/04/08/the-enigmatic-acritarchs-2/amp/

Возможно, что хемогенные кремнистые осадки среди вулканических пород еще недостаточно тщательно изучены на предмет обнаружения микрофоссилий окремненных и ожелезненных планктонных микроорганизмов.

Выводы.

В целом, вполне вероятно, что минеральные образования, сложенные эпидотом, в форме дисков с несколькими отверстиями по перифирии, являются микрофоссилиями диатомей и древнейшими предками рода *Corona;* структуры в форме чашек могут быть окаменевшими останками организмов диатомей рода *Hemiaulus*, а близкие к треугольным формам родоначальными для рода *Triceratium*. Однако структуры диатомей в кремнистых породах Палеопротерозоя в несколько раз превосходят по размерам мезозойские и кайнозойские, что, на наш взгляд, связано с благоприятными эколого-геологическими условиями в водах внутриконтинентального моря, насыщенных биофильными элементами (Беляев, 2018, Belyaev, 2018)

Древние диатомеи, как и эукариоты в составе планктонных экосистем, могли долгое время оставаться изолироваными во внутриконтинентальном море в пределах грабена Балтийско-Ладожского геоблока. Интрузивный магматизим и вулканизм формации Рапакиви по периферии этого блока продолжался 150 миллионов лет (Ларин, 2011). Возможно, что палеопротерозойская экосистема планктона смогла успешно пережить два периода Неопротерозоя (Криогений и Эдикарий), в которые происходили гипотетические глобальные оледенения, и Земля была полностью покрыта льдом.

- 1. Атлас текстур и структур осадочных горных пород. Часть 3, Кремнистые породы. Дмитриева Е. В., Либрович В. Л., Некрасова О.И., Петровский А. Д., под ред. А.И. Жамойды и А.В. Хабакова. Издательство «Недра», Москва, 1973, 340 с.
- 2. Беляев А.М. Эколого-геологические условия эволюции и фоссилизации планктонных микроорганизмов в Палеопротерозое //Материалы Восемнадцатой международной молодежной научной конференции «Экологические проблемы недропользования. Наука и образование», 2018, с. 34-40.
- **3.** Беляев А.М. Перспективы изучения микрофоссилий в вулканогенно-осадочных кремнистых породах Палеопротерозоя //Материалы LXIV сессии Палеонтологического общества, Изд. ПИН РАН, Москва, 2019, т.2. с. 28-43.
- **4.** Беляев А.М., Юхалин П.В. Фосфатные останки нуклеотидов и размеры геномов микрофоссилий эукариотов из микрокварцитов Палеопротерозоя (остров Гогланд, Финский залив), 2021, PREPRINTS.RU. https://doi.org/10.24108/preprints-3112213.
- **5.** Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. Водоросли и грибы // Ботаника, Т.2. М.: Издательский центр «Академия», 2006. 320 с. <u>ISBN 5-7695-2750-1</u>.
- **6.** Глезер З.И., Макарова И.В, Моисеева А.И., Николаев В.А. Диатомовые водоросли СССР (ископаемые и современные). Спб.: Наука, 1992. 125 с.
- 7. Ларин А.М. Граниты рапакиви и ассоциирующие породы, М., Наука, 2011, 403 с.
- **8.** Страхов Н. М. О некоторых вопросах геохимии кремнезема. В кн. «Геохимия кремнезема», М.; изд-во «Наука», 1966.
- **9.** Стрельникова Н.И. Палеогеновые диатомовые водоросли Спб: Изд-во С.-Петербургского университета, 1992, 311с.

- **10.** Belyaev A.M. Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia //Journal of Earth Science, 2018; Vol. 29, No. 6, p. 1431–1442, https://doi.org/10.1007/s12583-018-0883-4.
- 11. Laurent D., De Kaenel E., Spangenberg J.E., Föllmi K.B. A sedimentological model of organic-matter preservation and phosphogenesis in the Miocene Monterey Formation at Haskells Beach, Goleta (central California) //Sedimentary Geology 326, DOI:10.1016/j.sedgeo.2015.06.008.