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Abstract

We investigate Lorentzian structures in the four-dimensional space-time, supplemented either

by a covector field of the time-direction or by a scalar field of the global time. Furthermore,

we propose a new metrizable model of the gravity. In contrast to the usual Theory of General

Relativity where all ten components of the symmetric pseudo-metrics are independent variables,

the presented here model of the gravity essentially depend only on single four-covector field,

restricted to have only three-independent components. However, we prove that the Gravitational

field, ruled by the proposed model and generated by some massive body, resting and spherically

symmetric in some coordinate system, is given by a pseudo-metrics {Kmn}m,n=0,1,2,3, which

coincides with the well known Schwarzschild metric from the General Relativity. The Maxwell

equations and Electrodynamics are also investigated in the frames of the proposed model. In

particular, we derive the covariant formulation of Electrodynamics of moving dielectrics and

para/diamagnetic mediums.

1 Preliminary introduction

In the classical theories of Special and General Relativity the inertia and the gravity are described

by certain pseudo-metrics of signature {1,−1,−1,−1} in the four-dimensional space-time. On the

other hand, in the frames of the Newton-Cartan Theory (see [1], [2], [3], [4] [5], [6]) the geometry

of the space-time is (incompletely) described by the two-times contravariant symmetric degenerate

tensor {hmn}m,n=0,1,2,3 of signature {0, 1, 1, 1} and a covector (w0, w1, w2, w3) of time direction,

everywhere non-vanishing and satisfying

3∑
j=0

hmjwj = 0 ∀m = 0, 1, 2, 3. (1.1)
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Moreover, in the case that there exists a scalar field τ satisfying

wm =
∂τ

∂xm
∀m = 0, 1, 2, 3, (1.2)

this field can serve as a global time in R4. In this paper we unify both these approaches and build the

model, completely describing the geometry and the gravity in R4, which includes both the pseudo-

metrics and the global time scalar field (or more generally the covector of the time direction). One

of the goal of the paper was to unify the Relativistic and the Non-Relativistic approaches to the

study of the space-time.

We postulate that all real physical processes appear in some valid pseudo-metrics {Kmn}m,n=0,1,2,3,

describing the generalized gravity field, weakly correlated with some covector of time direction

(w0, w1, w2, w3) (see definitions in the sequent section 2). Furthermore, we distinguish two types of

generalized gravity. First, type is the fictitious gravity which we call inertia. This type of gravity

depends only on the flat geometry of empty space-time via the choice of specific coordinate system

and it is independent on the surrounding real matter consisting of gravitational masses or other real

physical fields. The second type of the gravity is the genuine (real) gravity, which depends essentially

on the real physical matter, especially on gravitational masses. We assume that this type of gravity

vanishes away from essential gravitational masses and strong real physical fields. Then we state the

First Law of the Newton as the following:

• In the parts of the space-time where we observes the absence of genuine gravity, and in par-

ticular away from essential real physical bodies and fields, we have

Kmn = Jmn ∀m,n = 0, 1, 2, 3, (1.3)

and

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
, (1.4)

where the strongly-correlating flat Minkowski’s pseudo-metrics {Jmn}m,n=0,1,2,3 and the fixed

scalar field ϕ, called kinematical global time, form the standard kinematical Lorentz’s structure

with global time on R4, as defined in the Definition 2.7 of the sequent section. In particular

they assumed to satisfy, firstly the following eikonal-type equation

3∑
j=0

3∑
m=0

Jjm
∂ϕ

∂xj
∂ϕ

∂xm
= 1 , (1.5)

and secondly {
δj

(
∂ϕ

∂xk

)}
J

= 0 ∀ k, j = 0, 1, 2, 3 . (1.6)

where by
{
δj

(
∂ϕ
∂xk

)}
J

we denote the tensor of the covariant derivatives of the covector(
∂ϕ
∂x0 ,

∂ϕ
∂x1 ,

∂ϕ
∂x2 ,

∂ϕ
∂x3

)
with respect to the pseudometrics Jmn.
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Then it easily can be derived that there exists some coordinate system where matrix {Jmn}m,n=0,1,2,3

has a form of 
J00 = 1

J0j = Jj0 = 0 ∀ j = 1, 2, 3

Jjm := −δjm ∀ j,m = 1, 2, 3

(1.7)

and at the same coordinate system the covector of time direction for the global time ϕ has a form(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 . (1.8)

We call this particular system kinematically preferable and we show that it is unique, up to equiva-

lence. Furthermore, we define the kinematical tensor of three-dimensional Geometry {Θmn}m,n=0,1,2,3,

given by

Θmn :=

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 , (1.9)

where  3∑
j=0

J0j ∂ϕ

∂xj
,

3∑
j=0

J1j ∂ϕ

∂xj
,

3∑
j=0

J2j ∂ϕ

∂xj
,

3∑
j=0

J3j ∂ϕ

∂xj

 (1.10)

is the contravariant vector of inertia. Obviously, we have

3∑
j=0

Θmj ∂ϕ

∂xj
= 0 ∀m = 0, 1, 2, 3 , (1.11)

(as in (1.1)), forming the standard Galilean structure. In particular, in the kinematically preferable

coordinate system, where (1.7) and (1.8) holds we have
Θ00 = 0

Θ0j = Θj0 = 0 ∀ j = 1, 2, 3

Θjm := δjm ∀ j,m = 1, 2, 3 .

(1.12)

Furthermore, given arbitrary coordinate system, it is called cartesian if in this system we have

simultaneously (1.12) and (1.8) but, we do not necessary have (1.7). On the other hand, given

arbitrary coordinate system, it is called Lorentzian if in this system we have (1.7) but, we do not

necessary have (1.12) or (1.8). Finally, given arbitrary coordinate system, we call it inertial, if we can

get it from kinematically preferable coordinate system by a linear transformation. In the sequence

we prove, that we obtain a coordinate system which is simultaneously cartesian and inertial from

another such system by Galilean transformations. On the other hand, we obtain a coordinate system

which is Loretzian (and then also inertial) from another such system by Lorentz’s transformations.

The unique, up to equivalence, coordinate system which is simultaneously cartesian and Loretzian

is a kinematically preferable coordinate system. In subsection 2.1.1 we define Pseudo-Lorentzian

coordinate systems that generalize both cartesian and Lorentzian systems. We also find the group
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of transformation of such systems including, in particular as subgroups Lorentzian and Galilean

transformations.

Furthermore, we describe our model of the gravity: given, an arbitrary dynamical four-covector

of the dynamical time direction, (w0, w1, w2, w3) (formally unrelated to the kinematical global

time ϕ), which is weakly correlated with {Jmn}m,n=0,1,2,3 and an arbitrary four-covector field

(S0, S1, S2, S3), which we call the four-covector of genuine gravity, consider the two-times covari-

ant tensor {Kmn}m,n=0,1,2,3 defined by:

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 , (1.13)

and assume that (S0, S1, S2, S3) is such that {Kmn}m,n=0,1,2,3 in (1.13) satisfies

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) . (1.14)

Then, one can prove that {Kmn}m,n=0,1,2,3, is a valid pseudometrics of signature {1,−1,−1,−1},

correlated with the time-direction (w0, w1, w2, w3). Moreover, we call such a dynamical pseudo-

metrics {Kmn}m,n=0,1,2,3, with time-direction (w0, w1, w2, w3), correlated pseudometrics with time-

direction (w0, w1, w2, w3), corresponding to the covector of genuine gravity (S0, S1, S2, S3). In the

case of the simplified approximating model we get

(w0, w1, w2, w3) ≈
(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
, (1.15)

and (1.13) reeds as

Kjm =

(
Jjm +

∂ϕ

∂xj
Sm +

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 , (1.16)

where ϕ is the kinematical global time. Next for the the dynamical time direction, (w0, w1, w2, w3)

and the covector of genuine gravity (S0, S1, S2, S3) one can consider Proca-like Lagrangians, see in

the sequel.

In the following sections we prove, in particular, that in the frames of our simplified model, the

Gravitational field, generated by some massive body, resting and spherically symmetric in some

cartesian and inertial coordinate system, is given by the pseudo-metrics {Kmn}m,n=0,1,2,3, such

that there exists some curvilinear (non-cartesian) coordinate system in R4, where {Kmn}m,n=0,1,2,3

coincides with the well known Schwarzschild metric from the General Relativity! In particular, all

the optical effects that we find in the frames of our model coincide with the effects considered in the

frames of General Relativity for the Schwarzschild metric. Finally, all the mechanical effects will be

the same in the frame of our model like in the case of the General relativity for the Schwarzschild

metric, provided that the time does not appear explicitly in this effects. Furthermore, we also prove

that Gravitational field, ruled by our model, generated by a general slowly (non-relativistically)

moving massive matter in some cartesian coordinate system, can be well approximated, by the

classical model of the Newtonian Gravity.
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Note here about the following advantage of the presented model of gravity with respect to the

usual Theory of General Relativity. The simplified model for the gravity depends only on four-

component field (S0, S1, S2, S3), which is by (1.16) and (1.14) has only three independent compo-

nents. Even the full model dependent only on (S0, S1, S2, S3) and (w0, w1, w2, w3), that is by (1.13)

and (1.14) has only seven independent components. On the other hand, in the General Relativity

the symmetric tensor {Kmn}m,n=0,1,2,3 has all ten independent components that makes the corre-

sponding system of partial differential equations to be much more complicated.

Finally, in section 9 we give the covariant formulation of the Electrodynamics of the moving

dielectric and para/dia-magnetic continuum mediums in arbitrary dynamical pseudo-metrics. The

Lorentz’s covariant theory of the moving para/dia-magnetic continuum mediums in the flat Lorentz’s

pseudo-metrics was first introduced in [8] by H. Minkowski (1908). Here we formulate the generally

covariant theory in the different alternative way, that suite to formulate it in a general pseudo-metrics

including the presence of the genuine gravity.

The next section plays a role of comprehensive introduction. In the sequent sections we give more

detailed description of our results. In the end of the paper including Appendix we give detailed prove

of all mathematical statements.

2 Basic definitions and statements of the main results

2.1 Generalized-Lorentz’s structures with time-direction and global time

Definition 2.1. We say that the generalized-Lorentz’s structure on R4 is chosen, if R4 is equipped

with symmetric non-degenerate two-times contravariant tensor field {Kmn}m,n=0,1,2,3, such that

the matrix Kmn has one positive and three negative eigenvalues at every point in R4. Then,

{Kmn}m,n=0,1,2,3 is called a contravariant pseudo-metrics on R4. Moreover, the inverse symmetric

non-degenerate two-times covariant tensor field {Kmn}m,n=0,1,2,3 which satisfies

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3, (2.1)

is called a covariant pseudo-metrics on R4 associated with {Kmn}m,n=0,1,2,3.

Definition 2.2. We say that a direction of the global time on R4 is chosen, if R4 is equipped with

a four-covector field (w0, w1, w2, w3) := (w0, w1, w2, w3)(x0, x1, x2, x3), non-vanishing at every point

in R4 (the last property is obviously independent on the choice of a coordinate system in R4). Then,

chosen co-vector field (w0, w1, w2, w3) is called the co-vector of the time-direction. Furthermore,

we say that a scalar global time on R4 is chosen, if R4 is equipped with a covariant scalar field

ϕ := ϕ(x0, x1, x2, x3) such that the four-covector field (w0, w1, w2, w3), defined by

wj :=
∂ϕ

∂xj
∀ j = 0, 1, 2, 3 , (2.2)
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does not vanish at any point on R4. Then ϕ is called a global time in R4 and wj := wj(x
0, x1, x2, x3),

given by (2.2) is called the co-vector of the time-direction of the given global time ϕ.

Definition 2.3. We say that a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and a covector of

the time-direction (w0, w1, w2, w3) are weakly correlated, if we have everywhere

3∑
j=0

3∑
m=0

Kjmwjwm > 0 ∀ (x0, x1, x2, x3) ∈ R4. (2.3)

In that case we say that generalized-Lorentz’s structure with time-direction on R4 is chosen. Then,

we define the contrvariant four-vector field of the potential of generalized-gravity (v0, v1, v2, v3) by

vm :=

 3∑
j=0

3∑
k=0

Kjkwjwk

− 1
2
 3∑
j=0

Kmjwj

 ∀m = 0, 1, 2, 3. (2.4)

so that we have
3∑
j=0

3∑
m=0

Kjmv
jvm = 1 ∀ (x0, x1, x2, x3) ∈ R4. (2.5)

Furthermore, we say that a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and a scalar global time

ϕ are strongly correlated on R4 if ϕ satisfies the following eikonal-type equation in pseudo-metrics

{Kmn}m,n=0,1,2,3:
3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.6)

In that case we say that generalized-Lorentz’s structure with global time on R4 is chosen. Moreover,

in the later case we rewrite the definition of the contrvariant four-vector field of the potential of

generalized-gravity (v0, v1, v2, v3) in (2.4) as:

vm :=

3∑
j=0

Kmj ∂ϕ

∂xj
∀m = 0, 1, 2, 3. (2.7)

Then we prove the following:

Proposition 2.1. Given a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4, weakly correlated

with a covector of the time-direction (w0, w1, w2, w3), define the two-times contravariant symmetric

tensor field {Λmn}m,n=0,1,2,3 given by

Λjm := vjvm −Kjm ∀ j,m = 0, 1, 2, 3 , (2.8)

with (v0, v1, v2, v3) defined by (2.4). Then, the matrix Λmn has one vanishing and three positive

eigenvalues at every point in R4, and we call {Λmn}m,n=0,1,2,3 the contravariant tensor of three-

dimensional Geometry on R4. Moreover, we have

3∑
j=0

vjwj =

 3∑
j=0

3∑
k=0

Kjkwjwk

 1
2

, (2.9)
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and
3∑
j=0

Λmjwj = 0 ∀m = 0, 1, 2, 3 . (2.10)

Corollary 2.1. Given a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4, strongly correlated

with a scalar global time ϕ, define the contravariant tensor field {Λmn}m,n=0,1,2,3, given by

Λjm := vjvm −Kjm ∀ j,m = 0, 1, 2, 3 , (2.11)

with (v0, v1, v2, v3), defined by (2.7). Then, the matrix Λmn has one vanishing and three positive

eigenvalues at every point in R4. Moreover, we have

3∑
j=0

vj
∂ϕ

∂xj
= 1 , (2.12)

and
3∑
j=0

Λmj
∂ϕ

∂xj
= 0 ∀m = 0, 1, 2, 3 . (2.13)

Here, it is important to note that in the frames of the Newton-Cartan Theory we have the

following definition (see [1], [2], [3], [4] [5], [6]):

Definition 2.4. The Galilean structure in R4 consists of a fixed two-times contravariant symmetric

tensor {Λmn}m,n=0,1,2,3 in R4, such that the matrix Λmn has one vanishing and three positive

eigenvalues at every point in R4, and a fixed covector (w0, w1, w2, w3), non-vanishing at every every

point in R4 and such that

3∑
j=0

Λmjwj = 0 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (2.14)

Then, we prove the inverse to Proposition 2.1 statement:

Proposition 2.2. Let {Λmn}m,n=0,1,2,3 be a two-times contravariant symmetric tensor, such that

the matrix Λmn has one vanishing and three positive eigenvalues at every point in R4, and let

(w0, w1, w2, w3) be a covector, non-vanishing at every every point in R4 and such that

3∑
j=0

Λmjwj = 0 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.15)

that form together a Galileian structure. Next, given an arbitrary contravariant four-vector field

(v0, v1, v2, v3) satisfying the covariant relation

3∑
j=0

vjwj > 0 ∀ (x0, x1, x2, x3) ∈ R4 , (2.16)

consider a contravariant symmetric tensor field {Kmn}m,n=0,1,2,3, given by

Kmn = vjvm − Λjm ∀ j,m = 0, 1, 2, 3 . (2.17)
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Then, {Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics. Moreover, the generalized-Lorentz’s

structure, given by {Kmn}m,n=0,1,2,3 is weakly correlated with the time direction (w0, w1, w2, w3).

Finally, we also have 3∑
j=0

3∑
k=0

Kjm wjwk

 1
2

=

3∑
j=0

vjwj ∀ (x0, x1, x2, x3) ∈ R4 , (2.18)

and

vm =

 3∑
j=0

3∑
k=0

Kjm wjwk

− 1
2
 3∑
j=0

Kjmwj

 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

(2.19)

So, {Λmn}m,n=0,1,2,3 is a contravariant tensor of three-dimensional Geometry and (v0, v1, v2, v3) is

a potential of generalized gravity, corresponding to the pseudo-metrics Kmn and the time-direction

(w0, w1, w2, w3).

Corollary 2.2. Let {Λmn}m,n=0,1,2,3 be a two-times contravariant symmetric tensor, such that the

matrix Λmn has one vanishing and three positive eigenvalues at every point in R4, and let ϕ be a

covariant scalar field such that the four-covector field (w0, w1, w2, w3), defined by

wj :=
∂ϕ

∂xj
∀ j = 0, 1, 2, 3 , (2.20)

does not vanish at any point on R4 and such that

3∑
j=0

Λmj
∂ϕ

∂xj
= 0 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (2.21)

Next, given an arbitrary contravariant four-vector field (v0, v1, v2, v3) satisfying the covariant relation

3∑
j=0

vj
∂ϕ

∂xj
= 1 ∀ (x0, x1, x2, x3) ∈ R4 , (2.22)

consider a contravariant symmetric tensor field {Kmn}m,n=0,1,2,3, given by

Kmn = vjvm − Λjm ∀ j,m = 0, 1, 2, 3 . (2.23)

Then, {Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics. Moreover, the generalized-Lorentz’s

structure, given by {Kmn}m,n=0,1,2,3 is strongly correlated with the global time ϕ. Finally, we also

have

vm =

3∑
j=0

Kjm ∂ϕ

∂xj
∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.24)

So, {Λmn}m,n=0,1,2,3 is a contravariant tensor of three-dimensional Geometry and (v0, v1, v2, v3) is

a potential of generalized gravity, corresponding to the pseudo-metrics Kmn and the global time ϕ.
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Remark 2.1. The above Proposition and Corollary show that the Galilean structure alone in-

completely describes the geometry of the space-time and for complete description, in addition to

{Λmn}m,n=0,1,2,3 and (w0, w1, w2, w3), above we need to specify one more contravariant vector field

(v0, v1, v2, v3) (that we call here the potential of generalized-gravity) satisfying either

3∑
j=0

vjwj > 0 ∀ (x0, x1, x2, x3) ∈ R4 ,

in the case of the weak coupling, or

3∑
j=0

vjwj = 1 ∀ (x0, x1, x2, x3) ∈ R4 ,

in the case of the strong coupling. Then we can define a Lorentz’s-like contravariant pseudo-metrics

{Kmn}m,n=0,1,2,3 as:

Kmn = vjvm − Λjm ∀ j,m = 0, 1, 2, 3 ,

that will either weakly or strongly correlate with the time direction (w0, w1, w2, w3). Moreover, in

the case of strong coupling, the contravariant vector (v0, v1, v2, v3) is just a lifted time-direction

(w0, w1, w2, w3) with respect to a pseudo-metrics {Kmn}m,n=0,1,2,3. Very similar to (v0, v1, v2, v3)

contravariant vector field appears implicitly in in the equation (2.2) and before it on [5] (it was

denoted (ν0, ν1, ν2, ν3) there). Moreover, then it can be easily shown that the covariant degenerate

tensor field {hmn}m,n=0,1,2,3 in (2.2) on [5] is just the lowering-index of the tensor {hmn}m,n=0,1,2,3 :=

{Λmn}m,n=0,1,2,3, with respect to the covariant pseudo-metrics {Kmn}m,n=0,1,2,3, which is inverse

to the contravariant pseudo-metrics

Kmn = vjvm − Λjm := νjνm − hjm ∀ j,m = 0, 1, 2, 3 .

Definition 2.5. Consider a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 and let

{Kmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4, associated with {Kmn}m,n=0,1,2,3.

Then, in every coordinate system define the Christoffel Symbols
{

Γmkj

}
K

by
{Γj,mn}K := 1

2

(
∂Kjm
∂xn +

∂Kjn
∂xm −

∂Kmn
∂xj

)
{

Γjmn
}
K

:=
3∑
k=0

Kjk {Γk,mn}K
∀ j,m, n = 0, 1, 2, 3. (2.25)

Furthermore, given a covariant four-vector field (h0, h1, h2, h3), define the covariant derivative of

(h0, h1, h2, h3) by

{δjhk}K :=
∂hk
∂xj
−

3∑
m=0

{
Γmkj
}
K
hm ∀ k, j = 0, 1, 2, 3 . (2.26)

Then, it is well known that {{δnhm}K}m,n=0,1,2,3
is a two-times covariant tensor.

Definition 2.6. Consider a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 and let

{Kmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4, associated with {Kmn}m,n=0,1,2,3.
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Next, consider the Christoffel Symbols
{

Γmkj

}
K

, defined by (2.25). Given a coordinate system in R4,

we call it inertial coordinate system with respect to {Kmn}m,n=0,1,2,3 if, in this particular coordinate

system we have {
Γjmn

}
K

= 0 ∀ j,m, n = 0, 1, 2, 3 . (2.27)

Then, using Lemma 11.2 from the Appendix, we deduce that, given coordinate system in R4 is

inertial with respect to {Kmn}m,n=0,1,2,3 if and only if the tensor {Kmn}m,n=0,1,2,3 is independent

on the local coordinates (x0, x1, x2, x3) ∈ R4 in this particular coordinate system.

Definition 2.7. If there exists some coordinate system where matrix {Kmn}m,n=0,1,2,3 has a form

of 
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kjm := −δjm ∀ j,m = 1, 2, 3

(2.28)

at every point in R4 and at the same time the covector of time direction for ϕ has a form(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 (2.29)

in the same coordinate system, then the contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and the

global time ϕ are obviously strongly correlated on R4 and we say that the standard kinematical

Lorentz’s structure with global time on R4 is chosen. Moreover, in that case we call the contrvariant

four-vector field of the potential of generalized gravity (v0, v1, v2, v3), corresponding to that structure

and defined, as in (2.7), by

vm :=

3∑
j=0

Kmj ∂ϕ

∂xj
∀m = 0, 1, 2, 3, (2.30)

the contrvariant four-vector of the potential of inertia. Furthermore, we call the coordinate sys-

tem where (2.28) and (2.29) hold simultaneously, kinematically-preferable for the given generalized-

Lorentz’s structure with the global time. In particular, it is clear that a kinematically-preferable sys-

tem is inertial with respect to {Kmn}m,n=0,1,2,3 (see Definition 2.6) Furthermore, in kinematically-

preferable coordinate system we obviously have(
v0, v1, v2, v3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 . (2.31)

Moreover, in the same coordinate system the contravariant tensor field {Λmn}m,n=0,1,2,3, given as

in (2.11) by

Λjm := vjvm −Kjm ∀ j,m = 0, 1, 2, 3 , (2.32)

obviously satisfies 
Λ00 = 0

Λ0j = Λj0 = 0 ∀ j = 1, 2, 3

Λjm := δjm ∀ j,m = 1, 2, 3 .

(2.33)
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Finally, using Lemma 11.3 from the Appendix in the end, we deduce that a general coordinate

system is inertial, with respect to the above pseudo-metrics, if this coordinate system is obtained

from kinematically-preferable system by a general linear transformation of the form:

x′m =

3∑
j=0

Cmjx
j + cm ∀m = 0, 1, 2, 3 , (2.34)

where {Cmn}n,m=1,2,3 ∈ R4×4 is a constant (independent on (x0, x1, x2, x3) ∈ R4) non-degenerate

matrix, and (c0, c1, c2, c3) ∈ R4 is a constant (independent on (x0, x1, x2, x3) ∈ R4) vector.

Definition 2.8. Given a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3, we say that a given general

coordinate system in R4 is Lorentzian with respect to {Kmn}m,n=0,1,2,3, if {Kmn}m,n=0,1,2,3 has the

following simple form in the chosen coordinate system:
K00 = 1 ∀(x0, x1, x2, x3) ∈ R4

Kmn = −δmn ∀1 ≤ m,n ≤ 3 ∀(x0, x1, x2, x3) ∈ R4

K0j = Kj0 = 0 ∀1 ≤ j ≤ 3 ∀(x0, x1, x2, x3) ∈ R4.

(2.35)

Note that (2.35) also implies: 
K00 = 1

Kmn = −δmn ∀1 ≤ m,n ≤ 3

K0j = Kj0 = 0 ∀1 ≤ j ≤ 3.

(2.36)

Moreover, due to Definition 2.6, every Lorentzian coordinate system is obviously inertial with respect

to {Kmn}m,n=0,1,2,3.

Definition 2.9. Let 

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3).

(2.37)

be a change of the first general coordinate system to the second coordinate system. We say that

transformations (2.37) are Lorentz’s transformations if, for arbitrary contravariant pseudo-metrics

{Kmn}m,n=0,1,2,3, such that in the first coordinate system we have
K00 = 1 ∀(x0, x1, x2, x3) ∈ R4

Kmn = −δmn ∀1 ≤ m,n ≤ 3 ∀(x0, x1, x2, x3) ∈ R4

K0j = Kj0 = 0 ∀1 ≤ j ≤ 3 ∀(x0, x1, x2, x3) ∈ R4,

(2.38)
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in the second coordinate system we also have
K ′00 = 1 ∀(x′0, x′1, x′2, x′3) ∈ R4

K ′mn = −δmn ∀1 ≤ m,n ≤ 3 ∀(x′0, x′1, x′2, x′3) ∈ R4

K ′0j = K ′j0 = 0 ∀1 ≤ j ≤ 3 ∀(x′0, x′1, x′2, x′3) ∈ R4 .

(2.39)

In particular, observe that, using Lemma 11.3 from the Appendix, we deduce that every Lorentz’s

transformation is necessarily linear.

Definition 2.10. Consider a standard kinematical Lorentz’s structure with global time ϕ on R4,

together with the corresponding tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3. We say

that a given general coordinate system in R4 is cartesian with respect to the tensor of the three-

dimensional geometry {Λmn}m,n=0,1,2,3 and the global time ϕ, if {Λmn}m,n=0,1,2,3 has the following

simple form in the chosen coordinate system:
Λ00 = 0 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = 0 ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn = δmn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4,

(2.40)

and at the same time in the same coordinate system we have(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 . (2.41)

Definition 2.11. We say that two cartesian coordinate systems in R4 are equivalent if the change

of coordinates from one system to another is given by
x′0 = x0 + c0,

x′m =
3∑
j=1

Bmjx
j + cm ∀m = 1, 2, 3 ,

(2.42)

where {Bmn}n,m=1,2,3 ∈ R3×3 is a constant (independent on (x0, x1, x2, x3) ∈ R4) matrix, satisfying

3∑
j=1

BmjBnj =

3∑
j=1

BjmBjn = δmn ∀m,n = 1, 2, 3 , (2.43)

and (c0, c1, c2, c3) ∈ R4 is a constant (independent on (x0, x1, x2, x3) ∈ R4) vector.

Then we prove the following:

Theorem 2.1. Consider a standard kinematical Lorentz’s structure with global time on R4 together

with the corresponding tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3. Next consider the

first cartesian, with respect to {Λmn}m,n=0,1,2,3 and ϕ, coordinate system in R4 and the second

general coordinate system in R4. Then, the second coordinate system is also cartesian if and only if

the change of the first coordinate system to the second one is given by the following relations:
x′0 = x0 + c,

x′m =
3∑
j=1

Amj(x
0)xj + zm(x0) ∀m = 1, 2, 3 ,

(2.44)
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where {Amn(x0)}n,m=1,2,3 ∈ R3×3 is a 3×3-matrix, depending on the coordinate x0 only (independent

on x := (x1, x2, x3)), and satisfying

3∑
j=1

Amj(x
0)Anj(x

0) =

3∑
j=1

Ajm(x0)Ajn(x0) = δmn ∀m,n = 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 ,

(2.45)

c ∈ R is a constant (independent on (x0, x1, x2, x3) ∈ R4) and z(x0) :=
(
z1(x0), z2(x0), z3(x0)

)
∈

R3 is a three-dimensional vector field, depending on the coordinate x0 only (independent on x :=

(x1, x2, x3)). In particular, up to equivalence of cartesian coordinate systems (see Definition 2.11),

(2.44) reduces to x
′0 = x0

x′ = A
(
x0
)
· x + z

(
x0
)
,

(2.46)

where A(x0) ∈ SO(3) is a rotation, depending on the coordinate x0 only and where z
(
x0
)

is a

three-dimensional vector field, depending on the coordinate x0 only.

As a consequence of Theorem 2.1 together with Lemma 11.3 from the Appendix, we deduce the

following:

Corollary 2.3. Consider a standard kinematical Lorentz’s structure with global time on R4. Next

consider the first coordinate system in R4, which is simultaneously inertial and cartesian, with respect

to this structure, and the second general coordinate system in R4. Then, the second coordinate system

is also simultaneously inertial and cartesian if and only if the change of the first coordinate system

to the second one is given by the following relations:
x′0 = x0 + c0,

x′m =
3∑
j=1

Bmj x
j + wmx0 + cm ∀m = 1, 2, 3 ,

(2.47)

where {Bmn}n,m=1,2,3 ∈ R3×3 is a constant 3× 3-matrix (independent on (x0, x1, x2, x3) ∈ R4), and

satisfying
3∑
j=1

BmjBnj =

3∑
j=1

BjmBjn = δmn ∀m,n = 1, 2, 3 , (2.48)

(c0, c1, c2, c3) ∈ R4 is a constant vector (independent on (x0, x1, x2, x3) ∈ R4) and w :=
(
w1, w2, w3

)
∈

R3 is a constant three-dimensional vector (independent on (x0, x1, x2, x3) ∈ R4). In particular, up

to equivalence of cartesian coordinate systems (see Definition 2.11), (2.47) reduces to the classical

Galilean Transformations: x
′0 = x0

x′m = xm + wmx0 ∀m = 1, 2, 3 ,

(2.49)

where w :=
(
w1, w2, w3

)
∈ R3 is a constant three-dimensional vector field (independent on the point

(x0, x1, x2, x3) ∈ R4).

13



Theorem 2.2. Consider a standard kinematical Lorentz’s structure with global time on R4. Next

consider the first coordinate system in R4, which is kinematically-preferable and the second general

coordinate system in R4. Then, the second coordinate system is also kinematically-preferable, if and

only if the first and the second coordinate systems are equivalent cartesian systems.

Remark 2.2. Consider a standard kinematical Lorentz’s structure with global time on R4. Next

consider a coordinate system in R4, which is simultaneously cartesian and Lorentzian, with respect

to this structure. Then, by Definition 2.7 this system is kinematically-preferable, with respect to

this structure. Moreover, note that, all kinematically-preferable systems are equivalent cartesian

and Lorentzian systems. Finally, note that the arbitrary coordinate system is Lorentzian if and only

if it can be obtained from the kinematically-preferable system by some Lorentz’s transformation.

2.1.1 Pseudo-Lorentzian coordinate systems

Definition 2.12. Consider a standard kinematical Lorentz’s structure with global time on R4 (see

Definition 2.7), consisting of contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and the global time ϕ,

together with the corresponding tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3, defined, as

in (2.32) by

Λjm := vjvm −Kjm ∀ j,m = 0, 1, 2, 3 , (2.50)

where (v0, v1, v2, v3) is the contrvariant four-vector field of the potential of generalized gravity, given,

as in (2.30), by

vm :=

3∑
j=0

Kmj ∂ϕ

∂xj
∀m = 0, 1, 2, 3. (2.51)

We say that a given general coordinate system in R4 is Pseudo-Lorentzian with respect to the tensor

of the three-dimensional geometry {Λmn}m,n=0,1,2,3 and the global time ϕ, if {Λmn}m,n=0,1,2,3 has

the following simple form in the chosen coordinate system:
Λ00 = (w0)2 − 1 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = −w0wj ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn = δmn + wmwn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4,

(2.52)

and at the same time in the same coordinate system we have(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (w0, w1, w2, w3) ∀ (x0, x1, x2, x3) ∈ R4 , (2.53)

where (w0, w1, w2, w3) ∈ R4 is some constant (independent on the point (x0, x1, x2, x3) ∈ R4) vector,

satisfying

(w0)2 −
3∑
j=1

(wj)
2 = 1 , (2.54)

(Note that by Lemma 11.4 the matrix {Λmn}0≤m,n≤3 in (2.52) is degenerate and moreover, it has

one vanishing and three positive eigenvalues).
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Remark 2.3. Obviously every Lorentzian coordinate system, where
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kmn := −δmn ∀m,n = 1, 2, 3 ,

is a Pseudo-Lorentzian system, since such a system obtained from the kinematically-preferable sys-

tem by a linear Lorentz’s transformation. Moreover, every cartesian coordinate system is also

Pseudo-Lorentzian system with(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 ,

Theorem 2.3. Given coordinate system is Pseudo-Lorentzian, if and only if it obtained from some

cartesian coordinate system by some Lorentz’s transformation.

Definition 2.13. In every coordinate system (possibly curvilinear) we consider the following ma-

trices 
M00 := 1

M0j = M j0 := 0 ∀ j = 1, 2, 3

M jm := −δjm ∀ j,m = 1, 2, 3 ,

(2.55)

and 
M00 := 1

M0j = Mj0 := 0 ∀ j = 1, 2, 3

Mjm := −δjm ∀ j,m = 1, 2, 3 ,

(2.56)

(note that Mkj and Mkj are not tensors). Next for given fixed constant vector (w0, w1, w2, w3) ∈ R4,

satisfying
3∑
j=0

3∑
m=0

M jmwjwm = 1 , (2.57)

we say that the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class

PL(w0, w1, w2, w3) if we have

x′m :=

3∑
j=0

Bmj

(
3∑
k=0

wkx
k

)
xj + zm

(
3∑
k=0

wkx
k

)
∀m = 0, 1, 2, 3 , (2.58)

where B(s) := {Bmj(s)}m,j=0,1,2,3 : R→ R4×4 and
(
z0(s), z1(s), z2(s), z3(s)

)
: R→ R4 satisfy

Mmn =

3∑
j=0

3∑
k=0

Bmj(s)Bnk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R , (2.59)

3∑
j=0

wj

({
B−1 · dB

ds

}
jm

(s)

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R , (2.60)
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and
3∑

m=0

3∑
j=0

wj

({
B−1

}
jm

(s)
) dzm
ds

(s) = 0 ∀s ∈ R . (2.61)

As a direct consequence of Definition 2.13 we have the following:

Corollary 2.4. Given change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is a Lorentz’s

transformation, if and only if this transformation is of class PL(w0, w1, w2, w3) for every fixed

constant vector (w0, w1, w2, w3) ∈ R4 satisfying (2.57), where B := {Bmj}m,j=0,1,2,3 ∈ R4×4 and(
z0, z1, z2, z3

)
∈ R4 in (2.58) are independent on the argument s.

As the second direct consequence of Definition 2.13 and Theorem 2.1 we have the following:

Corollary 2.5. Consider a standard kinematical Lorentz’s structure with global time ϕ on R4 to-

gether with the corresponding tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3. Next con-

sider the first cartesian, with respect to {Λmn}m,n=0,1,2,3 and ϕ, coordinate system in R4 and the

second general coordinate system in R4. Then, the second coordinate system is also cartesian if and

only if the change of the first coordinate system to the second one is of class PL(1, 0, 0, 0) where

B(s) := {Bmj(s)}m,j=0,1,2,3 : R→ R4×4 in (2.58) is given by
B00(s) = 1 ∀s

B0j(s) = Bj0(s) = 0 ∀j = 1, 2, 3 ∀s

Bmn(s) = Amn(s) ∀m,n = 1, 2, 3 ∀s ,

(2.62)

where {Amn(s)}n,m=1,2,3 ∈ R3×3 is a 3× 3-matrix, satisfying

3∑
j=1

Amj(s)Anj(s) =

3∑
j=1

Ajm(s)Ajn(s) = δmn ∀m,n = 1, 2, 3 ∀s . (2.63)

Theorem 2.4. Consider a fixed Pseudo-Lorentzian coordinate system, so that
Λ00 = (w0)2 − 1 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = −w0wj ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn = δmn + wmwn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4,

(2.64)

and at the same time in the same coordinate system we have(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (w0, w1, w2, w3) ∀ (x0, x1, x2, x3) ∈ R4 , (2.65)

where (w0, w1, w2, w3) ∈ R4 is some constant (independent on the point (x0, x1, x2, x3) ∈ R4) vector,

satisfying

(w0)2 −
3∑
j=1

(wj)
2 = 1 . (2.66)
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Next, assume that the new coordinate system is obtained from the given above (old) system by the

following transformation

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) . (2.67)

Then the new coordinate system is also Pseudo-Lorentzian if and only if the transformation in (2.67)

is of class PL ((w0, w1, w2, w3)).

Proposition 2.3. Given a constant vector (w0, w1, w2, w3) ∈ R4,satisfying (2.57) assume that that

the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of class PL(w0, w1, w2, w3)

and considering another constant vector (w′0, w
′
1, w

′
2, w

′
3) ∈ R4, defined by

w′m =

3∑
j=0

wj

({
B−1

}
jm

(0)
)

∀m = 0, 1, 2, 3, ∀s ∈ R , (2.68)

where B(s) := {Bmj(s)}m,j=0,1,2,3 : R→ R4×4 be as in (2.58). Then, we have

3∑
m=0

3∑
n=0

Mmnw′mw
′
n = 1 . (2.69)

3∑
j=0

wj

({
B−1

}
jm

(s)
)

=

3∑
j=0

wj

({
B−1

}
jm

(0)
)

= w′m ∀m = 0, 1, 2, 3, ∀s ∈ R . (2.70)

Moreover, at every point in R4 we have

3∑
m=0

w′m
∂x′m

∂xn
= wn ∀n = 0, 1, 2, 3 , (2.71)

and as a direct consequence of (2.71) there exists a constant C ∈ R such that at every point in R4

we have ( 3∑
k=0

w′kx
′k
)

= C +

( 3∑
k=0

wkx
k

)
. (2.72)

Definition 2.14. Given two fixed constant vectors (w0, w1, w2, w3) ∈ R4 and (w′0, w
′
1, w

′
2, w

′
3) ∈ R4,

satisfying
3∑
j=0

3∑
m=0

M jmwjwm = 1 , (2.73)

and
3∑
j=0

3∑
m=0

M jmw′jw
′
m = 1 , (2.74)

we say that the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class

PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

if it belongs to PL(w0, w1, w2, w3) and

w′m =

3∑
j=0

wj

({
B−1

}
jm

(0)
)

∀m = 0, 1, 2, 3, ∀s ∈ R , (2.75)

where B(s) := {Bmj(s)}m,j=0,1,2,3 : R→ R4×4 be as in (2.58).
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Furthermore, for given two fixed constant vectors (w0, w1, w2, w3) ∈ R4 and (w′0, w
′
1, w

′
2, w

′
3) ∈ R4,

satisfying (2.73) and (2.74) we define the subspace

L
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)
( PL

(
(w0, w1, w2, w3); (w′0, w

′
1, w

′
2, w

′
3)
)

of transformations (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3), where B := {Bmj}m,j=0,1,2,3 ∈ R4×4 and(
z0, z1, z2, z3

)
∈ R4 in (2.58) are independent on the argument s (Obviously such a coordinate

change is necessarily a Lorentz’s transformation).

As a direct consequence of Proposition 2.3 we deduce two following Corollaries:

Corollary 2.6. • Given fixed vector (w0, w1, w2, w3) ∈ R4 , satisfying (2.73), assume that the

change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class PL(w0, w1, w2, w3).

Then the constant vector (w′0, w
′
1, w

′
2, w

′
3) ∈ R4, given by (2.75) satisfies (2.74) and the above

coordinate change (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class

PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

.

• Given a Lorentz’s transformation (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3), there exist two fixed

constant vectors (w0, w1, w2, w3) ∈ R4 and (w′0, w
′
1, w

′
2, w

′
3) ∈ R4, satisfying (2.73) and (2.74),

such that the above of change coordinates (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class

L
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

.

Corollary 2.7. Consider a standard kinematical Lorentz’s structure with global time ϕ on R4 to-

gether with the corresponding tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3. Next consider

the first cartesian, with respect to {Λmn}m,n=0,1,2,3 and ϕ, coordinate system in R4 and the second

general coordinate system in R4. Then, the second coordinate system is also cartesian if and only if

the change of the first coordinate system to the second one is of class PL
(

(1, 0, 0, 0); (1, 0, 0, 0)
)

.

Proposition 2.4. Given two fixed constant vectors (w0, w1, w2, w3) ∈ R4 and (w′0, w
′
1, w

′
2, w

′
3) ∈ R4,

satisfying
3∑
j=0

3∑
m=0

M jmwjwm = 1 , (2.76)

and
3∑
j=0

3∑
m=0

M jmw′jw
′
m = 1 , (2.77)

assume that the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) is of the class

PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

. Then the inverse change of variables (x′0, x′1, x′2, x′3) →

(x0, x1, x2, x3) is of the class PL
(

(w′0, w
′
1, w

′
2, w

′
3); (w0, w1, w2, w3)

)
.

As a direct consequence of Lemma 10.1 we deduce:
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Proposition 2.5. Given three fixed constant vectors (w0, w1, w2, w3) ∈ R4, (w′0, w
′
1, w

′
2, w

′
3) ∈ R4

and (w′′0 , w
′′
1 , w

′′
2 , w

′′
3 ) ∈ R4, satisfying

∑3
j=0

∑3
m=0M

jmwjwm = 1∑3
j=0

∑3
m=0M

jmw′jw
′
m = 1∑3

j=0

∑3
m=0M

jmw′′jw
′′
m = 1 ,

(2.78)

assume that that the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) belongs to the

class PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

and another change of coordinate system (x′0, x′1, x′2, x′3) →

(x′′0, x′′1, x′′2, x′′3), belonging to the class PL
(

(w′0, w
′
1, w

′
2, w

′
3); (w′′0 , w

′′
1 , w

′′
2 , w

′′
3 )
)

. Then, the com-

position of the above two changes of coordinate systems:

(x0, x1, x2, x3) → (x′′0, x′′1, x′′2, x′′3) = (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3)

belongs to the class PL
(

(w0, w1, w2, w3); (w′′0 , w
′′
1 , w

′′
2 , w

′′
3 )
)

.

As a direct consequence of the Corollary 10.1 and Proposition 2.5 we deduce:

Proposition 2.6. Given three fixed constant vectors (w0, w1, w2, w3) ∈ R4, (w′0, w
′
1, w

′
2, w

′
3) ∈ R4

and (ŵ0, ŵ1, ŵ2, ŵ3) ∈ R4, satisfying
∑3
j=0

∑3
m=0M

jmwjwm = 1∑3
j=0

∑3
m=0M

jmw′jw
′
m = 1∑3

j=0

∑3
m=0M

jmŵjŵm = 1 ,

(2.79)

the change of coordinate system (x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) belongs to the class

PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

if and only if there exists three other changes of coordinate

system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3), belonging to the class L
(

(w0, w1, w2, w3); (ŵ0, ŵ1, ŵ2, ŵ3)
)

,

(x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belonging to the class PL
(

(ŵ0, ŵ1, ŵ2, ŵ3); (ŵ0, ŵ1, ŵ2, ŵ3)
)

and (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3), belonging to the class

L
(

((ŵ0, ŵ1, ŵ2, ŵ3); (w′0, w
′
1, w

′
2, w

′
3)
)

, so that the original transformation

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) is a composition of the above three changes of coordinate

systems:

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) =

(x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3) . (2.80)

As a direct consequence of Proposition 2.6 we deduce the following:

Corollary 2.8. Given two fixed constant vectors (w0, w1, w2, w3) ∈ R4, (w′0, w
′
1, w

′
2, w

′
3) ∈ R4,

satisfying 
∑3
j=0

∑3
m=0M

jmwjwm = 1∑3
j=0

∑3
m=0M

jmw′jw
′
m = 1 ,

(2.81)
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the change of coordinate system (x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) belongs to the class

PL
(

(w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)
)

if and only if there exists three other changes of coordinate

system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3), belonging to the class L
(

(w0, w1, w2, w3); (1, 0, 0, 0)
)

,

(x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belonging to the class PL
(

(1, 0, 0, 0); (1, 0, 0, 0)
)

and (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3), belonging to the class

L
(

((1, 0, 0, 0); (w′0, w
′
1, w

′
2, w

′
3)
)

, so that the original transformation

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) is a composition of the above three changes of coordinate

systems:

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) =

(x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3) . (2.82)

2.2 Kinematical Lorentz’s structure with global time

Definition 2.15. We say that a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 is flat if the

curvature-tensor of this pseudo-metrics vanishes. In other hand at every point in R4 we have{
Rjkmn

}
K

:=

∂

∂xm

({
Γjkn

}
K

)
− ∂

∂xn

({
Γjkm

}
K

)
+

3∑
d=0

{
Γdkn

}
K

{
Γjdm

}
K
−

3∑
d=0

{
Γdkm

}
K

{
Γjnd

}
K

= 0

∀ j, k,m, n = 0, 1, 2, 3, (2.83)

where the Christoffel Symbols
{

Γmkj

}
K

are defined by (2.25). It is well known that the equality in

(2.83) is independent on the chosen coordinate system.

Remark 2.4. Obviously, if given a pseudo-metrics {Kmn}m,n=0,1,2,3, there exists an inertial coor-

dinate system, with respect to {Kmn}m,n=0,1,2,3, then this pseudo-metrics is obviously flat. In

particular, if there exists some coordinate system where matrix {Kmn}m,n=0,1,2,3 has a form of
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kjm := −δjm ∀ j,m = 1, 2, 3

(2.84)

then a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 is flat.

Definition 2.16. Given a generalized-Lorentz’s structure with global time on R4, formed by

a strongly correlating contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and a global time ϕ, we

say that this generalized-Lorentz’s structure with global time is kinematical, if pseudo-metrics

{Kmn}m,n=0,1,2,3 is flat and, at the same time, the tensor of the covariant derivatives of the covector(
∂ϕ
∂x0 ,

∂ϕ
∂x1 ,

∂ϕ
∂x2 ,

∂ϕ
∂x3

)
vanishes:{

δj

(
∂ϕ

∂xk

)}
K

= 0 ∀ k, j = 0, 1, 2, 3 . (2.85)
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Remark 2.5. Consider a standard kinematical Lorentz’s structure with global time on R4, formed

by a pseudo-metrics {Kmn}m,n=0,1,2,3 and a global time ϕ, so that there exists some coordinate

system where matrix {Kmn}m,n=0,1,2,3 has a form of
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kjm := −δjm ∀ j,m = 1, 2, 3

(2.86)

and at the same time the covector of time direction for ϕ has a form(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4. (2.87)

Then, we obviously obtain that this standard kinematical Lorentz’s structure with global time is

kinematical in the sense of Definition 2.16. On the other hand, given an arbitrary kinematical

Lorentz’s structure with global time, one can prove that every point in R4 has at least some neigh-

borhood, in which (2.86) and (2.87) hold in some coordinate system.

2.3 Kinematical and Dynamical generalized-Lorentz structures with time

direction

We postulate that all real physical processes appear in some valid contravariant pseudo-metrics

{Kmn}m,n=0,1,2,3, describing the generalized gravity field, weakly correlated with some covector of

time direction (w0, w1, w2, w3). Furthermore, we distinguish two types of generalized gravity. First,

type is the fictitious gravity which we call inertia. This type of gravity depends only on the flat

geometry of empty space-time via the choice of specific coordinate system and it is independent

on the surrounding real matter consisting of gravitational masses or other real physical fields. The

second type of the gravity is the genuine (real) gravity, which depends essentially on the real physical

matter, especially on gravitational masses. We assume that this type of gravity vanishes away from

essential gravitational masses and strong real physical fields. Then we state the First Law of the

Newton as the following:

Proposition 2.7. [Axiom I] In the parts of the space-time where we observes the absence of genuine

gravity, and in particular away from essential real physical bodies and fields, we have

Kmn = Jmn ∀m,n = 0, 1, 2, 3, (2.88)

and

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
, (2.89)

where the strongly-correlated covariant pseudo-metrics {Jmn}m,n=0,1,2,3 and the global time ϕ form

the standard kinematical Lorentz’s structure with global time on R4, as defined in Definition 2.7.
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Remark 2.6. We remind, that by Definition 2.7, there exists some coordinate system where matrix

{Jmn}m,n=0,1,2,3 has a form of 
J00 = 1

J0j = Jj0 = 0 ∀ j = 1, 2, 3

Jjm := −δjm ∀ j,m = 1, 2, 3

(2.90)

and at the same coordinate system the covector of time direction for the global time ϕ has a form(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 . (2.91)

We remind that this particular system is called kinematically preferable and it is unique, up

to equivalence. Furthermore, we define the kinematical tensor of three-dimensional Geometry

{Θmn}m,n=0,1,2,3, given by

Θmn :=

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 , (2.92)

where  3∑
j=0

J0j ∂ϕ

∂xj
,

3∑
j=0

J1j ∂ϕ

∂xj
,

3∑
j=0

J2j ∂ϕ

∂xj
,

3∑
j=0

J3j ∂ϕ

∂xj

 (2.93)

is the contravariant vector of inertia. In particular, in the kinematically preferable coordinate system,

where (2.90) and (2.91) holds we have
Θ00 = 0

Θ0j = Θj0 = 0 ∀ j = 1, 2, 3

Θjm := δjm ∀ j,m = 1, 2, 3 .

(2.94)

We also remind that, given arbitrary coordinate system, it is called cartesian if in this system we

have simultaneously (2.94) and (2.91) but, we do not necessary have (2.90). On the other hand,

given arbitrary coordinate system, it is called Lorentzian if in this system we have (2.90) but, we do

not necessary have (2.94) or (2.91). Finally, given arbitrary coordinate system, it is inertial, if we can

get it from kinematically preferable coordinate system by a linear transformation. We also remind,

that we obtain a coordinate system which is simultaneously cartesian and inertial from another such

system by Galilean transformations. On the other hand, we obtain a coordinate system which is

simultaneously Loretzian and inertial from another such system by Lorentz’s transformations. The

unique, up to equivalence, coordinate system which is simultaneously cartesian and Loretzian is a

kinematically preferable coordinate system.
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2.4 Lagrangian of the motion of a classical point particle in a given

pseudo-metrics with time direction

Definition 2.17. Consider a classical point particle with the inertial mass m and the charge σ mov-

ing in the generalized-gravitational field, given by a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3,

weakly correlated with a four-covector of the time direction (w0, w1, w2, w3), and influenced by the

electromagnetic field with the four-covector of the electromagnetic potential (A0, A1, A2, A3). Next

assume that χ(s) :=
(
χ0(s), χ1(s), χ2(s), χ3(s)

)
: [a, b] → R4 ∈ R4 is a four-dimensional space-time

trajectory of the particle, parameterized by some general scalar parameter s ∈ [a, b] (including the

cases where a = −∞ and/or b = +∞). Then we say that the parameter of the trajectory s is proper

with respect the time direction (w0, w1, w2, w3), if we have

3∑
j=0

wj (χ(s))
dχj

ds
(s) > 0 ∀s ∈ [a, b] . (2.95)

Next, given a proper parametrization s, we define the contravariant four-vector of the velocity of

the particle (u0, u1, u2, u3)(s), with respect to the time direction (w0, w1, w2, w3), by the following

uj(s) =

(
3∑
k=0

wk (χ(s))
dχk

ds
(s)

)−1

dχj

ds
(s) ∀ j = 0, 1, 2, 3 ∀s ∈ [a, b] , (2.96)

so that
3∑
j=0

wj (χ(s)) uj(s) = 1 ∀s ∈ [a, b] (2.97)

(It is obvious that the definition of (u0, u1, u2, u3) in (2.96) is independent on the choice of the proper

parametrization s). Moreover, given an arbitrary contravariant four-vector field (f0, f1, f2, f3), we

say that this field is a speed-like four-vector field, with respect to the time direction (w0, w1, w2, w3),

if we have

3∑
j=0

wj(x
0, x1, x2, x3) f j(x0, x1, x2, x3) = 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.98)

Remark 2.7. Note here the difference in our notation with respect to the usual Special and General

Relativity: in the usual Theory of Relativity the notation of the four-velocity of the particle is

booked for the normalized contravariant four-vector (û0, û1, û2, û3)(s), given by

ûj(s) :=

(
3∑

m=0

3∑
n=0

Kmn (χ(s))
dχm

ds
(s)

dχn

ds
(s)

)− 1
2

dχj

ds
(s) =

(
3∑

m=0

3∑
n=0

Kmn (χ(s)) um(s)un(s)

)− 1
2

uj(s) ∀ j = 0, 1, 2, 3 ∀s ∈ [a, b] , (2.99)

while, in the present paper by the name four-velocity we denote the contravariant four-vector

(u0, u1, u2, u3)(s), given by (2.96).
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Furthermore, given a proper parametrization s, consider the Lagrangian of motion of this particle

given by the following (in the Gaussian unit system)

LG(χ) =

∫ b

a

−mG
 3∑
j=0

3∑
k=0

Kjk (χ(s))uj(s)uk(s)


 3∑
j=0

wj (χ(s))
dχj

ds

 ds

+

∫ b

a

−
3∑
j=0

σAj (χ(s))
dχj

ds

 ds =

∫ b

a

−mG
 3∑
j=0

3∑
k=0

Kjk (χ(s))uj(s)uk(s)

− 3∑
j=0

σ uj(s)Aj (χ(s))


 3∑
j=0

wj (χ(s))
dχj

ds

 ds,

(2.100)

where {Kmn}m,n=0,1,2,3 is the inverse to {Kmn}m,n=0,1,2,3 covariant pseudo-metrics and G(τ) : R→

R is some fixed function. Obviously, the functional in (2.100) is independent on the choice of the

proper parametrization. We have the following two important particular cases:

• The case of relativistic particle where G(τ) :=
√
τ − 1 in (2.100).

• The case of non-relativistic particle where G(τ) := 1
2 (τ − 1) in (2.100).

In both cases G(1) = 0. Moreover, we have

√
τ − 1 =

1

2
(τ − 1) +O

(
(τ − 1)2

)
. (2.101)

In the first relativistic case we simplify (2.100) as:

L1(χ) =

∫ b

a

−m
√√√√ 3∑

j=0

3∑
k=0

Kjk (χ(s))
dχj

ds

dχk

ds

 ds

+

∫ b

a

−
3∑
j=0

σAj (χ(s))
dχj

ds
+

3∑
j=0

mwj (χ(s))
dχj

ds

 ds. (2.102)

On the other hand, in the second, non-relativistic case we simplify (2.100) as:

L2(χ) =

∫ b

a

−
m

2

(
3∑
j=0

3∑
k=0

Kjk (χ(s)) dχj

ds
dχk

ds

)
(

3∑
j=0

wj (χ(s)) dχ
j

ds

)
 ds

+

∫ b

a

−
3∑
j=0

σAj (χ(s))
dχj

ds
+

3∑
j=0

m

2
wj (χ(s))

dχj

ds

 ds. (2.103)

Definition 2.18. Given two events on the trajectory of the motion of the particle χ(s1) ∈ R4 and

χ(s2) ∈ R4, with parameters of the chosen proper parametrization s1 and s2 respectively, we define

the interval of time that passed from the event χ(s1) to event χ(s2), corresponding to the time
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direction (w0, w1, w2, w3), as:

τ (χ(s1), χ(s2)) :=

∫ s2

s1

 3∑
j=0

wj (χ(s))
dχj

ds

 ds . (2.104)

Then obviously the interval of time is independent on the proper parametrization of the trajectory.

Moreover if we have

(w0, w1, w2, w3) =

(
∂ψ

∂x0
,
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 , (2.105)

where ψ is some global time (which is obviously weakly correlated with {Kmn}m,n=0,1,2,3 ), then,

inserting (2.105) into (2.104) we obviously deduce

τ (χ(s1), χ(s2)) = ψ (χ(s2))− ψ (χ(s1)) . (2.106)

So, in the later case the interval of time between two events is the difference in global time between

the second and the first event and therefore, this interval is independent on the trajectory itself,

but depends only on the two ending points of the trajectory. Note also that in the general case the

quantity

τ(s) := τ (χ(s), χ(a)) ∀ s ∈ [a, b] , (2.107)

can be chosen as a preferable parameter of the trajectory of the motion and we rewrite the relativistic

Lagrangian in (2.102) as:

L1(χ) =

τ(b)∫
0

m−m
√√√√ 3∑

j=0

3∑
k=0

Kjk (χ(τ))
dχj

dτ

dχk

dτ

− 3∑
j=0

σAj (χ(τ))
dχj

dτ

 dτ, (2.108)

and we rewrite the non-relativistic Lagrangian in (2.103) as

L2(χ) =

τ(b)∫
0

m2 − m

2

 3∑
j=0

3∑
k=0

Kjk (χ(τ))
dχj

dτ

dχk

dτ

− 3∑
j=0

σAj (χ(τ))
dχj

dτ

 dτ. (2.109)

Moreover, in the case of general G, we rewrite the general Lagrangian in (2.100) as:

LG(χ) =

τ(b)∫
0

−mG
 3∑
j=0

3∑
k=0

Kjk (χ(τ))
dχj

dτ

dχk

dτ

− 3∑
j=0

σAj (χ(τ))
dχj

dτ

 dτ , (2.110)

and the velocity satisfies

uj(τ) =
dχj

dτ
(τ) ∀ j = 0, 1, 2, 3 ∀s ∈ [0, τ(b)] . (2.111)

Furthermore, we postulate the Second Law of Newton:

Proposition 2.8. [Axiom II] The motion of a classical point particle with inertial mass m and

charge σ is described by the Lagrangian (2.100), where we consider either G(τ) :=
√
τ − 1 (the

relativistic case) or G(τ) := 1
2 (τ − 1) (a non-relativistic approximation).
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As a consequence of the first and the second laws of Newton we deduce the following.

Corollary 2.9. [The law of inertia] Assume that either G(τ) :=
√
τ−1 or G(τ) := 1

2 (τ−1) in (2.100).

Then, in the absence of genuine gravitational field, the electromagnetical or any other physical field,

given an arbitrary inertial coordinate system, the trajectory of the classical point particle in this

coordinate system is a direct-line in R4. Note that the coordinate system must be inertial, but not

necessary cartesian or Lorentzian.

2.5 Lagrangian of the electromagnetic field in a given pseudo-metrics

Definition 2.19. Consider a contravariant pseudo-metrics K := {Kmn}m,n=0,1,2,3 and let A =

(A0, A1, A2, A3) := (A0, A1, A2, A3)(x0, x1, x2, x3) be the four-covector of the electromagnetic po-

tential and j = (j0, j1, j2, j3) := (j0, j1, j2, j3)(x0, x1, x2, x3) be the contravariant four-vector of the

four-current. As usual, we consider the Lagrangian-density of the electromagnetic field given by the

following (in the Gaussian unit system):

Le ((A0, A1, A2, A3), {Kmn}m,n=0,1,2,3) :=

1

4π

(
−

3∑
n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

)
−

3∑
k=0

4πjkAk

)
, (2.112)

(we use the dynamical pseudo-metrics {Kmn}m,n=0,1,2,3 in this definition since it is well known that

the electromagnetic field is dependent on the genuine gravity). Correspondingly, given a subregion

V ⊂ R4, the Lagrangian of the electromagnetic field in this subregion is given, as usual, by

Le(A0, A1, A2, A3) :=∫∫∫∫
V

(
Le ((A0, A1, A2, A3), {Kmn}m,n=0,1,2,3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0 dx1 dx2 dx3.

(2.113)

In particular, the critical points of Le(A0, A1, A2, A3) must satisfy

δLe
δAj

(A0, A1, A2, A3) = 0 ∀j = 0, 1, 2, 3 , (2.114)

and, thus by the Euler-Lagrange we deduce

3∑
j=0

∂

∂xj

(
3∑

m=0

3∑
n=0

|det {Kp q}p,q=0,1,2,3|−
1
2 KkmKjn

(
∂An
∂xm

− ∂Am
∂xn

))

= −4π |det {Kp q}p,q=0,1,2,3|−
1
2 jk ∀ k = 0, 1, 2, 3. (2.115)

2.6 Correlated pseudo-metrics

Definition 2.20. Consider a two contravariant pseudo-metrics {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3

on R4 and let {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4,
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associated with {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3, that satisfy

3∑
k=0

JmkJkn =

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3. (2.116)

Then, we say that {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3 are two correlated pseudo-metrics, if there

exist a four-covector of the time direction, (w0, w1, w2, w3), weakly correlating with {Jmn}m,n=0,1,2,3

and {Kmn}m,n=0,1,2,3 simultaneously, so that we have

3∑
j=0

3∑
m=0

Jjmwjwm > 0 ∀ (x0, x1, x2, x3) ∈ R4 , (2.117)

3∑
j=0

3∑
m=0

Kjmwjwm > 0 ∀ (x0, x1, x2, x3) ∈ R4 , (2.118)

and moreover, there exists a four-covector field (S0, S1, S2, S3), such that we have

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 . (2.119)

Theorem 2.5. Consider a contravariant pseudo-metrics {Jmn}m,n=0,1,2,3 on R4 and an arbitrary

covariant four-covector field (w0, w1, w2, w3), served as a time direction, and such that {Jmn}m,n=0,1,2,3

and (w0, w1, w2, w3) are weakly correlated. Furthermore, let {Jmn}m,n=0,1,2,3 be the inverse covari-

ant pseudo-metrics on R4, associated with {Jmn}m,n=0,1,2,3 and let (r0, r1, r2, r3) be the potential of

the generalized gravity, corresponding to {Jmn}m,n=0,1,2,3 and (w0, w1, w2, w3) and satisfying

rm :=

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Jmjwj

 ∀m = 0, 1, 2, 3. (2.120)

Furthermore, as before, consider a contravariant tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3,

given by

Λjm := rjrm − Jjm ∀ j,m = 0, 1, 2, 3 , (2.121)

Next, given an arbitrary contravariant four-vector field (v0, v1, v2, v3), satisfying

3∑
j=0

vjwj > 0 , (2.122)

define the contravariant symmetric tensor field {Kmn}m,n=0,1,2,3 by the following relations:

Kjm := vjvm − Λjm ∀ j,m = 0, 1, 2, 3 . (2.123)

Then, {Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics. Moreover, the inverse to {Kmn}m,n=0,1,2,3

covariant pseudo-metrics {Kmn}m,n=0,1,2,3 is given at every point in R4 by the following:

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 , (2.124)
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where the covariant four-covector (S0, S1, S2, S3) is defined by the following covariant relation:

Sm :=
1

2

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

vjwj

−1 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 .

(2.125)

Finally, the following covariant relations are valid

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 , (2.126)

3∑
j=0

Kjmwj =

 3∑
j=0

vjwj

 vm ∀m = 0, 1, 2, 3 , (2.127)

and

3∑
m=0

3∑
j=0

Kjmwjwm =

(− det ({Jmn}m,n=0,1,2,3))

(
3∑

m=0

3∑
n=0

Jmnwmwn

)
(−det ({Kmn}m,n=0,1,2,3))

=

 3∑
j=0

vjwj

2

. (2.128)

So, {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3 are two correlated pseudo-metrics (see Definition 2.20).

Moreover, Kmn and (w0, w1, w2, w3) are weakly correlated and (v0, v1, v2, v3) is a potential of gen-

eralized gravity, corresponding to the couple Kmn and (w0, w1, w2, w3).

Theorem 2.6. Consider a contravariant pseudo-metrics {Jmn}m,n=0,1,2,3 on R4 and an arbi-

trary covariant four-covector field (w0, w1, w2, w3), served as a time direction, {Jmn}m,n=0,1,2,3

and (w0, w1, w2, w3) are weakly correlated. Furthermore, let {Jmn}m,n=0,1,2,3 be the inverse co-

variant pseudo-metrics on R4, associated with {Jmn}m,n=0,1,2,3 and let (r0, r1, r2, r3) be the po-

tential of the generalized gravity, corresponding to {Jmn}m,n=0,1,2,3 and (w0, w1, w2, w3) and sat-

isfying (2.120). Furthermore, as before, consider a contravariant tensor of three-dimensional Ge-

ometry {Λmn}m,n=0,1,2,3, given by (2.121). Next consider, an arbitrary covariant four-covector

(S0, S1, S2, S3) such that a two-times covariant tensor field {Kmn}m,n=0,1,2,3, defined by

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 , (2.129)

satisfies the following at every point in R4:

det
(
{Kmn}m,n=0,1,2,3

)
< 0 . (2.130)

Then, the inverse to {Kmn}m,n=0,1,2,3 two-times contravariant symmetric tensor field {Kmn}m,n=0,1,2,3

is given by

Kmn = vmvn − Λmn ∀m,n = 0, 1, 2, 3 . (2.131)

where the contravariant vector field (v0, v1, v2, v3) is defined by the following covariant relation:

vm :=


√√√√√ −det

(
{Jkn}k,n=0,1,2,3

)
−det

(
{Kkn}k,n=0,1,2,3

)

√√√√ 3∑

j=0

3∑
k=0

Jjkwjwk

 3∑
j=0

ΛmjSj

+ rm


∀m = 0, 1, 2, 3 . (2.132)
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Furthermore, we also have  3∑
j=0

vjwj

 > 0 , (2.133)

and {Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics. Moreover, the covariant relations

in (2.125), (2.126), (2.127) and (2.128) are also valid. So, {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3

are two correlated pseudo-metrics. Moreover, Kmn and (w0, w1, w2, w3) are weakly correlated and

(v0, v1, v2, v3) is a potential of generalized gravity, corresponding to Kmn and (w0, w1, w2, w3).

Corollary 2.10. Consider a contravariant pseudo-metrics {Jmn}m,n=0,1,2,3 on R4 and an arbitrary

scalar field ϕ : R4 → R, served as a global time, such that

3∑
j=0

3∑
m=0

Jjm
∂ϕ

∂xj
∂ϕ

∂xm
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.134)

Furthermore, let {Jmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4, associated with

{Jmn}m,n=0,1,2,3 and let (r0, r1, r2, r3) be the contravariant four-vector field, defined by

rm :=

3∑
j=0

Jmj
∂ϕ

∂xj
∀m = 0, 1, 2, 3. (2.135)

Furthermore, as before, consider a contravariant tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3,

given by

Λjm := rjrm − Jjm ∀ j,m = 0, 1, 2, 3 . (2.136)

Next, given an arbitrary contravariant four-vector field (v0, v1, v2, v3), satisfying

3∑
j=0

vj
∂ϕ

∂xj
= 1 , (2.137)

define the contravariant symmetric tensor field {Kmn}m,n=0,1,2,3 by the following relations:

Kjm := vjvm − Λjm ∀ j,m = 0, 1, 2, 3 . (2.138)

Then, {Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics and we have

3∑
m=0

3∑
j=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
= 1 . (2.139)

Moreover, the inverse to {Kmn}m,n=0,1,2,3 covariant pseudo-metrics {Kmn}m,n=0,1,2,3 is given at

every point in R4 by the following:

Kjm =

(
Jjm + Sm

∂ϕ

∂xj
+ Sj

∂ϕ

∂xm

)
∀ 0 ≤ j,m ≤ 3 , (2.140)

where the covariant four-covector (S0, S1, S2, S3) is defined by the following covariant relation:

Sm :=

3∑
j=0

1

2
Kmjr

j −
3∑
j=0

1

2
Jmjv

j ∀ 0 ≤ m ≤ 3 . (2.141)
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Finally, the following covariant relations are valid

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 , (2.142)

3∑
j=0

Kjm ∂ϕ

∂xj
= vm ∀m = 0, 1, 2, 3 , (2.143)

det ({Jmn}m,n=0,1,2,3) = det ({Kmn}m,n=0,1,2,3) . (2.144)

So, {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3 are two correlated pseudo-metrics, that both correlated

with the same global time ϕ and (v0, v1, v2, v3) is a potential of generalized gravity, corresponding to

Kmn and ϕ.

Corollary 2.11. Consider a contravariant pseudo-metrics {Jmn}m,n=0,1,2,3 on R4 and an arbitrary

scalar field ϕ : R4 → R, served as a global time, such that we have (2.134). Next, let {Jmn}m,n=0,1,2,3

be the inverse covariant pseudo-metrics on R4, associated with {Jmn}m,n=0,1,2,3 and let (r0, r1, r2, r3)

be the contravariant four-vector field, defined by (2.135). Furthermore, as before, consider a con-

travariant tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3, given by (2.136). Next consider,

an arbitrary covariant four-covector (S0, S1, S2, S3) such that a two-times covariant tensor field

{Kmn}m,n=0,1,2,3, defined by

Kjm =

(
Jjm + Sm

∂ϕ

∂xj
+ Sj

∂ϕ

∂xm

)
∀ 0 ≤ j,m ≤ 3 , (2.145)

satisfies the following covariant relation at every point in R4:

det
(
{Kmn}m,n=0,1,2,3

)
= det ({Jmn}m,n=0,1,2,3) . (2.146)

Then, the inverse to {Kmn}m,n=0,1,2,3 two-times contravariant symmetric tensor field {Kmn}m,n=0,1,2,3

is given by

Kmn = vmvn − Λmn ∀m,n = 0, 1, 2, 3 . (2.147)

where the contravariant vector field (v0, v1, v2, v3) is defined by the following covariant relation:

vm :=

 3∑
j=0

ΛmjSj + rm

 ∀m = 0, 1, 2, 3 . (2.148)

Moreover, we also have
3∑
j=0

vj
∂ϕ

∂xj
= 1 , (2.149)

{Kmn}m,n=0,1,2,3 is a valid contravariant pseudo-metrics, and

3∑
m=0

3∑
j=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
= 1 . (2.150)

Moreover, the covariant relations in (2.141), (2.142) and (2.143) are also valid. So, {Jmn}m,n=0,1,2,3

and {Kmn}m,n=0,1,2,3 are two correlated pseudo-metrics, that both correlated with the same global

time ϕ and (v0, v1, v2, v3) is a potential of generalized gravity, corresponding to Kmn and ϕ.
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2.7 Kinematically correlated models of the genuine gravity

Definition 2.21. Consider the strongly-correlated kinematical covariant pseudo-metrics

{Jmn}m,n=0,1,2,3 and the kinematical global time ϕ, forming a standard kinematical Lorentz’s struc-

ture with global time on R4, as in Proposition 2.7 and Remark 2.6. Furthermore, let {Jmn}m,n=0,1,2,3

be the inverse covariant pseudo-metric on R4, associated with {Jmn}m,n=0,1,2,3. Given, an arbitrary

dynamical four-covector of the time direction, (w0, w1, w2, w3) (formally unrelated to the kinematical

global time ϕ), which is weakly correlated with {Jmn}m,n=0,1,2,3 and an arbitrary four-covector field

(S0, S1, S2, S3), which we call the four-covector of genuine gravity, consider the two-times covariant

tensor {Kmn}m,n=0,1,2,3 defined by:

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.151)

and assume that (S0, S1, S2, S3) is such that {Kmn}m,n=0,1,2,3 in (2.151) satisfies

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 (2.152)

( the last equality is obviously independent on the choice of coordinate system). Then, by Theo-

rem 2.6 the inverse to {Kmn}m,n=0,1,2,3 two-times contravariant tensor {Kmn}m,n=0,1,2,3 is a valid

contravariant pseudometrics, weakly correlated with the time-direction (w0, w1, w2, w3). Moreover,

we call such a pseudometrics {Kmn}m,n=0,1,2,3, with time-direction (w0, w1, w2, w3), kinematically

correlated pseudometrics with time-direction (w0, w1, w2, w3), corresponding to the covector of gen-

uine gravity (S0, S1, S2, S3).

Remark 2.8. If {Kmn}m,n=0,1,2,3, with time-direction (w0, w1, w2, w3), is a kinematically correlated

pseudometrics with time-direction (w0, w1, w2, w3), corresponding to the covector of genuine gravity

(S0, S1, S2, S3), then by Theorem 2.6 {Jmn}m,n=0,1,2,3 and {Kmn}m,n=0,1,2,3 are two correlated

pseudo-metrics (see Definition 2.20). Moreover, denoting by (r0, r1, r2, r3) the contravariant four-

vector of the generalized gravity, corresponding to {Jmn}m,n=0,1,2,3 and (w0, w1, w2, w3), which

satisfies

rm :=

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Jmjwj

 ∀m = 0, 1, 2, 3, (2.153)

and considering a contravariant tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3, given by

Λmn := rmrn − Jmn ∀m,n = 0, 1, 2, 3 , (2.154)

using Theorem 2.6, we have

Kmn = vmvn − Λmn = Jmn + vmvn − rmrn ∀m,n = 0, 1, 2, 3 . (2.155)

where the contravariant vector of generalized gravity (v0, v1, v2, v3) is defined by the following co-

variant relation:

vm :=

√√√√ 3∑
j=0

3∑
k=0

Jjkwjwk

 3∑
j=0

ΛmjSj

+ rm ∀m = 0, 1, 2, 3 , (2.156)

31



and both couples {Jmn}m,n=0,1,2,3, (w0, w1, w2, w3), and {Kmn}m,n=0,1,2,3, (w0, w1, w2, w3) are

weakly correlated. Moreover, we also have 3∑
j=0

vjwj

 > 0 , (2.157)

and the following covariant relations are valid

Sm :=
1

2

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

vjwj

−1 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 ,

(2.158)
3∑
j=0

3∑
m=0

Kjmv
jvm = 1 , (2.159)

3∑
j=0

Kjmwj =

 3∑
j=0

vjwj

 vm ∀m = 0, 1, 2, 3 , (2.160)

and
3∑

m=0

3∑
j=0

Kjmwjwm =

3∑
m=0

3∑
n=0

Jmnwmwn =

 3∑
j=0

vjwj

2

> 0 . (2.161)

Note, however, that the dynamical time-direction (w0, w1, w2, w3) can differ from kinematical time-

direction
(
∂ϕ
∂x0 ,

∂ϕ
∂x1 ,

∂ϕ
∂x2 ,

∂ϕ
∂x3

)
and the dynamical tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3

can differ from the kinematical tensor of three-dimensional Geometry {Θmn}m,n=0,1,2,3, given by

Θmn :=

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 . (2.162)

Finally, note that if the covector of genuine gravity (S0, S1, S2, S3) vanishes at some point, then by

(2.151) at this point we have

Kjm = Jjm ∀ 0 ≤ j,m ≤ 3 , (2.163)

correspondingly to the First Law of Newton (Axiom I).

Definition 2.22. Consider the strongly-correlated kinematical covariant pseudo-metrics

{Jmn}m,n=0,1,2,3 and the kinematical global time ϕ, forming a standard kinematical Lorentz’s struc-

ture with global time on R4, as in Proposition 2.7 and Remark 2.6. Furthermore, let {Jmn}m,n=0,1,2,3

be the inverse covariant pseudo-metric on R4, associated with {Jmn}m,n=0,1,2,3. Then given a

four-covector field (S0, S1, S2, S3), which we call the four-covector of genuine gravity, consider the

two-times covariant tensor {K̂mn}m,n=0,1,2,3 defined by:

K̂jm =

(
Jjm + Sm

∂ϕ

∂xj
+

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.164)

and assume that (S0, S1, S2, S3) is such that {K̂mn}m,n=0,1,2,3 in (2.164) satisfies

det
(
{K̂mn}m,n=0,1,2,3

)
= det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 . (2.165)

32



Then, as before, the inverse to {K̂mn}m,n=0,1,2,3 two-times contravariant tensor {K̂mn}m,n=0,1,2,3 is a

valid contravariant pseudometrics, strongly correlated with the kinematical global time ϕ. Moreover,

we call such a pseudometrics {K̂mn}m,n=0,1,2,3, with global time ϕ, kinematically semi-scalar super-

correlated pseudometrics with kinematical global time ϕ, corresponding to the covector of genuine

gravity (S0, S1, S2, S3).

Remark 2.9. If {Kmn}m,n=0,1,2,3, with kinematical global time ϕ, is a kinematically semi-scalar

super-correlated pseudometrics with kinematical global time ϕ, corresponding to the covector of

genuine gravity (S0, S1, S2, S3), then, denoting by (r0, r1, r2, r3) the contravariant four-vector of the

inertia, corresponding to {Jmn}m,n=0,1,2,3 and ϕ, which satisfies

rm :=

3∑
j=0

Jmj
∂ϕ

∂xj
∀m = 0, 1, 2, 3, (2.166)

and considering a contravariant tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3, given by

Λmn := rmrn − Jmn =

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 , (2.167)

we have

Kmn = vmvn − Λmn = Jmn + vmvn − rmrn ∀m,n = 0, 1, 2, 3 . (2.168)

where the contravariant vector of generalized gravity (v0, v1, v2, v3) is defined by the following co-

variant relation:

vm :=

 3∑
j=0

ΛmjSj

+ rm ∀m = 0, 1, 2, 3 , (2.169)

and both couples {Jmn}m,n=0,1,2,3, ϕ, and {Kmn}m,n=0,1,2,3, ϕ are strongly correlated. Moreover,

the following covariant relations are valid 3∑
j=0

vj
∂ϕ

∂xj

 = 1 , (2.170)

Sm :=
1

2

 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 , (2.171)

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 , (2.172)

3∑
j=0

Kjm ∂ϕ

∂xj
= vm ∀m = 0, 1, 2, 3 , (2.173)

3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
= 1 , (2.174)

and
3∑
j=0

3∑
m=0

Jjm
∂ϕ

∂xj
∂ϕ

∂xm
= 1 . (2.175)
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Finally, note that the dynamical global time equals to kinematical time ϕ and the dynamical tensor of

three-dimensional Geometry {Λmn}m,n=0,1,2,3 equals to the kinematical tensor of three-dimensional

Geometry {Θmn}m,n=0,1,2,3, so that

Λmn = Θmn :=

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 . (2.176)

2.8 Lagrangian for dynamical time-direction and its limiting case

Consider the strongly-correlated kinematical covariant pseudo-metrics {Jmn}m,n=0,1,2,3 and the

kinematical global time ϕ, forming a standard kinematical Lorentz’s structure with global time on

R4. Furthermore, consider an arbitrary four-covector of the time-direction (w0, w1, w2, w3). Next,

consider a Lagrangian density LR := LR
(
(w0, w1, w2, w3), (x0, x1, x2, x3)

)
, defined by

LR
(
(w0, w1, w2, w3), (x0, x1, x2, x3)

)
:=

− λαµ

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
JmnJpk

(
∂wp
∂xm

− ∂wm
∂xp

)(
∂wk
∂xn

− ∂wn
∂xk

))

− αν

4

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)2

−G
(
(w0, w1, w2, w3), (x0, x1, x2, x3)

)
, (2.177)

where α 6= 0, λ 6= 0 are real dimensionless constants, such that

|α| � 1 and |λ| � 1 . (2.178)

and µ 6= 0, ν 6= 0 are real constants. Here G is some given functions and, for simplicity of the

notation, we omit the dependence of the function G by the additional physical fields (like dependence

on dynamical metrics {Kmn}m,n=0,1,2,3, mass densities, electromagnetic fields et.al) and express it

throughout explicit dependence on (x0, x1, x2, x3). Next, given a subregion V ⊂ R4, we define the

Lagrangian on the region V as:

LR ((w0, w1, w2, w3)) :=∫∫∫∫
V

(
LR
(
(w0, w1, w2, w3), (x0, x1, x2, x3)

) ∣∣∣det
(
{Jmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0 dx1 dx2 dx3.

(2.179)

Note that det
(
{Jmn}n,m=0,1,2,3

)
is independent on (w0, w1, w2, w3). In particular, the critical points

of LN must satisfy
δLR
δwj

((w0, w1, w2, w3)) = 0 ∀j = 0, 1, 2, 3 , (2.180)
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and, since det
(
{Jmn}n,m=0,1,2,3

)
is independent on (w0, w1, w2, w3), by the Euler-Lagrange we

deduce

λαµ

(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})

− αν

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)(
3∑

n=0

Jjnwn

)
− ∂G

∂wj

(
(w0, w1, w2, w3), (x0, x1, x2, x3)

)
= 0

∀j = 0, 1, 2, 3 . (2.181)

So we have

µ

(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})

− ν

λ

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)(
3∑

n=0

Jjnwn

)
− 1

αλ

∂G

∂wj

(
(w0, w1, w2, w3), (x0, x1, x2, x3)

)
= 0

∀j = 0, 1, 2, 3 . (2.182)

In particular, in the case of (2.178), taking

|α| → +∞ , (2.183)

we approximate (2.182) as:

µ

(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})

− ν

λ

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)(
3∑

n=0

Jjnwn

)
= 0 ∀j = 0, 1, 2, 3 . (2.184)

In particular, by (2.184) we obtain:

3∑
j=0

∂

∂xj

{(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)(
3∑

n=0

Jjnwn

)}
=

3∑
j=0

λµ

ν

∂

∂xj

(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})
= 0 . (2.185)

Moreover, taking

|λ| → +∞ , (2.186)

we approximate (2.184) as:(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})
→ 0 ∀j = 0, 1, 2, 3 . (2.187)

In particular, the last equation(
3∑

n=0

3∑
k=0

3∑
m=0

∂

∂xm

{
JmnJjk

(
∂wk
∂xn

− ∂wn
∂xk

)})
= 0 ∀j = 0, 1, 2, 3 . (2.188)
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is the same as the classical Maxwell equations in vacuum with vanishing charges and currents, where

the four-covector of the electromagnetic potential (A0, A1, A2, A3) is replaced by the four-covector

(w0, w1, w2, w3). Thus, ignoring wave-type solutions of (2.188), that assumed to be negligible, we

deduce by (2.188) that there exist a proper scalar ψ, such that we have

(w0, w1, w2, w3) =

(
∂ψ

∂x0
,
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 . (2.189)

Thus, inserting (2.189) into (2.185),

3∑
j=0

∂

∂xj

{(
3∑

m=0

3∑
n=0

Jmn
∂ψ

∂xm
∂ψ

∂xn
− 1

)(
3∑

n=0

Jjn
∂ψ

∂xn

)}
= 0 . (2.190)

Therefore, using (2.190), with the help of Lemma 11.1 from the Appendix, we deduce the following

eikonal-type equation

3∑
m=0

3∑
n=0

Jmn
∂ψ

∂xm
∂ψ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.191)

So the global time ψ is correlated with pseudo-metrics {Jmn}m,n=0,1,2,3. On the other hand, for the

kinematical global time ϕ we also have

3∑
m=0

3∑
n=0

Jmn
∂ϕ

∂xm
∂ϕ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.192)

Therefore, in the case, where ψ and ϕ coincide in some initial surface, by (2.191) and (2.192) we

deduce that, in the limiting case (2.183) we have for the dynamical time direction, that

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 , (2.193)

where ϕ is a kinematical global time. In particular, in the later case we have for the dynamical

pseudometrics {Kmn}m,n=0,1,2,3:

Kjm =

(
Jjm + Sm

∂ϕ

∂xj
+

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 . (2.194)

Moreover, in the latter case we have

3∑
m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
=

3∑
m=0

3∑
n=0

Jmn
∂ϕ

∂xm
∂ϕ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 , (2.195)

both triples {Jmn}m,n=0,1,2,3, {Λmn}m,n=0,1,2,3, ϕ, and {Kmn}m,n=0,1,2,3, {Λmn}m,n=0,1,2,3, ϕ are

super-correlated, the dynamical global time equals to kinematical global time ϕ and the dynamical

tensor of three-dimensional Geometry {Λmn}m,n=0,1,2,3 equals to the kinematical tensor of three-

dimensional Geometry {Θmn}m,n=0,1,2,3, so that

Λmn = Θmn :=

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 . (2.196)

36



2.9 Lagrangian of the genuine gravity

The model of genuine gravity, we present here, is described by kinematically correlated pseudometrics

with time-direction (w0, w1, w2, w3), corresponding to the covector of genuine gravity (S0, S1, S2, S3)

(see Definition 2.21). In order to describe it, consider the strongly-correlated kinematical covariant

pseudo-metrics {Jmn}m,n=0,1,2,3 and the kinematical global time ϕ, forming a standard kinematical

Lorentz’s structure with global time on R4, as in Proposition 2.7 and Remark 2.6. Furthermore, let

{Jmn}m,n=0,1,2,3 be the inverse covariant pseudo-metric on R4, associated with {Jmn}m,n=0,1,2,3.

Given, an arbitrary dynamical four-covector of the time direction, (w0, w1, w2, w3) (formally unre-

lated to the kinematical global time ϕ), which is weakly correlated with {Jmn}m,n=0,1,2,3, satisfying

3∑
j=0

3∑
m=0

Jjmwjwm > 0 ∀ (x0, x1, x2, x3) ∈ R4 , (2.197)

and a four-covector field (S0, S1, S2, S3), which we called the four-covector of genuine gravity, consider

the two-times covariant tensor {Kmn}m,n=0,1,2,3 defined by:

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.198)

and assume that (S0, S1, S2, S3) is such that {Kmn}m,n=0,1,2,3 in (2.198) satisfies

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 , (2.199)

so that (S0, S1, S2, S3) has only three independent components. Then, as before, the inverse to

{Kmn}m,n=0,1,2,3 two-times contravariant tensor {Kmn}m,n=0,1,2,3 is a kinematically correlated

pseudometrics with time-direction (w0, w1, w2, w3), corresponding to the covector of genuine gravity

(S0, S1, S2, S3). Next, consider a Lagrangian density of the genuine gravitational field as:

Lg ((S0, S1, S2, S3), {Kmn}m,n=0,1,2,3) :=

1

4πG

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Sp
∂xm

− ∂Sm
∂xp

)(
∂Sk
∂xn

− ∂Sn
∂xk

))
(2.200)

where G is the gravitational constant. Correspondingly, given a subregion V ⊂ R4, the Lagrangian

of the genuine gravitational field in this subregion, as usual, is given by

Lg(S0, S1, S2, S3) :=∫∫∫∫
V

(
Lg ((S0, S1, S2, S3), {Kmn}m,n=0,1,2,3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0 dx1 dx2 dx3.

(2.201)
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Moreover, we combine this gravitational Lagrangian with the Lagrangian for the time direction,

given by

LR ((w0, w1, w2, w3)) :=∫∫∫∫
V

(
LR ((w0, w1, w2, w3))

∣∣∣det
(
{Jmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0 dx1 dx2 dx3, (2.202)

where, the Lagrangian density LR is given, similarly to (2.177), by

LR ((w0, w1, w2, w3)) := −λαµ

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
JmnJpk

(
∂wp
∂xm

− ∂wm
∂xp

)(
∂wk
∂xn

− ∂wn
∂xk

))

− αν

4

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)2

, (2.203)

where µ 6= 0, ν 6= 0 are two real constants, and α 6= 0, λ 6= 0 are two real dimensionless constants,

such that

|α| � 1 and |λ| � 1 . (2.204)

Furthermore, we combine these Lagrangians with the Lagrangian of the Electromagnetical field,

given by

Le(A0, A1, A2, A3) :=∫∫∫∫
V

(
Le ((A0, A1, A2, A3), {Kmn}m,n=0,1,2,3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0 dx1 dx2 dx3,

(2.205)

where, similarly to (2.112) we consider

Le ((A0, A1, A2, A3), {Kmn}m,n=0,1,2,3) :=

− 1

4π

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

))
. (2.206)

Finally, we combine all these Lagrangians with the Lagrangian of the real matter, given by

LM ({Kmn}m,n=0,1,2,3) := −
∫∫∫∫
V

((
3∑

n=0

An j
n

) ∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0dx1dx2dx3

+

∫∫∫∫
V

(
LM

(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

) ∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0dx1dx2dx3,

(2.207)

where, in the presence of a matter, consisting of N classical point particles ∀ j = 1, 2, . . . , N , with the

inertial mass mj and the charge σj for the j-th particle and having the four-dimensional space-time

trajectory χj(sj) :=
(
χ0
j (sj), χ

1
j (sj), χ

2
j (sj), χ

3
j (sj)

)
: [aj , bj ]→ R4 of the j-th particle, parameterized
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by some proper parametrization sj ∈ [aj , bj ] ∀ j = 1, 2, . . . , N , and given for all instances of time

from −∞ to +∞ so that

lim
sk→a−k

3∑
j=0

((
χjk(sk)

)2
)

= lim
sk→b+k

3∑
j=0

((
χjk(sk)

)2
)

= +∞ ∀ k = 1, 2, . . . , N , (2.208)

we consider the total density of the Lagrangian of the given matter LM by

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

bk∫
ak

{

|det {Kpq (χk(sk))}|
1
2 WLG ,k(sk)

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)}
dsk

∀ (x0, x1, x2, x3) ∈ R4 , (2.209)

where WLG ,k(sk) is given by

WLG ,k(sk) := −mk G

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(sk)umk (sk)

 ∀sk ∈ [ak, bk] ∀ k = 1, 2, . . . , N,

(2.210)

where (u0
k, u

1
k, u

2
k, u

3
k)(sk) : [ak, bk] → R4 is the contravariant four-vector of the four-dimensional

velocity of the k-th particle, given by

ujk(sk) =

(
3∑

m=0

wm (χk(sk))
dχmk
dsk

(sk)

)−1
dχjk
dsk

(sk)

∀ j = 0, 1, 2, 3 ∀sk ∈ [ak, bk] ∀ k = 1, 2, . . . , N , (2.211)

δ(·) is the delta of Dirac in R4, and

jm(x0, x1, x2, x3) =

N∑
k=1

bk∫
ak

{
|det {Kpq (χk(sk))}|

1
2 σk

dχmk
dsk

(sk) (sk) δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)}
dsk

∀ (x0, x1, x2, x3) ∈ R4 ∀ k = 1, 2, . . . , N . (2.212)

As before, here we consider two cases:

• The case of relativistic particles, where G(τ) :=
√
τ − 1.

• The case of non-relativistic approximation, where G(τ) := 1
2 (τ − 1).
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Therefore, taking into account (2.199), the total Lagrangian of the interaction of the Gravitational

and Electromagnetical fields with the matter is given by the following:

Ltotal ((w0, w1, w2, w3), (S0, S1, S2, S3), (A0, A1, A2, A3)) :=

∫∫∫∫
V

{

Ltotal
(
(w0, . . . , w3), (S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

) ∣∣∣det
(
{Jmn}n,m=0,1,2,3

)∣∣∣− 1
2}

dx0 dx1 dx2 dx3 =

∫∫∫∫
V

{

Ltotal
(
(w0, . . . , w3), (S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

) ∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2}

dx0 dx1 dx2 dx3 , (2.213)

where the total Lagrangian density Ltotal
(
(w0, . . . , w3), (S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

)
is

given by:

Ltotal
(
(w0, . . . , w3), (S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

)
:=

LR ((w0, w1, w2, w3)) + Lg ((S0, S1, S2, S3), {Kmn}m,n=0,1,2,3)−

(
3∑
k=0

jkAk

)

+ Le ((A0, A1, A2, A3), {Kmn}m,n=0,1,2,3) + LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
, (2.214)

so that, we have:

Ltotal
(
(w0, . . . , w3), (S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

)
:=

− λαµ

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
JmnJpk

(
∂wp
∂xm

− ∂wm
∂xp

)(
∂wk
∂xn

− ∂wn
∂xk

))

− αν

2

(
3∑

m=0

3∑
n=0

Jmnwmwn − 1

)2

+ LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
+

1

4πG

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Sp
∂xm

− ∂Sm
∂xp

)(
∂Sk
∂xn

− ∂Sn
∂xk

))

− 1

4π

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

))
−

(
3∑
k=0

jkAk

)
. (2.215)

Furthermore, in the case where:

|α| → +∞ and |λ| → +∞ , (2.216)

we greatly simplify the total Lagrangian, since, then, by (2.193) we have

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 , (2.217)

where ϕ is a kinematical global time, satisfying

3∑
m=0

3∑
n=0

Jmn
∂ϕ

∂xm
∂ϕ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.218)
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Thus, (w0, w1, w2, w3) is fixed and it does not varies in the Lagrangian, and we can write:

Ltotal ((S0, S1, S2, S3), (A0, A1, A2, A3)) :=∫∫∫∫
V

Ltotal
(
(S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

) ∣∣∣det
(
{Jmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0dx1dx2dx3 =

∫∫∫∫
V

Ltotal
(
(S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

) ∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0dx1dx2dx3,

(2.219)

where the total Lagrangian density Ltotal
(
(S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

)
is given by:

Ltotal
(
(S0, . . . , S3), (A0, . . . , A3), (x0, . . . , x3)

)
:= LM

(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
+

1

4πG

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Sp
∂xm

− ∂Sm
∂xp

)(
∂Sk
∂xn

− ∂Sn
∂xk

))

− 1

4π

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

))
−

(
3∑
k=0

jkAk

)
, (2.220)

with

Kjm =

(
Jjm + Sm

∂ϕ

∂xj
+

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (2.221)

and a four-covector field of genuine gravity (S0, S1, S2, S3) satisfies the restriction:

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 , (2.222)

so that (S0, S1, S2, S3) has only three independent components.

Note that, since the full Lagrangian in (2.213), (2.215) is independent on the kinematical global

time ϕ (it depends only on the dynamical time direction (w0, w1, w2, w3)), then a Lorentzian coor-

dinate systems, where we have
J00 = 1

J0j = Jj0 = 0 ∀ j = 1, 2, 3

Jjm := −δjm ∀ j,m = 1, 2, 3 ,

(2.223)

are the most convenient coordinate systems, to operate with the full Lagrangian. On the other

hand, in the limiting case (2.216), where we consider the simplified Lagrangian in (2.219) (2.220),

cartesian coordinate systems are often more convenient, than Lorentzian, since in the limiting case

we have (w0, w1, w2, w3) =
(
∂ϕ
∂x0 ,

∂ϕ
∂x1 ,

∂ϕ
∂x2 ,

∂ϕ
∂x3

)
, and at the same time in the cartesian coordinate

systems we always have ϕ = x0 + Const, so that we obtain (w0, w1, w2, w3) = (1, 0, 0, 0). Note also

that by Lemma 11.5 from the Appendix in an arbitrary cartesian coordinate system we still have

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) = −1 ∀ (x0, x1, x2, x3) ∈ R4 . (2.224)
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In the following sections we prove, in particular, that the Gravitational field, ruled by the

simplified Lagrangian in (2.219) (2.220), generated by some massive body, resting and spheri-

cally symmetric in some cartesian and inertial coordinate system, is given by the pseudo-metrics

{Kmn}m,n=0,1,2,3, such that there exists some curvilinear (non-cartesian) coordinate system in R4,

where {Kmn}m,n=0,1,2,3 coincides with the well known Schwarzschild metric from the General Rela-

tivity! In particular, all the optical effects that we find in the frames of our model coincide with the

effects considered in the frames of General Relativity for the Schwarzschild metric. In particular, the

Michelson-Morely experiment and all Sagnac-type effects will lead to the same result in the frame of

our model like in the case of the General relativity. Moreover, since the Maxwell equations in both

models have the same tensor form, all the electromagnetic effects, where the time does not appear

explicitly will be the same. Similarly, the curvature of the light path in the Sun’s gravitational field

will be the same in both models. Finally, in the particular case of G(τ) =
√
τ , i.e. in the case of the

relativistic Lagrangian of the motion in (2.102) all the mechanical effects will be the same in the

frame of our model like in the case of the General relativity for the Schwarzschild metric, provided

that the time does not appear explicitly in this effects. In particular, the movement of the Mercury

planet in the Sun’s gravitational field will be the same in both models.

Furthermore, we also prove that Gravitational field, ruled by the simplified Lagrangian in (2.219)

(2.220), generated by a general slowly (non-relativistically) moving massive matter in some cartesian

coordinate system, can be well approximated, by the classical model of the Newtonian Gravity.

Note here about the following advantage of the presented here model of gravity with respect to

the usual Theory of General Relativity. The simplified Lagrangian in (2.219) (2.220) for the gravity

depends only on four-component field (S0, S1, S2, S3), which is by (2.199) has only three independent

components. Even the full Lagrangian in (2.213), (2.215), dependent only on (S0, S1, S2, S3) and

(w0, w1, w2, w3), that is by (2.199) has only seven independent components. On the other hand, in

the General Relativity the symmetric tensor {Kmn}m,n=0,1,2,3 has all ten independent components

that makes the corresponding system of partial differential equations to be much more complicated.

Finally, in section 9 we give the covariant formulation of the Electrodynamics of the moving

dielectric and para/dia-magnetic continuum mediums in arbitrary dynamical pseudo-metrics. The

Lorentz’s covariant theory of the moving para/dia-magnetic continuum mediums in the flat Lorentz’s

pseudo-metrics was first introduced in [8] by H. Minkowski (1908). Here we formulate the generally

covariant theory in the different alternative way, that suite to formulate it in a general pseudo-metrics

including the presence of the genuine gravity.
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3 Mass, charge and Lagrangian densities and currents of the

system of classical point particles

Definition 3.1. Consider a classical point particle with the inertial mass m and the charge σ moving

in the generalized-gravitational field, given by a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3,

which is correlated with a four-covector of the time direction (w0, w1, w2, w3), and influenced by the

electromagnetic field with the four-covector of the electromagnetic potential (A0, A1, A2, A3). Next,

assume that χ(s) :=
(
χ0(s), χ1(s), χ2(s), χ3(s)

)
: [a, b] → R4 ∈ R4 is a four-dimensional space-time

trajectory of the particle, parameterized by some proper parametrization s ∈ [a, b] (including the

cases where a = −∞ and/or b = +∞). Moreover, assume that the infinite trajectory of the motion

is considered for all instances of time from −∞ to +∞ so that

lim
s→a−

3∑
j=0

((
χj(s)

)2)
= lim
s→b+

3∑
j=0

((
χj(s)

)2)
= +∞ . (3.1)

Next, given an arbitrary covariant (contravariant) scalar quantity W (s) : [a, b] → R, defined across

the trajectory of motion with the chosen proper parametrization, consider a four-current density(
I0
W , I

1
W , I

2
W , I

3
W

)
of the quantity W and a scalar density ρW of the quantity W as generalized

functions (distributions), defined by

IjW (x0, x1, x2, x3) :=

b∫
a

∣∣∣det
(
{Kmn (χ(s))}n,m=0,1,2,3

)∣∣∣ 12 W (s)
dχj

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds

=
∣∣∣det

({
Kmn(x0, x1, x2, x3)

}
n,m=0,1,2,3

)∣∣∣ 12 b∫
a

W (s)
dχj

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds

∀ j = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (3.2)

and

ρW (x0, x1, x2, x3) :=

b∫
a

∣∣∣det
(
{Kmn (χ(s))}n,m=0,1,2,3

)∣∣∣ 12 W (s)

 3∑
j=0

wj (χ(s))
dχj

ds
(s)

 δ
(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds =

3∑
j=0

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣ 12 wj)(x0, x1, x2, x3
) b∫
a

W (s)
dχj

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds

∀ (x0, x1, x2, x3) ∈ R4 , (3.3)

so that

ρW (x0, x1, x2, x3) :=

3∑
j=0

wj(x
0, x1, x2, x3) IjW (x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 . (3.4)
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Here, given a point (a0, a1, a2, a3) ∈ R4, δ
(
x0 − a0, . . . , x3 − a3

)
is a four-dimensional scalar delta-

function of the point (a0, a1, a2, a3) (the discrete unit measure of the point (a0, a1, a2, a3) ∈ R4).

Note that obviously,
(
I0
W , I

1
W , I

2
W , I

3
W

)
in (3.2) is a valid contravariant four-vector field and ρW in

(3.3) is a valid covariant (contravariant) scalar. Note also that, (3.2) and (3.3) are independent

on the choice of the proper parametrization. Finally, note that by theory of distributions the

definition (3.2) and (3.3) mean that for every smooth scalar classical function with compact support

ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)

we have∫∫∫∫
R4

IjW (x0, x1, x2, x3) ξ(x0, x1, x2, x3) dx0 dx1 dx2 dx3 =

b∫
a

∣∣∣det
(
{Kmn (χ(s))}n,m=0,1,2,3

)∣∣∣ 12 W (s)
dχj

ds
(s) ξ (χ(s)) ds ∀ j = 0, 1, 2, 3 , (3.5)

and∫∫∫∫
R4

ρW (x0, x1, x2, x3) ξ(x0, x1, x2, x3) dx0 dx1 dx2 dx3 =

b∫
a

∣∣∣det
(
{Kmn (χ(s))}n,m=0,1,2,3

)∣∣∣ 12 W (s)

 3∑
j=0

wj (χ(s))
dχj

ds
(s)

 ξ (χ(s)) ds . (3.6)

Definition 3.2. Given an arbitrary contravariant four-vector field (f0, f1, f2, f3)(x0, x1, x2, x3),

define the covariant divergence of it with respect to the contravariant pseudo-metrics

K := {Kmn}m,n=0,1,2,3, by the following

{
div (f0, f1, f2, f3)

}
K

(x0, x1, x2, x3) :=

3∑
j=0

∂f j

∂xj
(x0, x1, x2, x3)+

3∑
j=0

f j(x0, x1, x2, x3)


∂
∂xj

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
∣∣∣det

(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

 (x0, x1, x2, x3)

=
1∣∣∣det

(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

 3∑
j=0

∂

∂xj

{∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

f j
}

(x0, x1, x2, x3)


∀ (x0, x1, x2, x3) ∈ R4 . (3.7)

It is well known from Tensor Analysys that if (f0, f1, f2, f3) is a contravariant four-vector, then{
div (f0, f1, f2, f3)

}
K

is a valid covariant (contravariant) scalar.

Proposition 3.1. Consider a classical point particle with the inertial mass m and the charge σ,

moving in the generalized-gravitational field, given by a contravariant pseudo-metrics

{Kmn}m,n=0,1,2,3, which is correlated with a four-covector of the time direction (w0, w1, w2, w3),

and influenced by the electromagnetic field with the four-covector of the electromagnetic potential

(A0, A1, A2, A3). Next, assume that χ(s) :=
(
χ0(s), χ1(s), χ2(s), χ3(s)

)
: [a, b] → R4 ∈ R4 is a
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four-dimensional space-time trajectory of the particle, parameterized by some proper parametrization

s ∈ [a, b] (including the cases where a = −∞ and/or b = +∞). Moreover, assume that the infinite

trajectory of the motion is considered for all instances of time from −∞ to +∞ so that

lim
s→a−

3∑
j=0

((
χj(s)

)2)
= lim
s→b+

3∑
j=0

((
χj(s)

)2)
= +∞ . (3.8)

Next, consider an arbitrary quantity W (s) : [a, b] → R, defined across the trajectory of motion

with the chosen proper parametrization, and consider a four-current density
(
I0
W , I

1
W , I

2
W , I

3
W

)
of

the quantity W , given by (3.2). Then, in the case when W (s) is a constant across the trajectory

of the motion, independent on the parameter s ∈ [a, b], we have the following conservation of the

current: {
div

(
I0
W , I

1
W , I

2
W , I

3
W

)}
K

(x0, x1, x2, x3) = 0 ∀ (x0, x1, x2, x3) ∈ R4 , (3.9)

where the covariant divergence {div (·)}K is defined by (3.7).

Definition 3.3. Consider a system of N classical point particles ∀ j = 1, 2, . . . , N , with iner-

tial the mass mj and the charge σj for the j-th particle, moving in the generalized-gravitational

field given by a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3, which is correlated with a four-

covector of the time direction (w0, w1, w2, w3), and influenced by the electromagnetic field with

the four-covector of the electromagnetic potential (A0, A1, A2, A3). Next, assume that χj(sj) :=(
χ0
j (sj), χ

1
j (sj), χ

2
j (sj), χ

3
j (sj)

)
: [aj , bj ] → R4 is a four-dimensional space-time trajectory of the

j-th particle, parameterized by some proper parametrization sj ∈ [aj , bj ] for the j-th particle

∀ j = 1, 2, . . . , N (including the cases where aj = −∞ and/or bj = +∞). Moreover, assume that

the infinite trajectory of the motion is considered for all instances of time from −∞ to +∞ so that

lim
sk→a−k

3∑
j=0

((
χjk(sk)

)2
)

= lim
sk→b+k

3∑
j=0

((
χjk(sk)

)2
)

= +∞ ∀ k = 1, 2, . . . , N . (3.10)

Next, for every k = 1, 2, . . . , N consider covariant (contravariant) scalar quantities Wσk(sk) :

[ak, bk] → R and Wmk(s) : [ak, bk] → R, defined across the trajectories of motion with the cho-

sen proper parametrization sk by the following:Wσk(sk) = σk ∀sk ∈ [ak, bk] ∀∀ k = 1, 2, . . . , N

Wmk(s) = mk ∀sk ∈ [ak, bk] ∀∀ k = 1, 2, . . . , N ,

(3.11)

where σk is the charge of the given k-th point particle and mk is the mass of the given k-th point

particle. Then, obviously, both quantities Wσk(sk) : [ak, bk] → R and Wmk(s) : [ak, bk] → R are

constant across every trajectory of motion of the k-th particle, with the chosen proper parametriza-

tion sk. Moreover, for every k = 1, 2, . . . , N consider covariant (contravariant) scalar quantity

WLG ,k(s) : [ak, bk] → R, related to the general Lagrangian LG,k of the k-th particle in (2.100), and
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defined across the trajectory of motion with the chosen proper parametrization by the following:

WLG ,k(sk) := −mk G

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(sk)umk (sk)

− 3∑
j=0

σk u
j
k(s)Aj (χk(sk))

∀sk ∈ [ak, bk] ∀ k = 1, 2, . . . , N , (3.12)

where (u0
k, u

1
k, u

2
k, u

3
k)(sk) : [ak, bk] → R4 is the contravariant four-vector of the four-dimensional

velocity of the k-th particle, given as in (2.96), by

ujk(sk) =

(
3∑

m=0

wm (χk(sk))
dχmk
dsk

(sk)

)−1
dχjk
dsk

(sk)

∀ j = 0, 1, 2, 3 ∀sk ∈ [ak, bk] ∀ k = 1, 2, . . . , N . (3.13)

Finally, for every k = 1, 2, . . . , N consider covariant (contravariant) scalar quantity ŴLG ,k(s) :

[ak, bk] → R, related to the general Lagrangian LG,k of the k-th particle in (2.100), and defined

across the trajectory of motion with the chosen proper parametrization by the following:

ŴLG ,k(sk) := −mkG

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(sk)umk (sk)


∀sk ∈ [ak, bk] ∀ k = 1, 2, . . . , N . (3.14)

Then, define the contravariant four-vector of the total charge four-current density

(j0, j1, j2, j3) := (j0, j1, j2, j3)(x0, x1, x2, x3) and the total scalar charge density ρ := ρ(x0, x1, x2, x3)

of the system of the charges by:

jn(x0, x1, x2, x3) :=

N∑
k=1

InWσk
(x0, x1, x2, x3) ∀n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

ρ(x0, x1, x2, x3) :=

N∑
k=1

ρWσk
(x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 , (3.15)

where the contravariant four-vector of the four-current density
(
I0
W , I

1
W , I

2
W , I

3
W

)
is given by (3.2)

and a scalar density ρW is given by (3.3), so that

jn(x0, x1, x2, x3) :=

N∑
k=1

bk∫
ak

∣∣∣det
(
{Kpq (χk(sk))}p,q=0,1,2,3

)∣∣∣ 12 σk dχnk
dsk

(sk) δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)
dsk

∀n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (3.16)
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and

ρ(x0, x1, x2, x3) :=

N∑
k=1

σk

bk∫
ak

|det {Kpq (χk(sk)})|
1
2

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)
dsk

∀ (x0, x1, x2, x3) ∈ R4 . (3.17)

Then, by Proposition 3.1 we deduce the following conservation of the total charge current:{
div

(
j0, j1, j2, j3

)}
K

(x0, x1, x2, x3) = 0 ∀ (x0, x1, x2, x3) ∈ R4 , (3.18)

where the covariant divergence {div (·)}K is defined by (3.7). Similarly define the contravariant

four-vector of the total mass four-current density

(j0
M , j

1
M , j

2
M , j

3
M ) := (j0

M , j
1
M , j

2
M , j

3
M )(x0, x1, x2, x3) and the total scalar mass density

M := M(x0, x1, x2, x3) of the system of the masses by:

jnM (x0, x1, x2, x3) :=

N∑
k=1

InWmk
(x0, x1, x2, x3) ∀n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

M(x0, x1, x2, x3) :=

N∑
k=1

ρWmk
(x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 , (3.19)

where the contravariant four-vector of the four-current density
(
I0
W , I

1
W , I

2
W , I

3
W

)
is given by (3.2)

and a scalar density ρW is given by (3.3), so that

jnM (x0, x1, x2, x3) :=

N∑
k=1

bk∫
ak

∣∣∣det
(
{Kpq (χk(sk))}p,q=0,1,2,3

)∣∣∣ 12 mk
dχnk
dsk

(sk) δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)
dsk

∀n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (3.20)

and

M(x0, x1, x2, x3) :=

N∑
k=1

mk

bk∫
ak

|det {Kpq (χk(sk))}|
1
2

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)
dsk

∀ (x0, x1, x2, x3) ∈ R4 . (3.21)

Then, as before, by Proposition 3.1 we deduce the following conservation of the total mass current:{
div

(
j0
M , j

1
M , j

2
M , j

3
M

)}
K

(x0, x1, x2, x3) = 0 ∀ (x0, x1, x2, x3) ∈ R4 , (3.22)

where the covariant divergence {div (·)}K is defined by (3.7). Furthermore, define the total scalar

density LM := LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
of the given Lagrangian of the system of
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particles by:

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

ρWLG ,k
(x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 ,

(3.23)

where WLG ,k(sk) is given by (3.12), so that

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

bk∫
ak

{

|det {Kpq (χk(sk))}|
1
2 WLG ,k(sk)

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)}
dsk

∀ (x0, x1, x2, x3) ∈ R4 . (3.24)

In particular, by (3.24) and (3.12) we have∫∫∫∫
R4

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

) ∣∣det
{
Kpq

(
(x0, x1, x2, x3)

)}∣∣− 1
2 dx0dx1dx2dx3

=

N∑
k=1

bk∫
ak

WLG ,k(sk)

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 dsk =

N∑
k=1

bk∫
ak

−mk G

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(sk)umk (sk)


 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 dsk

+

N∑
k=1

bk∫
ak

−
3∑
j=0

σk u
j
k(s)Aj (χk(sk))− Uk (χk(sk))


 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 dsk , (3.25)

so that∫∫∫∫
R4

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

) ∣∣det
{
Kpq

(
(x0, x1, x2, x3)

)}∣∣− 1
2 dx0dx1dx2dx3

=

N∑
k=1

LG,k(χk) , (3.26)

where, as before in (2.100) we denote the Lagrangian of the k-th particle as

LG,k(χk) =

∫ bk

ak

−mk G

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(s)umk (sk)


 3∑
j=0

wj (χk(sk))
dχjk
dsk

 dsk

+

∫ bk

ak

−
3∑
j=0

σk u
j
k(sk)Aj (χk(sk))


 3∑
j=0

wj (χk(sk))
dχjk
dsk

 dsk

=

∫ bk

ak

−mk G

 3∑
j=0

3∑
m=0

Kjm (χk(sk))ujk(s)umk (sk)


 3∑
j=0

wj (χk(sk))
dχjk
dsk

 dsk

+

∫ bk

ak

−
3∑
j=0

σkAj (χk(sk))
dχjk
dsk

 dsk ∀ k = 1, 2, . . . N. (3.27)
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Moreover, define the total scalar residual density L̂M := L̂M
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
of the given Lagrangian of the system of particles by:

L̂M
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

ρŴLG ,k
(x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 ,

(3.28)

where ŴLG ,k(sk) is given by (3.14), so that

L̂M
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

bk∫
ak

{

|det {Kpq (χk(sk))}|
1
2 ŴLG ,k(sk)

 3∑
j=0

wj (χk(sk))
dχjk
dsk

(sk)

 δ
(
x0 − χ0

k(sk), . . . , x3 − χ3
k(sk)

)}
dsk

∀ (x0, x1, x2, x3) ∈ R4 . (3.29)

Then, by (3.16), (3.24), (3.29), (3.12) and (3.14) together we deduce:

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
= L̂M

(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
−

(
3∑
k=0

Ak(x0, x1, x2, x3) jk(x0, x1, x2, x3)

)
∀ (x0, x1, x2, x3) ∈ R4 . (3.30)

4 The total simplified Lagrangian in (2.219), (2.220), for the

limiting case of (2.216) in a cartesian coordinate system

Again consider the strongly-correlated kinematical covariant pseudo-metrics {Jmn}m,n=0,1,2,3 and

the kinematical global time ϕ, forming a standard kinematical Lorentz’s structure with global time

on R4, as in Proposition 2.7 and Remark 2.6. Furthermore, let {Jmn}m,n=0,1,2,3 be the inverse

covariant pseudo-metric on R4, associated with {Jmn}m,n=0,1,2,3, which satisfies

3∑
k=0

JmkJkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3. (4.1)

We consider the Lagrangian in (2.219), (2.220), corresponding to the limiting case of (2.216), where

as before we have

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 , , (4.2)

3∑
m=0

3∑
n=0

Jmn
∂ϕ

∂xm
∂ϕ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 , (4.3)

the dynamical global time equals to global kinematical time ϕ and the dynamical tensor of three-

dimensional Geometry {Λmn}m,n=0,1,2,3 equals to the kinematical tensor of three-dimensional Ge-
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ometry {Θmn}m,n=0,1,2,3, so that

Λmn = Θmn := rmrn − Jmn =

 3∑
j=0

Jmj
∂ϕ

∂xj

 3∑
j=0

Jnj
∂ϕ

∂xj

− Jmn ∀m,n = 0, 1, 2, 3 , (4.4)

where (r0, r1, r2, r3) is the contravariant four-vector of the inertia, corresponding to {Jmn}m,n=0,1,2,3

and ϕ, defined by

rm :=

3∑
j=0

Jmj
∂ϕ

∂xj
∀m = 0, 1, 2, 3. (4.5)

Note here that by (4.5) and (4.3) we have

3∑
j=0

rj
∂ϕ

∂xj
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (4.6)

Next, as before, given, a four-covector field of genuine gravity (S0, S1, S2, S3) we define the dynamical

pseudometrics {Kmn}m,n=0,1,2,3 by the formula

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3, (4.7)

with

Kjm :=

(
Jjm + Sm

∂ϕ

∂xj
+

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (4.8)

where we assume that the four-covector field of genuine gravity (S0, S1, S2, S3) satisfies the calibra-

tion:

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 , (4.9)

so that (S0, S1, S2, S3) has only three independent components. Moreover, in the latter case we have

3∑
m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
=

3∑
m=0

3∑
n=0

Jmn
∂ϕ

∂xm
∂ϕ

∂xn
= 1 ∀ (x0, x1, x2, x3) ∈ R4 , (4.10)

and both couples {Jmn}m,n=0,1,2,3, ϕ, and {Kmn}m,n=0,1,2,3, ϕ are strongly correlated, so that,

{Kmn}m,n=0,1,2,3, with global time ϕ, is a kinematically semi-scalar super-correlated pseudometrics

with with global time ϕ, corresponding to the covector of genuine gravity (S0, S1, S2, S3). Moreover,

as before, we have

Kmn = vmvn − Λmn = Jmn + vmvn − rmrn ∀m,n = 0, 1, 2, 3 . (4.11)

where the contravariant vector of generalized gravity (v0, v1, v2, v3) is defined by the following co-

variant relation:

vm :=

 3∑
j=0

ΛmjSj

+ rm ∀m = 0, 1, 2, 3 , (4.12)

and (r0, r1, r2, r3) is given by (4.5). Moreover, the following covariant relations are valid 3∑
j=0

vj
∂ϕ

∂xj

 = 1 , (4.13)
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Sm :=
1

2

 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 , (4.14)

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 , (4.15)

and
3∑
j=0

Kjm ∂ϕ

∂xj
= vm ∀m = 0, 1, 2, 3 . (4.16)

Finally, as before, given arbitrary contravariant vector (v0, v1, v2, v3), satisfying 3∑
j=0

vj
∂ϕ

∂xj

 = 1 , (4.17)

as in (4.13) (we call such a four-vector speed-like four-vector), if we define {Kmn}m,n=0,1,2,3, as in

(4.11), by

Kmn = vmvn − Λmn = Jmn + vmvn − rmrn ∀m,n = 0, 1, 2, 3 , (4.18)

then the inverse tensor, {Kmn}m,n=0,1,2,3, given by

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3, (4.19)

necessary satisfies

Kjm :=

(
Jjm + Sm

∂ϕ

∂xj
+

∂ϕ

∂xm
Sj

)
∀ 0 ≤ j,m ≤ 3 ∀ (x0, x1, x2, x3) ∈ R4 , (4.20)

and

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) ∀ (x0, x1, x2, x3) ∈ R4 , (4.21)

as in (4.8) and (4.9), where (S0, S1, S2, S3) satisfies

Sm :=
1

2

 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 , (4.22)

and

vm :=

 3∑
j=0

ΛmjSj

+ rm ∀m = 0, 1, 2, 3 , (4.23)

as in (4.14), and (4.12). So we have a one-to-one and onto mappings between contravariant four-

vectors, (v0, v1, v2, v3), satisfying the restriction (4.17), and four covectors (S0, S1, S2, S3), satisfying

the restriction (4.21), where {Kmn}m,n=0,1,2,3 is given by (4.20). So the speed-like contravariant

four-vectors of generalized gravity (v0, v1, v2, v3), satisfying the restriction (4.17), can be considered

as an independent argument in the simplified Lagrangian in (2.219), (2.220), instead of the four-

covector of genuine gravity (S0, S1, S2, S3), satisfying the restriction (4.21).
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Next, assume that we fix some cartesian coordinate system, so that in this system we have:

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
= (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4 , (4.24)

and 
Λ00 = Θ00 = 0

Λ0j = Λj0 = Θ0j = Θj0 = 0 ∀ j = 1, 2, 3

Λjm = Θjm = δjm ∀ j,m = 1, 2, 3 .

(4.25)

In particular, (4.17) reeds:

v0 = 1 , (4.26)

so that

(v0, v1, v2, v3) = (1, v1, v2, v3) = (1,v) where v := (v1, v2, v3) ∈ R3 . (4.27)

Therefore, the independent argument of the Lagrangian is actually a three-dimensional vector field

v. We call v the three-dimensional gravitational vector potential, however, note that it defined only

in cartesian coordinate systems. Similarly, by (4.6) we have

(r0, r1, r2, r3) = (1, r1, r2, r3) = (1, r) where r := (r1, r2, r3) ∈ R3 . (4.28)

We call r the three-dimensional vector potential of inertia, and as before, note that it defined only

in cartesian coordinate systems. Furthermore, by (4.18), (4.25) and (4.27) we deduce:
K00 = 1

Kjm = −δjm + vjvm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3,

(4.29)

and therefore, as before, we have
K00 = 1− |v|2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3 ,

(4.30)

and

det ({Kmn}m,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) = 1 ∀ (x0, x1, x2, x3) ∈ R4 . (4.31)

Similarly, 
J00 = 1

Jjm = −δjm + rjrm ∀1 ≤ j,m ≤ 3

J0j = Jj0 = rj ∀1 ≤ j ≤ 3,

(4.32)
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and therefore, by Lemma 11.5 from the Appendix we have
J00 = 1− |r|2

Jjm = −δjm ∀1 ≤ j,m ≤ 3

J0j = Jj0 = rj ∀1 ≤ j ≤ 3 .

(4.33)

On the other hand, by (4.33), (4.24) identity (4.20) reads as
K00 = 1− |r|2 + 2S0

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = Sj + rj ∀1 ≤ j ≤ 3 ,

(4.34)

and thus, comparing (4.30) with (4.34) we deduce:1− |v|2 = 1− |r|2 + 2S0

vj = Sj + rj ∀1 ≤ j ≤ 3 ,

(4.35)

so that, S0 := 1
2 |r|

2 − 1
2 |v|

2

Sj := vj − rj ∀1 ≤ j ≤ 3 .

(4.36)

Furthermore, since ϕ = x0 + Const, the first coordinate can be chosen as the proper parameter sk

on the Lagrangian of every particle, so that we rewrite (2.207) as

LM ({Kmn}m,n=0,1,2,3) :=

∫∫∫∫
V

(
LM

(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

) )
dx0dx1dx2dx3,

(4.37)

and (2.209) as:

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:=

N∑
k=1

+∞∫
−∞

{

WLG ,k((χ0))

 3∑
j=0

wj
(
χk(χ0)

) dχjk
dχ0

(χ0)

 δ
(
x0 − χ0, x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)}

dχ0

=

N∑
k=1

WLG ,k(x0) δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.38)

where the δ-function in the last expression is three-dimensional, WLG ,k(x0) is given, as in (3.12), by

WLG ,k(x0) := −mk G

 3∑
j=0

3∑
m=0

Kjm

(
χk(x0)

) dχjk
dx0

(x0)
dχmk
dx0

(x0)

− 3∑
j=0

σk
dχjk
dx0

(x0)Aj
(
χk(x0)

)
∀s ∈ (−∞,+∞) ∀ k = 1, 2, . . . , N , (4.39)
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and the four-dimensional trajectory of the k-th particle, parameterized by the firs coordinate x0 is

given byχk(x0) :=
(
χ0
k(x0), χ1

k(x0), χ2
k(x0), χ3

k(x0)
)

:=
(
x0, χ1

k(x0), χ2
k(x0), χ3

k(x0)
)

∀ k = 1, 2, . . . N(
dχ0
k

dx0 (x0),
dχ1
k

dx0 (x0),
dχ2
k

dx0 (x0),
dχ3
k

dx0 (x0)
)

:=
(

1,
dχ1
k

dx0 (x0),
dχ2
k

dx0 (x0),
dχ3
k

dx0 (x0)
)

∀ k = 1, 2, . . . N .

(4.40)

Similarly, the four-current and the charge densities satisfy:

(j0, j1, j2, j3) =

N∑
k=1

σk

(
1,
dχ1

k

dx0
(x0),

dχ2
k

dx0
(x0),

dχ3
k

dx0
(x0)

)
δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 , (4.41)

and

ρ =

N∑
k=1

σk δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.42)

In particular, we have

(j0, j1, j2, j3) = (ρ, j) where j := (j1, j2, j3) ∈ R3 ∀ (x0, x1, x2, x3) ∈ R4 , (4.43)

where

j := (j1, j2, j3) =

N∑
k=1

σk

(
dχ1

k

dx0
(x0),

dχ2
k

dx0
(x0),

dχ3
k

dx0
(x0)

)
δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.44)

In the same way, the mass four-current and the mass densities satisfy:

(j0
M , j

1
M , j

2
M , j

3
M ) =

N∑
k=1

mk

(
1,
dχ1

k

dx0
(x0),

dχ2
k

dx0
(x0),

dχ3
k

dx0
(x0)

)
δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 , (4.45)

and

M =

N∑
k=1

mk δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.46)

In particular, we have

(j0
M , j

1
M , j

2
M , j

3
M ) = (M, jM ) where jM := (j1

M , j
2
M , j

3
M ) ∈ R3 ∀ (x0, x1, x2, x3) ∈ R4 ,

(4.47)
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where

jM := (j1
M , j

2
M , j

3
M ) =

N∑
k=1

mk

(
dχ1

k

dx0
(x0),

dχ2
k

dx0
(x0),

dχ3
k

dx0
(x0)

)
δ
(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.48)

Note that by (3.18), (3.22), using (4.31), (4.43) and (4.47) we have the conservation of the charge

and the mass current:
∂ρ

∂x0
+ divx j = 0 ∀ (x0, x1, x2, x3) ∈ R4 , (4.49)

∂M

∂x0
+ divx jM = 0 ∀ (x0, x1, x2, x3) ∈ R4 . (4.50)

Moreover, by (4.39), (4.30) and (4.40) we have:

WLG ,k(x0) = −mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
− 3∑

j=0

σk
dχjk
dx0

(x0)Aj
(
χk(x0)

)
∀s ∈ (−∞,+∞) ∀ k = 1, 2, . . . , N , (4.51)

so that, by (4.51) and (4.41) we rewrite (4.38) as:

LM
(
({Kmn}m,n=0,1,2,3) , (x0, x1, x2, x3)

)
:= −

3∑
n=0

An(x0, x1, x2, x3) jn(x0, x1, x2, x3)

−
N∑
k=1

mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 δ

(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 . (4.52)

Then, by (4.52) and (4.37), in the case V = R4 we deduce

LM ({Kmn}m,n=0,1,2,3) = −
N∑
k=1

mk

+∞∫
−∞

G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dx0

−
∫∫∫∫

R4

(
3∑

n=0

An(x0, x1, x2, x3) jn(x0, x1, x2, x3)

)
dx0dx1dx2dx3. (4.53)

Next we denote

(A0, A1, A2, A3) = (Ψ,−A) where A0 = Ψ and (A1, A2, A3) = −A, (4.54)

and

(S0, S1, S2, S3) := − (Φ,−h) where S0 = −Φ and (S1, S2, S3) = h. (4.55)
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In particular, by (4.36) we have: Φ = 1
2

(
|v|2 − |r|2

)
h = v − r .

(4.56)

Moreover, by (4.43) and (4.54) we have:

3∑
n=0

An j
n = ρΨ−A · j ∀ (x0, x1, x2, x3) ∈ R4 . (4.57)

Lemma 4.1. Let {Kmn}n,m=0,1,2,3 be given by (4.29) and {Kmn}n,m=0,1,2,3 be given by (4.30) Next,

let {Fmn}n,m=0,1,2,3 be an anti-symmetric two-times covariant tensor, defined by

Fmj :=
∂Aj
∂xm

− ∂Am
∂xj

∀m, j = 0, 1, 2, 3 . (4.58)

Then, denoting

(x0, x1, x2, x3) = (x0,x) where x := (x1, x2, x3) ∈ R3 , (4.59)

(A0, A1, A2, A3) = (Ψ,−A) where A0 = Ψ and (A1, A2, A3) = −A, (4.60)

B := (B1, B2, B3) := curlxA,

E := (E1, E2, E3) := −∇xΨ− ∂A
∂x0 ,

D := (D1, D2, D3) := E + v ×B,

H := (H1, H2, H3) := B + v ×D,

(4.61)

and

Fmn :=

3∑
k=0

3∑
j=0

KmjKnkFjk ∀m,n = 0, 1, 2, 3, (4.62)

we have 

F00 = 0

F0j = −Fj0 = Ej ∀ j = 1, 2, 3

Fjj = 0 ∀ j = 1, 2, 3

F12 = −F21 = −B3

F13 = −F31 = B2

F23 = −F32 = −B1 ,

(4.63)



F 00 = 0

F 0j = −F j0 = −Dj ∀ j = 1, 2, 3,

F jj = 0 ∀ j = 1, 2, 3,

F 12 = −F 21 = −H3

F 13 = −F 31 = H2

F 23 = −F 32 = −H1 ,

(4.64)
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and

− 1

4π

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

))
= − 1

4π

 3∑
j=0

3∑
k=0

F jkFjk


=

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
. (4.65)

Here, for a = (a1, a2, a3) ∈ R3 and b = (b1, b2, b3) ∈ R3 we denote by

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − b2b1) ∈ R3 , (4.66)

their vector product and, given a vector valued function f(x) = (f1(x), f2(x), f3(x)) : R3 → R3 we

denote by

curlx f(x) :=

(
∂f3

∂x2
− ∂f2

∂x3
,
∂f1

∂x3
− ∂f3

∂x1
,
∂f2

∂x1
− ∂f1

∂x2

)
(x) . (4.67)

Similarly to (4.65), by (4.55) we have

1

4πG

(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

1

4
KmnKpk

(
∂Sp
∂xm

− ∂Sm
∂xp

)(
∂Sk
∂xn

− ∂Sn
∂xk

))

=
1

4πG

(
1

2
|curlxS|2 − 1

2

∣∣∣∣−∇xΦ− ∂S

∂x0
+ v × curlxS

∣∣∣∣2
)

=

1

4πG

(
1

2
|curlx (v − r)|2 − 1

2

∣∣∣∣− ∂

∂x0
(v − r)−∇x

(
1

2
|v|2 − 1

2
|r|2
)

+ v × curlx (v − r)

∣∣∣∣2
)
, (4.68)

where we use (4.56) in the last equality. Consequently, by (2.219) and (4.31) we write the simplified

total Lagrangian in (2.219) and (2.220) in the given cartesian coordinate system, as

Ltotal (v, (Ψ,−A)) =

∫∫∫∫
V

Ltotal
(
v, (Ψ,−A), (x0, x1, x2, x3)

)
dx0dx1dx2dx3, (4.69)

where, using (4.68), (4.65), (4.57) and (4.52) we can rewrite the total Lagrangian density

Ltotal
(
v, (Ψ,−A), (x0, x1, x2, x3)

)
in (2.220) as:

Ltotal
(
v, (Ψ,−A), (x0, x1, x2, x3)

)
=

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
−
(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
+

1

4πG

(
1

2
|curlx (v − r)|2 − 1

2

∣∣∣∣− ∂

∂x0
(v − r)−∇x

(
1

2
|v|2 − 1

2
|r|2
)

+ v × curlx (v − r)

∣∣∣∣2
)

−
N∑
k=1

mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 δ

(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)
.

(4.70)
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Then, by (4.70) we rewrite (4.69) in the case V = R4 as:

Ltotal (v, (Ψ,−A)) =

∫∫∫∫
R4

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
dx0 . . . dx3

−
∫∫∫∫

R4

(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
dx0dx1dx2dx3 +

∫∫∫∫
R4

1

4πG

{

1

2
|curlx (v − r)|2 − 1

2

∣∣∣∣− ∂

∂x0
(v − r)−∇x

(
1

2
|v|2 − 1

2
|r|2
)

+ v × curlx (v − r)

∣∣∣∣2
}
dx0dx1dx2dx3

+

N∑
k=1

+∞∫
−∞

−mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dx0 . (4.71)

In particular, if we assume that our coordinate system is inertial, in addition to being cartesian,

then since r, given as in (4.28) and (4.5) by

(r0, r1, r2, r3) = (1, r1, r2, r3) = (1, r) where r := (r1, r2, r3) ∈ R3 with

rm :=
3∑
j=0

Jmj
∂ϕ

∂xj
∀m = 0, 1, 2, 3, (4.72)

is constant in every inertial coordinate system, which is independent on the point (x0, x1, x2, x3) ∈

R4, we simplify the total Lagrangian density Ltotal
(
v, (Ψ,−A), (x0, x1, x2, x3)

)
in (4.70) as:

Ltotal
(
v, (Ψ,−A), (x0, x1, x2, x3)

)
=

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
−
(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
+

1

4πG

(
1

2
|curlxv|2 − 1

2

∣∣∣∣ ∂v

∂x0
+∇x

(
1

2
|v|2

)
− v × curlxv

∣∣∣∣2
)

−
N∑
k=1

mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 δ

(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)
,

(4.73)

and the total Lagrangian in (4.71) as:

Ltotal (v, (Ψ,−A)) =

∫∫∫∫
R4

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
dx0dx1dx2dx3

−
∫∫∫∫

R4

(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
dx0dx1dx2dx3

+

∫∫∫∫
R4

1

4πG

(
1

2
|curlxv|2 − 1

2

∣∣∣∣ ∂v

∂x0
+∇x

(
1

2
|v|2

)
− v × curlxv

∣∣∣∣2
)
dx0dx1dx2dx3

+

N∑
k=1

+∞∫
−∞

−mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dx0 . (4.74)
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So, in the coordinate system which is simultaneously inertial and cartesian (we can obtain such

systems by the Galilean Transformations from the kinematically preferable coordinate system) nei-

ther the total Lagrangian density in (4.73) nor the total Lagrangian in (4.74) are dependent on

the kinematical pseudometrics {Jmn}0≤m,n≤3 and/or on the contravariant four-vector of inertia

(r0, r1, r2, r3).

5 The Euler-Lagrange for the Lagrangian of the motion of a

classical point particle in a cartesian coordinate system

Consider a cartesian coordinate system and a classical point particle with the inertial mass m and

the charge σ moving in the generalized-gravitational field given by a contravariant pseudo-metrics

{Kmn}n,m=0,1,2,3, satisfying (4.29), so that
K00 = 1

Kjm = −δjm + vjvm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3,

(5.1)

and the electromagnetic field with the four-covector of the electromagnetic potential (A0, A1, A2, A3).

Next assume that χ(x0) :=
(
x0, χ1(x0), χ2(x0), χ3(x0)

)
: [a, b] → R4 ∈ R4 is a four-dimensional

space-time trajectory of the particle, parameterized by the first coordinate x0 in the interval x0 ∈

[a, b] (including the cases where a = −∞ and/or b = +∞). Then, since ϕ = x0 +Const, we rewrite

the Lagrangian of motion of this particle in (2.100) as:

LG(χ) =

∫ b

a

−mG
 3∑
j=0

3∑
k=0

Kjk

(
χ(x0)

) dχj
dx0

dχk

dx0

− 3∑
j=0

σAj
(
χ(x0)

) dχj
dx0

 dx0, (5.2)

where {Kmn}n,m=0,1,2,3 is given as in (4.30) by
K00 = 1− |v|2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3 ,

(5.3)

with

(v0, v1, v2, v3) = (1, v1, v2, v3) = (1,v) where v := (v1, v2, v3) ∈ R3 . (5.4)

Then, since χ0(x0) = x0, by (5.3) we rewrite (5.2) as:

LG(z) =

∫ b

a

{
−mG

(
1−

∣∣∣∣ dzdx0
(x0)− v

(
x0, z(x0)

)∣∣∣∣2
)}

dx0

−
∫ b

a

{
σ

(
Ψ
(
x0, z(x0)

)
−A

(
x0, z(x0)

)
· dz
dx0

(x0)

)}
dx0 . (5.5)
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where we denote

z(x0) :=
(
χ1(x0), χ2(x0), χ3(x0)

)
∈ R3 ∀x0 ∈ [a, b] , (5.6)

and

(A0, A1, A2, A3) := (Ψ,−A) where A0 = Ψ and (A1, A2, A3) = −A. (5.7)

Next, we investigate the critical points z(x0) of (5.5). Then, by the Euler Lagrange we have:

δLG
δz

(z) = 0 . (5.8)

Therefore,

0 = −m d

dx0

{
2G′

(
1−

∣∣∣∣ dzdx0
(x0)− v

(
x0, z(x0)

)∣∣∣∣2
)(

dz

dx0
(x0)− v

(
x0, z(x0)

))}

− 2mG′
(

1−
∣∣∣∣ dzdx0

(x0)− v
(
x0, z(x0)

)∣∣∣∣2
){
∇xv

(
x0, z(x0)

)}T · ( dz

dx0
(x0)− v

(
x0, z(x0)

))
− σ

(
d

dx0

{
A
(
x0, z(x0)

)}
+∇xΨ

(
x0, z(x0)

)
−
{
dxA

(
x0, z(x0)

)}T · dz
dx0

(x0)

)
, (5.9)

and, by the following well known identity from the Vector Analysis:

f × (curlxg) = (dxg)T · f − (dxg) · f ∀ f(x),g(x) : R3 → R3 , (5.10)

we rewrite (5.9) as:

0 = −m d

dx0

{
2G′

(
1−

∣∣∣∣ dzdx0
(x0)− v

(
x0, z(x0)

)∣∣∣∣2
)}(

dz

dx0
(x0)− v

(
x0, z(x0)

))

− 2mG′
(

1−
∣∣∣∣ dzdx0

(x0)− v
(
x0, z(x0)

)∣∣∣∣2
)

d2z

d(x0)2
(x0)

+ 2mG′
(

1−
∣∣∣∣ dzdx0

(x0)− v
(
x0, z(x0)

)∣∣∣∣2
)({

∂

∂x0
v +∇x

(
1

2
|v|2

)
− dz

dx0
× curlxv

}(
x0, z(x0)

))
+ σ

({
− ∂A

∂x0
−∇xΨ +

dz

dx0
(x0)× curlxA

}(
x0, z(x0)

))
. (5.11)

So, denoting E = −∇xΨ− ∂A
∂x0

B = curlxA ,

(5.12)

we rewrite (5.11) as

2mG′
(

1−
∣∣∣∣ dzdx0

(x0)− v
(
x0, z(x0)

)∣∣∣∣2
)

d2z

d(x0)2
(x0) =

−m d

dx0

{
2G′

(
1−

∣∣∣∣ dzdx0
(x0)− v

(
x0, z(x0)

)∣∣∣∣2
)}(

dz

dx0
(x0)− v

(
x0, z(x0)

))

+ 2mG′
(

1−
∣∣∣∣ dzdx0

(x0)− v
(
x0, z(x0)

)∣∣∣∣2
)({

∂

∂x0
v +∇x

(
1

2
|v|2

)
− dz

dx0
× curlxv

}(
x0, z(x0)

))
+ σ

(
E
(
x0, z(x0)

)
+

dz

dx0
(x0)× B

(
x0, z(x0)

))
. (5.13)

However, as before, here we consider two cases:
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• The case of non-relativistic approximation, where G(τ) := 1
2 (τ − 1).

• The case of relativistic particles, where G(τ) :=
√
τ − 1.

In the first case we have 2G′(τ) = 1. In the second case we have 2G′(τ) = τ−
1
2 = 1 +O(τ − 1) and

so 2G′(τ) ≈ 1 in the non-relativistic approximation where∣∣∣∣ dzdx0
− v

∣∣∣∣2 � 1 . (5.14)

Thus, in the latter case we rewrite (5.13) as

m
d2z

d(x0)2
(x0) = m

(
∂

∂x0
v
(
x0, z(x0)

)
+∇x

(
1

2

∣∣v (x0, z(x0)
)∣∣2)− dz

dx0
(x0) × curlxv

(
x0, z(x0)

))
+ σ

(
E
(
x0, z(x0)

)
+

dz

dx0
(x0)× B

(
x0, z(x0)

))
. (5.15)

6 The Euler-Lagrange for the Lagrangian of the gravitational

and Electromagnetic fields in (4.71) in a cartesian coordi-

nate system

Lemma 6.1. Consider the strongly correlated kinematical covariant pseudo-metrics {Jmn}m,n=0,1,2,3

and the kinematical global time ϕ, forming a standard kinematical Lorentz’s structure with global time

on R4 as in Proposition 2.7 and Remark 2.6. Next, let (r0, r1, r2, r3) be the contravariant four-vector

of the inertia, corresponding to {Jmn}m,n=0,1,2,3 and ϕ, defined by

rm :=

3∑
j=0

Jmj
∂ϕ

∂xj
∀m = 0, 1, 2, 3. (6.1)

and denote

(r0, r1, r2, r3) := (r0, r) where r := (r1, r2, r3) ∈ R3 . (6.2)

Then, in a cartesian coordinate system we have:

r0 = 1(
dxr + {dxr}T

)
:=

({
∂rm

∂xj + ∂rj

∂xm

}
m,j=1,2,3

)
= 0

∂2rm

∂xj∂xn = 0 ∀j,m, n = 1, 2, 3

divx r = 0 ,

(6.3)

where we denote

(x0, x1, x2, x3) := (x0,x) with x := (x1, x2, x3) ∈ R3 . (6.4)
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We investigate critical points of the functional in (4.71). As before, we denote

(A0, A1, A2, A3) = (Ψ,−A) where A0 = Ψ and (A1, A2, A3) = −A, (6.5)

and

(S0, S1, S2, S3) := − (Φ,−h) where S0 = −Φ and (S1, S2, S3) = h. (6.6)

In particular, by (4.36) we have: Φ = 1
2

(
|v|2 − |r|2

)
h = v − r .

(6.7)

Furthermore, we denote

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D.

(6.8)

Moreover, we define R = −∇xΦ− ∂h
∂x0 + v × curlxh

Q = curlxh,

(6.9)

and by (6.7) we rewrite (6.9) as:R = − ∂
∂x0 (v − r)−∇x

(
1
2 |v|

2 − 1
2 |r|

2
)

+ v × curlx (v − r)

Q = curlx(v − r).

(6.10)

We also can rewrite (6.10) as:

Q = curlx(v − r) and R =(
∂r

∂x0
+∇x

(
1

2
|r|2
)
− r× curlxr

)
−
(
∂v

∂x0
+∇x

(
1

2
|v|2

)
− v × curlxv

)
− (v − r)× curlxr

=

(
∂r

∂x0
+ dxr · r

)
−
(
∂v

∂x0
+ dxv · v

)
− (v − r)× curlxr, (6.11)

where in the last equality we use the following well known identity from the Vector Analysis:

f × (curlxg) = (dxg)T · f − (dxg) · f ∀ f(x),g(x) : R3 → R3 . (6.12)

Moreover, in inertial coordinate system where dxr = 0 and ∂r
∂x0 = 0 we simplify (6.11) as:R = − ∂v

∂x0 −∇x

(
1
2 |v|

2
)

+ v × curlxv = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv.

(6.13)
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Furthermore, by (6.8) and (6.9) we have:

curlxE + ∂B
∂x0 = curlxD + ∂B

∂x0 − curlx (v ×B) = 0

divx B = 0

curlxR + ∂Q
∂x0 − curlx (v ×Q) = 0

divx Q = 0 .

(6.14)

Next, taking the divergence by x of (6.11) we deduce

divx R =

 ∂

∂x0
{divx r}+ r · ∇x {divx r}+

3∑
j=1

3∑
m=1

∂rm

∂xj
∂rj

∂xm


−

 ∂

∂x0
{divx v}+ v · ∇x {divx v}+

3∑
j=1

3∑
m=1

∂vm

∂xj
∂vj

∂xm

− divx {(v − r)× curlxr}

=

 ∂

∂x0
{divx r}+ r · ∇x {divx r}+

3∑
j=1

3∑
m=1

1

4

(
∂rm

∂xj
+

∂rj

∂xm

)2

−
3∑
j=1

3∑
m=1

1

4

(
∂rm

∂xj
− ∂rj

∂xm

)2


−

 ∂

∂x0
{divx v}+ v · ∇x {divx v}+

3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
+

∂vj

∂xm

)2

−
3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
− ∂vj

∂xm

)2


− (curlx {(v − r)}) · (curlxr) + (v − r) · (curlx {curlxr}) , (6.15)

where in the last equality we use the following well known identity from the Vector Analysis:

divx(f × g) = g · curlxf − f · curlxg ∀ f(x),g(x) : R3 → R3 . (6.16)

However, we can rewrite (6.15) as:

divx R =

 ∂

∂x0
{divx r}+ r · ∇x {divx r}+

3∑
j=1

3∑
m=1

1

4

(
∂rm

∂xj
+

∂rj

∂xm

)2


−

 ∂

∂x0
{divx v}+ v · ∇x {divx v}+

3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
+

∂vj

∂xm

)2


− 1

2
|curlxr|2 +

1

2
|curlxv|2 − (curlx {(v − r)}) · (curlxr) + (v − r) · (curlx {curlxr})

=

 ∂

∂x0
{divx r}+ divx {(divx r) · r}+

3∑
j=1

3∑
m=1

1

4

(
∂rm

∂xj
+

∂rj

∂xm

)2

− (divx r)
2


−

 ∂

∂x0
{divx v}+ divx {(divx v) · v}+

3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
+

∂vj

∂xm

)2

− (divx v)
2


+

1

2
|curlx (v − r)|2 + (v − r) · (curlx {curlxr}) . (6.17)
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Then, since by (6.11) we have curlx(v − r) = Q, we rewrite (6.17) as: ∂

∂x0
{divx v}+ divx {(divx v) · v}+

3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
+

∂vj

∂xm

)2

− (divx v)
2

 =

 ∂

∂x0
{divx r}+ divx {(divx r) · r}+

3∑
j=1

3∑
m=1

1

4

(
∂rm

∂xj
+

∂rj

∂xm

)2

− (divx r)
2


+ (v − r) · (curlx {curlxr}) +

1

2
|curlxQ|2 − divx R. (6.18)

Next, by Lemma 6.1 we have

(
dxr + {dxr}T

)
:=

({
∂rm

∂xj + ∂rj

∂xm

}
m,j=1,2,3

)
= 0

curlx(curlxr) = 0

divx r = 0 .

(6.19)

Then, inserting (6.19) into (6.18) and using the identity Q = curlx(v − r) in (6.11) with (6.19) we

obtain: ∂

∂x0
{divx v}+ divx {(divx v) · v}+

3∑
j=1

3∑
m=1

1

4

(
∂vm

∂xj
+

∂vj

∂xm

)2

− (divx v)
2


=

1

2
|curlxQ|2 − divx R and curlx(curlxv) = curlxQ. (6.20)

Next we investigate the Euler-Lagrange of (4.71). We denote

L1 (v, (Φ,−h), (Ψ,−A)) =∫∫∫∫
R4

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
dx0dx1dx2dx3

−
∫∫∫∫

R4

(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
dx0dx1dx2dx3

+

∫∫∫∫
R4

1

4πG

(
1

2
|curlxh|2 − 1

2

∣∣∣∣− ∂h

∂x0
−∇xΦ + v × curlxh

∣∣∣∣2
)
dx0dx1dx2dx3

+
N∑
k=1

+∞∫
−∞

−mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dx0 , (6.21)

where Φ = 1
2

(
|v|2 − |r|2

)
h = (v − r) ,

(6.22)
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so that we have:

L1

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
= Ltotal (v, (Ψ,−A)) =∫∫∫∫

R4

1

4π

(
1

2

∣∣∣∣−∇xΨ− ∂A

∂x0
+ v × curlxA

∣∣∣∣2 − 1

2
|curlxA|2

)
dx0dx1dx2dx3

−
∫∫∫∫

R4

(
Ψ ρ(x0, x1, x2, x3)−A · j(x0, x1, x2, x3)

)
dx0dx1dx2dx3 +

∫∫∫∫
R4

1

4πG

{

1

2
|curlx (v − r)|2 − 1

2

∣∣∣∣− ∂

∂x0
(v − r)−∇x

(
1

2
|v|2 − 1

2
|r|2
)

+ v × curlx (v − r)

∣∣∣∣2
}
dx0dx1dx2dx3

+

N∑
k=1

+∞∫
−∞

−mk G

1−
3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dx0 . (6.23)

Next by the Euler-Lagrange of (4.71) we have
δLtotal
δv (v, (Ψ,−A)) = 0

δLtotal
δA (v, (Ψ,−A)) = 0

δLtotal
δΨ (v, (Ψ,−A)) = 0 .

(6.24)

On the other hand, by Chain rule we have

δLtotal
δv

(v, (Ψ,−A)) =
δL1

δv

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
+ v

δL

δΦ

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
+
δL1

δh

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
. (6.25)

Moreover, 
δLtotal
δA (v, (Ψ,−A)) = δL1

δA

(
v,
(

1
2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
δLtotal
δΨ (v, (Ψ,−A)) = δL1

δΨ

(
v,
(

1
2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
.

(6.26)

So, by (6.24) (6.26) and (6.25) we obtain
δL1

δA

(
v,
(

1
2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
= 0

δL1

δΨ

(
v,
(

1
2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
= 0 ,

(6.27)

and

δL1

δv

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
+ v

δL1

δΦ

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
+
δL1

δh

(
v,

(
1

2

(
|v|2 − |r|2

)
,− (v − r)

)
, (Ψ,−A)

)
= 0 . (6.28)
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Moreover, by (6.21), (6.9), (6.10) and (6.16) we have

δL1

δh
=

1

4πG
curlxQ− 1

4πG

(
∂R

∂x0
− curlx {v ×R}

)
, (6.29)

δL

δΦ
= − 1

4πG
(divxR) . (6.30)

and
δL1

δv
= −

(
e− Ev +

1

4π
D×B− 1

4πG
R×Q

)
(6.31)

where

(e0, e1, e2, e3) := (E, e) with e = (e1, e2, e3) ∈ R3, (6.32)

and the contravariant four-vector field (e0, e1, e2, e3) and the scalar field E are given by

(e0, e1, e2, e3)(x0, x1, x2, x3) :=

N∑
k=1

mk 2G′
1−

3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 dχjk

dx0
(x0) δ

(
x1 − χ1

k(χ0), . . . , x3 − χ3
k(χ0)

)
∀ (x0, x1, x2, x3) ∈ R4 , (6.33)

and

E(x0, x1, x2, x3) :=

N∑
k=1

mk 2G′
1−

3∑
j=1

(
dχjk
dx0

(x0)− vj
(
χk(x0)

))2
 δ

(
x1 − χ1

k(χ0), x2 − χ2
k(χ0), x3 − χ3

k(χ0)
)

∀ (x0, x1, x2, x3) ∈ R4 , (6.34)

where G′ is the derivative of the function G. Therefore, using (6.29), (6.30) (6.31) in (6.28) we

deduce:(
e− Ev +

1

4π
D×B− 1

4πG
R×Q

)
=

1

4πG
curlxQ− 1

4πG

(
∂R

∂x0
− curlx {v ×R}+ (divxR) v

)
. (6.35)

Moreover, by (6.27) we have
1

4π
divx D− ρ = 0, (6.36)

and

j +
1

4π

∂D

∂x0
− 1

4π
curlxB− 1

4π
curlx (v ×D) = j +

1

4π

∂D

∂x0
− 1

4π
curlxH = 0. (6.37)
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So, totally we have

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxR + ∂Q
∂x0 − curlx (v ×Q) = 0

divx Q = 0(
∂
∂x0 (divx v) + v · ∇x (divx v) + 1

4

∣∣∣dxv + {dxv}T
∣∣∣2) = 1

2 |Q|
2 − divx R

curlx(curlxv) = curlxQ

4πG
(
e− Ev + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
,

(6.38)

where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D,

(6.39)

and moreover, by (6.13) in the inertial frame we have:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
e− Ev + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

(6.40)

Furthermore, taking divx of the both sides of the last equality in (6.38) and using continuum equation

(4.50):
∂M

∂x0
+ divx jM = 0 ∀ (x0, x1, x2, x3) ∈ R4 , (6.41)

we deduce

−
(
∂M

∂x0
+ divx (Mv)

)
+ divx

{
(e− jM )− (E −M) v +

1

4π
D×B− 1

4πG
R×Q

}
=

divx

(
e− Ev +

1

4π
D×B− 1

4πG
R×Q

)
= − 1

4πG

(
∂

∂x0
(divx R) + divx {(divxR) v}

)
. (6.42)
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Therefore, considering the proper scalar quantity Q0, that we call the field mass, which satisfies

Q0 := −M +
1

4πG
divx R, (6.43)

by (6.42) we deduce

∂Q0

∂x0
+ divx (Q0v) = −divx

{
(e− jM )− (E −M) v +

1

4π
D×B− 1

4πG
R×Q

}
. (6.44)

Thus, we rewrite (6.38) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxR + ∂Q
∂x0 − curlx (v ×Q) = 0

divx Q = 0

4πG
(
e− Ev + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
divx R = 4πG(M +Q0),(

∂
∂x0 (divx v) + v · ∇x (divx v) + 1

4

∣∣∣dxv + {dxv}T
∣∣∣2) = 1

2 |Q|
2 − divx R

curlx(curlxv) = curlxQ

∂Q0

∂x0 + divx (Q0v) = −divx

{
(e− jM )− (E −M) v + 1

4πD×B− 1
4πGR×Q

}
,

(6.45)

where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D,

(6.46)
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and moreover, we rewrite (6.40) in the inertial frame as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
e− Ev + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

divx R = 4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = −divx

{
(e− jM )− (E −M) v + 1

4πD×B− 1
4πGR×Q

}
.

(6.47)

However, as before, here we consider two cases:

• The case of non-relativistic approximation, where G(τ) := 1
2 (τ − 1).

• The case of relativistic particles, where G(τ) :=
√
τ − 1.

In the first case we have 2G′(τ) = 1. In the second case we have 2G′(τ) = τ−
1
2 = 1 +O(τ − 1). In

the first non-relativistic case by (6.33) and (6.34) we deduce

e = jM and E = M ∀ (x0, x1, x2, x3) ∈ R4 , (6.48)

In the second relativistic case (6.48) is satisfied approximately, provided we have(
dχjk
dx0
− vj (χk)

)2

� 1 ∀ k = 1, 2, . . . , N . (6.49)
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Thus, by (6.48) we rewrite (6.45) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxR + ∂Q
∂x0 − curlx (v ×Q) = 0

divx Q = 0

4πG
(
jM −Mv + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
divx R = 4πG(M +Q0),(

∂
∂x0 (divx v) + v · ∇x (divx v) + 1

4

∣∣∣dxv + {dxv}T
∣∣∣2) = 1

2 |Q|
2 − divx R

curlx(curlxv) = curlxQ

∂Q0

∂x0 + divx (Q0v) = −divx

{
1

4πD×B− 1
4πGR×Q

}
,

(6.50)

where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D,

(6.51)

and moreover, we rewrite (6.47) in the inertial frame as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
jM −Mv + 1

4πD×B− 1
4πGR×Q

)
= curlxQ−

(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

divx R = 4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = −divx

{
1

4πD×B− 1
4πGR×Q

}
.

(6.52)
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7 Gravity field of spherically symmetric massive resting body

in a coordinate system which is cartesian and inertial si-

multaneously

Consider some coordinate system which is cartesian and inertial simultaneously. Next consider some

resting massive spherically symmetric body of Radius r0 with center at the point (x1, x2, x3) =

(0, 0, 0) for all x0 ∈ R. Assume that the electromagnetical fields are negligible with respect to the

inertial mass of the body. Then, we rewrite (6.47) as:

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
e− Ev − 1

4πGR×Q
)

= curlxQ−
(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

divx R = 4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = −divx

{
(e− jM )− (E −M) v − 1

4πGR×Q
}
.

(7.1)

Moreover, we obviously have

M(x0,x) = M1 (|x|) and u(x0,x) = 0 ∀ (x0,x) ∈ R4, (7.2)

where we denote (x0,x) := (x0, x1, x2, x3) ∈ R4 with x := (x1, x2, x3) ∈ R3, u is a three-dimensional

velocity field of every point of the given massive body and M1 := M1 (|x|) is the inertial mass density

of the body which is assumed to be a radial function such that

M1 (|x|) = 0 if |x| > r0, (7.3)

where r0 is the radius of the body. In particular we have

E(x0,x) = M1 (|x|) 2G′
(

1−
∣∣v(x0,x)

∣∣2) ∀ (x0,x) := (x0, x1, x2, x3) ∈ R4 . (7.4)

Thus we simplify the equations for the Gravity in (7.1) as:

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
−M1 (|x|) 2G′

(
1− |v|2

)
v − 1

4πGR×Q
)

= curlxQ−
(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

divx R = 4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = −divx

{
−M1

(
(|x|) 2G′

(
1− |v|2

)
− 1
)

v − 1
4πGR×Q

}
.

(7.5)
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We look for stationary (i.e. x0-independent) solutions of (7.5). Thus (7.5) implies:

R = −dxv · v

Q = curlxv

4πG
(
−M1 (|x|) 2G′

(
1− |v|2

)
v − 1

4πGR×Q
)

= curlxQ− (−curlx {v ×R}+ (divx R) v) .

divx R = 4πG(M +Q0)

divx (Q0v) = −divx

{
−M1

(
(|x|) 2G′

(
1− |v|2

)
− 1
)

v − 1
4πGR×Q

}
.

(7.6)

On the other hand, by the symmetry considerations of the problem we look for the solution of (7.6)

that satisfies v(x) = ∇xZ0 (|x|) where, again by the symmetry of the problem, the scalar function

Z0 (|x|) should be radial. In particular, by (7.6) we obtain

Q = curlxv = 0 (7.7)

and thus we simplify (7.6) as:

R = −dxv · v = −∇x

(
1
2 |v|

2
)
,

Q = curlxv = 0,

4πG
(
−M1 (|x|) 2G′

(
1− |v|2

)
v
)

= − (−curlx {v ×R}+ (divx R) v) .

divx R = 4πG(M +Q0)

divx (Q0v) = −divx

{
−M1

(
(|x|) 2G′

(
1− |v|2

)
− 1
)

v
}
.

(7.8)

In particular, since v = ∇xZ0 (|x|) and R = −∇x

(
1
2 |v|

2
)

are both gradients of radial functions,

we have v ×R = 0 and thus, we further simplify (7.8) as:

R = −∇x

(
1
2 |v|

2
)
,

Q = curlxv = 0,

divx R = 4πGM1 (|x|) 2G′
(

1− |v|2
)
,

curlxR = 0,

Q0 = M1 (|x|)
(

2G′
(

1− |v|2
)
− 1
)
.

(7.9)

However, (7.9) is equivalent to the following:

∆x

(
− 1

2 |v|
2
)

= 4πGM1 (|x|) 2G′
(

1− |v|2
)
,

curlxv = 0,

R = −∇x

(
1
2 |v|

2
)
,

Q = 0,

Q0 = M1 (|x|)
(

2G′
(

1− |v|2
)
− 1
)
.

(7.10)
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Therefore, denoting

Φ1 := −1

2
|v|2 (7.11)

we rewrite (7.10) as: 

∆xΦ1 = 4πGM1 (|x|) 2G′ (1 + 2Φ1) ,

Φ1 = − 1
2 |v|

2
,

curlxv = 0,

R = −∇x

(
1
2 |v|

2
)
,

Q = 0,

Q0 = M1 (|x|) (2G′ (1 + 2Φ1)− 1) ,

(7.12)

where the scalar field Φ1 = Φ (|x|) is radial, and thus, outside of the Massive body surface, where

|x| > r0 it coincides with the following Newtonian potential of the massive body:

Φ1 (|x|) = −GM0

|x|
, (7.13)

where M0 is the total effective gravitational mass of the massive body, defined as

M0 =

∫∫∫
|x|≤r0

M1 (|x|) 2G′ (1 + 2Φ1 (|x|)) dx =

∫∫∫
|x|≤r0

M1 (|x|) 2G′
(

1− |∇xZ0 (|x|)|2
)
dx .

(7.14)

Note that, for the inertial mass of the Earth m0 we have m0 =
∫∫∫
|x|≤r0 M1 (|x|) dx and thus, in

the non-relativistic case, where 2G′(τ) = 1 we have M0 = m0. On the other hand in the relativistic

case, where 2G′(τ) = (τ)
− 1

2 > 1 with τ < 1 we have M0 > m0. Next, since there exists a scalar

radial field Z0 (|x|) such that v(x) = ∇xZ0 (|x|), by (7.12) we obtain∣∣∣∣ dZ0

d(|x|)
(|x|)

∣∣∣∣ =
√
−2Φ1(x), (7.15)

that implies either

v(x) =

√
−2Φ1(|x|)
|x|

x, (7.16)

or

v(x) = −
√
−2Φ1(|x|)
|x|

x. (7.17)

In particular, on the Earth surface we have:

|v| =
√

2GM0

r0
, (7.18)

where r0 is the massive body radius and M0 is the total effective gravitational mass of the massive

body, i.e. the absolute value of the three-dimensional vectorial gravitational potential on a planet

surface equals to the escape velocity and its direction is normal to the planet, either downward or

upward.
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7.1 Certain curvilinear coordinate system in the case of stationary radi-

ally symmetric gravitational field and relation to the Schwarzschild

metric

Assume that for a given part of the space-time V ⊂ R4 in some inertial or non-inertial cartesian

coordinate system (∗) the gravitational field is stationary and radially symmetric that means that,

{Kmn}n,m=0,1,2,3 is given by (4.29) and {Kmn}n,m=0,1,2,3 be given by (4.30), so that
K00 = 1

Kjm = −δjm + vjvm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3,

(7.19)

and 
K00 = 1− |v|2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3 ,

(7.20)

where we denote

(v0, v1, v2, v3) := (1,v) with v := (v1, v2, v3) ∈ R3 , (7.21)

and the three-dimensional vectorial gravitational potential v = (v1, v2, v3) is independent on variable

x0 and having the form

v(x) = g (|x|) x

|x|
∀x, (7.22)

for some scalar function g(τ) : R→ R with

(x0, x1, x2, x3) := (x0,x) ∈ V where x := (x1, x2, x3) ∈ R3 . (7.23)

Next, given some differentiable function F (x) : R3 → R, consider the change of variables in the

four-dimensional space-time R4: x
′0 = x0 + F

(
x1, x2, x3

)
x′j = xj ∀j = 1, 2, 3.

(7.24)

that transforms the cartesian coordinate system (∗) to the curvilinear coordinate system (∗∗) in the

four-dimensional space-time R4. Then in the terms of the three-dimensional space we rewrite (7.24)

as: x
′0 = x0 + F (x)

x′ = x.

(7.25)

Next if we define a matrix

A =
{
aij
}

0≤i,j≤3
:=

{
∂x′i

∂xj

}
0≤i,j≤3

∈ R4×4, (7.26)
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then 

a0
0 = 1

amn = δmn ∀1 ≤ m,n ≤ 3

a0
j = ∂F

∂xj ∀1 ≤ j ≤ 3

aj0 = 0 ∀1 ≤ j ≤ 3.

(7.27)

Next, remind that the contravariant pseudo-metric tensor {Kmn}0≤m,n≤3 due to (7.19) has the form

of 
K00 = 1

Kjm = −δjm + vjvm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3,

(7.28)

in the cartesian coordinate system (∗). We would like to find the form {K ′mn}0≤m,n≤3 of this tensor

in the curvilinear coordinate system (∗∗). Then by (10.6) and (7.26) we have:

K ′mn =

3∑
k=0

3∑
j=0

(
amk K

kjanj
)

=

3∑
k=0

amk

 3∑
j=0

Kkjanj

 ∀0 ≤ m,n ≤ 3. (7.29)

In other words

K ′mn = am0

K00an0 +

3∑
j=1

K0janj

+

3∑
k=1

amk

Kk0an0 +

3∑
j=1

Kkjanj

 ∀0 ≤ m,n ≤ 3. (7.30)

In particular, by (7.27) and (7.30) together with (7.28) we obtain:

K ′00 = a0
0

K00a0
0 +

3∑
j=1

K0ja0
j

+

3∑
k=1

a0
k

Kk0a0
0 +

3∑
j=1

Kkja0
j


= a0

0

a0
0 +

3∑
j=1

2vj a0
j

+

 3∑
j=1

a0
j v

j

2

−
3∑
j=1

(
a0
j

)2
=

a0
0 +

3∑
j=1

vj a0
j

2

−
3∑
j=1

(
a0
j

)2
, (7.31)

K ′0n = K ′n0 = a0
0

g00an0 +

3∑
j=1

K0janj

+

3∑
k=1

a0
k

Kk0an0 +

3∑
j=1

Kkjanj


= a0

0 v
n − a0

n +

3∑
k=1

a0
k v

k vn ∀1 ≤ n ≤ 3, (7.32)

and

K ′mn = am0

K00an0 +

3∑
j=1

K0janj

+

3∑
k=1

amk

Kk0an0 +

3∑
j=1

Kkjanj

 = vm vn − δmn

∀1 ≤ m,n ≤ 3. (7.33)
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Thus by the last three equations together with (7.27) we deduce:
K ′00 =

(
1 +

∑3
j=1 v

j ∂F
∂xj

)2

−
∑3
j=1

(
∂F
∂xj

)2
K ′0n = K ′n0 = vn

(
1 +

∑3
j=1 v

j ∂F
∂xj

)
− ∂F

∂xn ∀1 ≤ n ≤ 3,

K ′mn = vm vn − δmn ∀1 ≤ m,n ≤ 3.

(7.34)

Next if v satisfies (7.22) then choosing the function F to be defined as:

F (x) = ξ (|x|) ∀x, where
dξ

dτ
(τ) =

g(τ)

1− g2(τ)
∀ τ, (7.35)

we find that:

vn =

1 +

3∑
j=1

vj
∂F

∂xj

−1

∂F

∂xn
∀1 ≤ n ≤ 3, (7.36)

in other words

vn

1 +

3∑
j=1

vj
∂F

∂xj

 =
∂F

∂xn
∀1 ≤ n ≤ 3. (7.37)

Then we rewrite (7.34) as: 
K ′00 =

(
1− |v|2

) (
1 +

∑3
j=1 v

j ∂F
∂xj

)2

,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn = vm vn − δmn ∀1 ≤ m,n ≤ 3.

(7.38)

On the other hand by (7.37) we have

|v|2 =
(
1− |v|2

) 3∑
j=1

vj
∂F

∂xj

 . (7.39)

We rewrite (7.39) as:

1 =
(
1− |v|2

)1 +

3∑
j=1

vj
∂F

∂xj

 (7.40)

Therefore, by (7.38) and (7.40) we deduce:
K ′00 =

(
1− |v|2

)−1
,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn = vm vn − δmn ∀1 ≤ m,n ≤ 3.

(7.41)

Next we find that the covariant pseudo-metric tensor {K ′mn}0≤m,n≤3 in the curvilinear coordinate

system (∗∗) has the following form:
K ′00 =

(
1− |v|2

)
,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn = −
((

1− |v|2
)−1

vm vn + δmn

)
∀1 ≤ m,n ≤ 3.

(7.42)
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Indeed, if {K ′mn}0≤m,n≤3 is defined by (7.42), then by (7.41) we have:

3∑
k=0

K ′0kK
′k0 = K ′00K

′00 +

3∑
k=1

K ′0kK
′k0 = 1,

3∑
k=0

K ′mkK
′kj = K ′i0K

′0j +

3∑
k=1

K ′mkK
′kj =

3∑
k=1

((
1− |v|2

)−1
vm vk + δmk

) (
δkj − vk vj

)
= δmj −

(
1− |v|2

)−1 |v|2 vm vj − vm vj +
(
1− |v|2

)−1
vm vj = δmj ∀1 ≤ m, j ≤ 3,

and
3∑
k=0

K ′mkK
′k0 = K ′m0K

′00 +

3∑
k=1

K ′mkK
′k0 = 0 ∀1 ≤ m ≤ 3,

3∑
k=0

K ′0kK
′kj = K ′00K

′0j +

3∑
k=1

K ′0kK
′kj = 0 ∀1 ≤ j ≤ 3.

So
3∑
k=0

K ′mkK
′kj = δmj ∀0 ≤ m, j ≤ 3,

and thus equalities (7.42) indeed define the inverse to {Kmn}m,n=0,1,2,3 matrix. So by (7.42) we

have: 
K ′00 =

(
1− |v|2

)
,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn = −
((

1− |v|2
)−1

vm vn + δmn

)
∀1 ≤ m,n ≤ 3.

(7.43)

In particular, the quadratic form, induced by the covariant pseudo-metric tensor {K ′mn}0≤m,n≤3 in

the curvilinear coordinate system (∗∗), that defined on the tangent vectors
(
dx′0, dx′1, dx′2, dx′3

)
∈

R4 where dx′ := (dx′1, dx′2, dx′3) has the following form:

3∑
m=0

3∑
n=0

K ′mndx
′mdx′n =

(
1− |v|2

)
(dx′0)2 −

(
|dx′|2 +

(
1− |v|2

)−1 |v · dx′|2
)

=

(
1− |v|2

)
(dx′0)2 −

((
|dx′|2 −

∣∣∣∣ v

|v|
· dx′

∣∣∣∣2
)

+
(
1− |v|2

)−1 |v|2
∣∣∣∣ v

|v|
· dx′

∣∣∣∣2 +

∣∣∣∣ v

|v|
· dx′

∣∣∣∣2
)

=
(
1− |v|2

)
(dx′0)2 −

((
1− |v|2

)−1
∣∣∣∣ v

|v|
· dx′

∣∣∣∣2 +

(
|dx′|2 −

∣∣∣∣ v

|v|
· dx′

∣∣∣∣2
))

. (7.44)

Thus taking into account (7.25) and (7.22) we rewrite (7.44) as:

3∑
m=0

3∑
n=0

K ′mndx
′mdx′n =

(
1− |v(x′)|2

)
(dx′0)2 −

((
1− |v(x′)|2

)−1
∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2 +

(
|dx′|2 −

∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2
))

. (7.45)

Next, up to the end of this subsection, assume that our cartesian coordinate system (∗) is inertial

and cartesian simultaneously and our gravitational field is formed by the resting spherical symmetric
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massive body of the effective gravitational mass M0 and radius r0 like the Earth, the Sun et.al. with

the center at the point (x1, x2, x3) = 0. Then, as we get before, we have either (7.16):

v(x) =

√
−2Φ1(|x|)
|x|

x, (7.46)

or (7.17):

v(x) = −
√
−2Φ1(|x|)
|x|

x, (7.47)

where outside of the massive body surface we have

Φ1 (|x|) = −GM0

|x|
, (7.48)

with the total effective gravitational mass of the massive body M0, defined as in (7.14) by

M0 =

∫∫∫
|x|≤r0

M1 (|x|) 2G′ (1 + 2Φ1 (|x|)) dx =

∫∫∫
|x|≤r0

M1 (|x|) 2G′
(

1− |∇xZ0 (|x|)|2
)
dx.

(7.49)

Thus in particular,

|v(x)|2 = −2Φ1(|x|), (7.50)

and outside of the massive body surface we have:

|v(x)|2 =
2GM0

|x|
. (7.51)

Both (7.46) and (7.47) are particular cases of (7.22), with

g(τ) = ±
√
−2Φ1(τ), (7.52)

and in particular, outside of the massive body surface we have:

g (|x|) = ±

√
2GM0

|x|
, (7.53)

Thus defining the function F (x) as in (7.35), that always can be done in the case 2GM0

r0
< 1, we can

define the change of variables from coordinate system (∗) to the curvilinear coordinate system (∗∗)

in the four-dimensional space-time R4 as in (7.25):x
′0 = x0 + F (x)

x′ = x.

(7.54)

Then by inserting (7.46) or (7.47) into (7.43) we deduce the form of the covariant pseudo-metric

tensor in the curvilinear coordinate system (∗∗):
K ′00 = (1 + 2Φ1(|x′|)) ,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn =
(

(1 + 2Φ1(|x′|))−1
2Φ1(|x′|) x

′
m

|x′|
x′n
|x′| − δmn

)
∀1 ≤ m,n ≤ 3.

(7.55)

78



Moreover, by (7.45) we have:

3∑
m=0

3∑
n=0

K ′mndx
′mdx′n =

(1 + 2Φ1(|x′|)) dx′20 −

(
(1 + 2Φ1(|x′|))−1

∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2 +

(
|dx′|2 −

∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2
))

. (7.56)

In particular, outside of the massive body surface, i.e. when |x′| ≥ r0 we rewrite (7.55) and (7.56)

as: 
K ′00 =

(
1− 2GM0

|x′|

)
,

K ′0n = K ′n0 = 0 ∀1 ≤ n ≤ 3,

K ′mn = −
((

1− 2GM0

|x′|

)−1
2GM0

|x′|
x′m
|x′|

x′n
|x′| + δmn

)
∀1 ≤ m,n ≤ 3,

(7.57)

and

3∑
m=0

3∑
n=0

K ′mndx
′mdx′n =

(
1− 2GM0

|x′|

)
dx′20 −

((
1− 2GM0

|x′|

)−1 ∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2 +

(
|dx′|2 −

∣∣∣∣ x′

|x′|
· dx′

∣∣∣∣2
))

. (7.58)

Therefore, we get that in coordinate system (∗∗), outside of the massive body, the covariant pseudo-

metric tensor in (7.57) and (7.58) exactly the same as the well known Schwarzschild metric from the

General Relativity (see [9], pages 180–181). Indeed in the spherical coordinates in R3 we rewrite

(7.58) as:

3∑
m=0

3∑
n=0

K ′mndx
′mdx′n =

(
1− 2GM0

r′

)
dx′20 −

((
1− 2GM0

r′

)−1

(dr′)
2

+ (r′)2
(
(dθ′)2 + sin2 (θ′)(dϕ′)2

))
, (7.59)

and this is exactly the classical Schwarzschild metric! ([7],[9])

In particular, all the optical effects that we find in the frames of our model coincide with the

effects considered in the frames of General Relativity for the Schwarzschild metric. In particular, the

Michelson-Morely experiment and all Sagnac-type effects will lead to the same result in the frame of

our model like in the case of the General relativity. Moreover, since the Maxwell equations in both

models have the same tensor form, all the electromagnetic effects, where the time does not appear

explicitly, will be the same. Similarly, the curvature of the light path in the Sun’s gravitational field

will be the same in both models. Finally, in the particular case of G(τ) =
√
τ , i.e. in the case of the

relativistic Lagrangian of the motion in (2.102) all the mechanical effects will be the same in the

frame of our model like in the case of the General relativity for the Schwarzschild metric, provided

that the time does not appear explicitly in this effects. In particular, the movement of the Mercury

planet in the Sun’s gravitational field will be the same in both models.
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8 Newtonian gravity as an approximation of (6.52).

We now approximate the Euler-Lagrange in (6.52). First of all, in the usual circumstances we

obviously have for the electromagnetic field:∣∣∣∣ 1

4π
D×B

∣∣∣∣ � M . (8.1)

Thus, by (8.1), we approximate (6.50) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxR + ∂Q
∂x0 − curlx (v ×Q) = 0

divx Q = 0

4πG
(
Mu−Mv − 1

4πGR×Q
)

= curlxQ−
(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
divx R = 4πG(M +Q0),(

∂
∂x0 (divx v) + v · ∇x (divx v) + 1

4

∣∣∣dxv + {dxv}T
∣∣∣2) = 1

2 |Q|
2 − divx R

curlx(curlxv) = curlxQ

∂Q0

∂x0 + divx (Q0v) = divx

{
1

4πGR×Q
}
,

(8.2)

where u := u(x0, x1, x2, x3) is the field of the velocities of the matter so that

jM (x0, x1, x2, x3) = M(x0, x1, x2, x3) u(x0, x1, x2, x3) ∀ (x0, x1, x2, x3) ∈ R4 , (8.3)

and where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D.

(8.4)
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Furthermore, we approximate (6.52) in the inertial frame as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

R = −
(
∂v
∂x0 + dxv · v

)
Q = curlxv

4πG
(
Mu−Mv − 1

4πGR×Q
)

= curlxQ−
(
∂R
∂x0 − curlx {v ×R}+ (divx R) v

)
.

divx R = 4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = divx

{
1

4πGR×Q
}
.

(8.5)

On the other hand, we can rewrite (8.5) in the inertial frame as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

−
(
divx

{
∂v
∂x0 + dxv · v

})
uv +

(
∂v
∂x0 + dxv · v

)
× (curlxv) = curlx (curlxv)

+ ∂
∂x0

{
∂v
∂x0 + dxv · v

}
− curlx

{
v ×

(
∂v
∂x0 + dxv · v

)}
+ 4πGQ0 (uv − v) .

divx

{
∂v
∂x0 + dxv · v

}
= −4πG(M +Q0)

∂Q0

∂x0 + divx (Q0v) = −divx

{
1

4πG

(
∂v
∂x0 + dxv · v

)
× (curlxv)

}
,

(8.6)

where we denote

uv :=

u if M 6= 0

v if M = 0 .

(8.7)

Furthermore, we assume the non-relativistic approximation and quasistationery nature of the field

v, so that∣∣∣∣ ∂2v

∂(x0)2

∣∣∣∣� ∣∣d2
xv
∣∣ , ∣∣∣∣ ∂v

∂x0

∣∣∣∣2 � |dxv|2 ,
∣∣∣∣dx{ ∂v

∂x0

}∣∣∣∣2 � ∣∣d2
xv
∣∣2 ,

|u|2 � 1 and |v|2 � 1 . (8.8)
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Thus, by (8.8) and (8.3) we approximate (8.6) in the inertial frame as as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

divx

{
∂v
∂x0 + dxv · v

}
= −4πG(M +Q0)

curlx (curlxv) + 4πGQ0 (uv − v) +∇xζ = 0

∂Q0

∂x0 + divx (Q0v) = 0.

(8.9)

where ζ is some unspecified approximately negligible scalar field. However, the obvious solution of

the last two equations in (8.9) are curlxv = 0

Q0 = 0.

(8.10)

So, by (8.10) we rewrite (8.9) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxv = 0

divx

{
∂v
∂x0 + dxv · v

}
= −4πGM.

(8.11)

We obviously can rewrite (8.11) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0

curlxv = 0

divx

{
∂v
∂x0 +∇x

(
1
2 |v|

2
)}

= −4πGM,

(8.12)

where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D,

(8.13)
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and furthermore, we rewrite two last equations in (8.12) as:
v = ∇xZ

divx {∇xΦ} = 4πGM where

∂Z
∂x0 + 1

2 |∇xZ|2 = ∂Z
∂x0 + 1

2 |v|
2 = −Φ,

(8.14)

where Z is some scalar field. So, finally
curlxv = 0 and

∂v
∂x0 +∇x

(
1
2 |v|

2
)

= −∇xΦ where

divx {∇xΦ} = 4πGM .

(8.15)

On the other hand, we remind that the motion of the particle with the mass m and the charge σ in

the gravitational and electromagnetical fields is governed, in the non-relativistic case by equations

(5.15) so that

m
d2z

d(x0)2
(x0) = m

(
∂

∂x0
v
(
x0, z(x0)

)
+∇x

(
1

2

∣∣v (x0, z(x0)
)∣∣2)− dz

dx0
(x0) × curlxv

(
x0, z(x0)

))
+ σ

(
E
(
x0, z(x0)

)
+

dz

dx0
(x0)× B

(
x0, z(x0)

))
. (8.16)

Thus, inserting (8.15) into (8.16) gives that in the coordinate system, which is cartesian and inertial

simultaneously, we have

m
d2z

d(x0)2
(x0) = −m∇xΦ

(
x0, z(x0)

)
+ σ

(
E
(
x0, z(x0)

)
+

dz

dx0
(x0)× B

(
x0, z(x0)

))
, (8.17)

where Φ is given by

divx {∇xΦ} = 4πGM . (8.18)

However, (8.17) with (8.18) is obviously exactly the case of the classical Newtonian Gravity! Thus, in

the non-relativistic approximation and in the case of quasistationery gravitational field, the Newto-

nian gravity is indeed a valid approximation of (6.52), provided we deal with the coordinate system,

which is cartesian and inertial simultaneously.

Similarly, if we do not assume anymore that our cartesian coordinate system is inertial, then in

the non-relativistic approximation and in the case of quasistationery gravitational field, by (8.8) we

approximate (8.2) as:

curlxH = 4πj + ∂D
∂x0

divx D = 4πρ

curlxE + ∂B
∂x0 = 0

divx B = 0(
∂
∂x0 (divx v) + v · ∇x (divx v) + 1

4

∣∣∣dxv + {dxv}T
∣∣∣2) = −4πGM

curlx(curlxv) = 0,

(8.19)
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where D,B,E,H are given by (6.8), so that:

B = curlxA

D = −∇xΨ− ∂A
∂x0 + v × curlxA

E = −∇xΨ− ∂A
∂x0 = D− v ×B

H = curlxA + v ×
(
−∇xΨ− ∂A

∂x0 + v × curlxA
)

= B + v ×D.

(8.20)

9 Polarization and magnetization

It is well known from Tensor Analysis that if {Υmn}m,n=0,1,2,3 is the antisymmetric two-times con-

travariant tensor and if {Kmn}m,n=0,1,2,3 is a contravariant pseudo-metrics, then the four-component

field
(
γ0, γ1, γ2, γ3

)
defined by

γm :=

3∑
j=0

∂Smj

∂xj
+

3∑
j=0

Smj
∂
∂xj

(
|det ({Kp q}p,q=0,1,2,3)|−

1
2

)
|det ({Kp q}p,q=0,1,2,3)|−

1
2

=
3∑
j=0

1

|det ({Kp q}p,q=0,1,2,3)|−
1
2

∂

∂xj

{
|det ({Kp q}p,q=0,1,2,3)|−

1
2 Smj

}
∀m = 0, 1, 2, 3, (9.1)

is a valid contravariant four-vector.

Lemma 9.1. Consider an arbitrary moving point with four dimensional trajectory

z(s) =
(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b] → R4. Moreover, assume that the infinite trajectory of the

motion z(s) is considered for all instances of time from −∞ to +∞ so that

lim
s→a−

3∑
j=0

((
zj(s)

)2)
= lim
s→b+

3∑
j=0

((
zj(s)

)2)
= +∞ . (9.2)

Next consider a point charge σ with four dimensional trajectory χ(s) =
(
χ0(s), χ1(s), χ2(s), χ3(s)

)
:

[a, b] → R4, parameterized by the some proper parameter s ∈ [a, b]. Moreover, assume that the

infinite trajectory of the motion χ(s) is considered for all instances of time from −∞ to +∞ so that

for every τ ∈ [0, 1] we have

lim
s→a−

3∑
j=0

((
τχj(s) + (1− τ)zj(s)

)2)
= lim
s→b+

3∑
j=0

((
τχj(s) + (1− τ)zj(s)

)2)
= +∞ . (9.3)

If we define the antisymmetric two-times contravariant tensor {Υmn
σ }m,n=0,1,2,3 by:

Υmn
σ (x0, x1, x2, x3) :=

∣∣∣det
({
Kpq

(
x0, x1, x2, x3

)}
p,q=0,1,2,3

)∣∣∣ 12 b∫
a

1∫
0

(
σ

{

(χm(s)− zm(s))

(
τ
dχn

ds
(s) + (1− τ)

dzn

ds
(s)

)
− (χn(s)− zn(s))

(
τ
dχm

ds
(s) + (1− τ)

dzm

ds
(s)

)
}
δ
(
x0 −

(
τχ0(s) + (1− τ)z0(s)

)
, . . . , x3 −

(
τχ3(s) + (1− τ)z3(s)

)))
dτ ds . (9.4)
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Then, we have

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}(p,q)30

)∣∣∣− 1
2

Υmn
σ

}
=

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σ
dχm

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds

−
∣∣∣det

(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σ
dzm

ds
(s) δ

(
x0 − z0(s), . . . , x3 − z3(s)

)
ds , (9.5)

in the sense of distributions.

Definition 9.1. Consider an arbitrary moving point with four dimensional trajectory z(s) =(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b]→ R4. Moreover, assume that the infinite trajectory of the motion

z(s) is considered for all instances of time from −∞ to +∞ so that

lim
s→a−

3∑
j=0

((
zj(s)

)2)
= lim
s→b+

3∑
j=0

((
zj(s)

)2)
= +∞ . (9.6)

Next consider a totally neutral system of N point charges σ1, σ2, . . . , σN satisfying

N∑
k=1

σk = 0, (9.7)

with four dimensional trajectory of the k-th particle χk(s) =
(
χ0
k(s), χ1

k(s), χ2
k(s), χ3

k(s)
)

: [a, b]→ R4

∀ k = 1, 2, . . . N , parameterized by the same proper parameter s ∈ [a, b]. Moreover, assume that the

infinite trajectory of the motion χk(s) is considered for all instances of time from −∞ to +∞ so

that for every τ ∈ [0, 1] we have

lim
s→a−

3∑
j=0

((
τχjk(s) + (1− τ)zj(s)

)2
)

= lim
s→b+

3∑
j=0

((
τχjk(s) + (1− τ)zj(s)

)2
)

= +∞

∀ k = 1, 2, . . . , N . (9.8)

Then define the antisymmetric two-times contravariant tensor {Υmn}m,n=0,1,2,3 by:

Υmn(x0, x1, x2, x3) :=

N∑
k=1

∣∣∣det
({
Kpq

(
x0, x1, x2, x3

)}
p,q=0,1,2,3

)∣∣∣ 12 b∫
a

1∫
0

(
σk

{

(χmk (s)− zm(s))

(
τ
dχnk
ds

(s) + (1− τ)
dzn

ds
(s)

)
− (χnk (s)− zn(s))

(
τ
dχmk
ds

(s) + (1− τ)
dzm

ds
(s)

)
}
δ
(
x0 −

(
τχ0

k(s) + (1− τ)z0(s)
)
, . . . , x3 −

(
τχ3

k(s) + (1− τ)z3(s)
)))

dτ ds , (9.9)

so that

Υmn(x0, x1, x2, x3) :=

N∑
k=1

Υmn
σk

(x0, x1, x2, x3) . (9.10)
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Then by Lemma 9.1 we have

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn

}
=

N∑
k=1

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
=

N∑
k=1

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σk
dχmk
ds

(s) δ
(
x0 − χ0

k(s), . . . , x3 − χ3
k(s)

)
ds

−
∣∣∣det

(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

(
N∑
k=1

σk

)
dzm

ds
(s) δ

(
x0 − z0(s), . . . , x3 − z3(s)

)
ds . (9.11)

Therefore, by inserting (9.7) into (9.11) we deduce

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn

}
=

N∑
k=1

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σk
dχmk
ds

(s) δ
(
x0 − χ0

k(s), . . . , x3 − χ3
k(s)

)
ds = jm , (9.12)

in the sense of distributions, where the contravariant four-vector of the charge current (j0, j1, j2, j3)

is given as in (3.16).

Definition 9.2. Consider a totally neutral system of N point charges σ1, σ2, . . . , σN satisfying

N∑
k=1

σk = 0, (9.13)

with four dimensional trajectory of the k-th particle χk(s) =
(
χ0
k(s), χ1

k(s), χ2
k(s), χ3

k(s)
)

: [a, b]→ R4

∀ k = 1, 2, . . . N , parameterized by the same proper parameter s ∈ [a, b]. We define the multipole

momentum D(s) =
(
D0(s),D1(s),D2(s),D3(s)

)
: [a, b]→ R4 of this system by:

Dj(s) :=

N∑
k=1

σkχ
j
k(s) =

N∑
k=1

σk

(
χjk(s)− zj(s)

)
∀j = 0, 1, 2, 3 ∀s ∈ [a, b], (9.14)

where z(s) =
(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b]→ R4 is a four-dimensional trajectory of an arbitrary

moving point.

Definition 9.3. Consider an arbitrary moving point with four dimensional trajectory z(s) =(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b] → R4. Moreover, consider a totally neutral system of N point

charges σ1, σ2, . . . , σN (possibly with infinitesimally large absolute values) satisfying

N∑
k=1

σk = 0, (9.15)

86



with four dimensional trajectory of the k-th particle,

χk(s) :=
(
z0(s) + l0k(s), z1(s) + l1k(s), z2(s) + l2k(s), z3(s) + l3k(s)

)
: [a, b]→ R4 ∀ k = 1, 2, . . . N,

parameterized by the same proper parameter s ∈ [a, b], and such that χk(s) is infinitesimally close

to z(s) for every s ∈ [a, b] and every k = 1, 2, . . . , N , so that ljk(s) is infinitesimally small for all

j = 0, 1, 2, 3 and all k = 1, 2, . . . N . In particular this system of charges could be a dipole or the

limiting cases of the totally neutral polarized molecule. Then we define the infinitesimal multipole

momentum D (z(s)) =
(
D0 (z(s)) ,D1 (z(s)) ,D2 (z(s)) ,D3 (z(s))

)
: [a, b] → R4 of this system, with

respect to the center z(s), as follows:

Dj (z(s)) :=

N∑
k=1

σk

({
zj + ljk

}
(s)− zj(s)

)
=

N∑
k=1

σkl
j
k(s) ∀j = 0, 1, 2, 3 ∀s ∈ [a, b]. (9.16)

Although in this definition ljk(s) is assumed to be infinitesimally small and σk is allowed to be

infinitesimally large, the quantity Dj(s) in (9.16) is always assumed to be finite.

Remark 9.1. Obviously, the infinitesimal multipole momentum, defined by (9.16) is a valid con-

travariant four-vector at the point z(s). Indeed since, ljk(s) is infinitesimally small, then under the

change of the coordinate system given by a smooth non-degenerate invertible transformation from

R4 onto R4, having the form 

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3),

(9.17)

we obviously have

D′j (z′) =

N∑
k=1

σk

({
z′j + l′

j
k

}
− z′j

)
=

N∑
k=1

σk

(
f (j)

(
z0 + l0k, . . . , z

3 + l3k
)
− f (j) (z)

)
→

N∑
k=1

σk

(
3∑

n=0

∂f (j)

∂xn
(z) lnk

)
=

3∑
n=0

∂f (j)

∂xn
(z)Dn (z) ∀j = 0, 1, 2, 3. (9.18)

Definition 9.4. Consider an arbitrary moving point with four dimensional trajectory z(s) =(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b]→ R4. Moreover, assume that the infinite trajectory of the motion

z(s) is considered for all instances of time from −∞ to +∞ so that

lim
s→a−

3∑
j=0

((
zj(s)

)2)
= lim
s→b+

3∑
j=0

((
zj(s)

)2)
= +∞ . (9.19)

Next, given an infinitesimal multipole at the point z(s) with the infinitesimal multipole momen-

tum D (z(s)) =
(
D0 (z(s)) ,D1 (z(s)) ,D2 (z(s)) ,D3 (z(s))

)
: [a, b] → R4, define the two-times con-

travariant antisymmetric tensor field of polarization-magnetization of this infinitesimal multipole

87



{Pmn}n,m=0,1,2,3 by:

Pmn(x0, x1, x2, x3) :=

b∫
a

{
Dm (z(s))

dzn

ds
(s)−Dn (z(s))

dzm

ds
(s)

}∣∣∣det
(
{Kpq (zk(s))}p,q=0,1,2,3

)∣∣∣ 12 δ (x0 − z0(s), . . . , x3 − z3(s)
)
ds

∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (9.20)

Remark 9.2. Consider an arbitrary moving point with four dimensional trajectory

z(s) =
(
z0(s), z1(s), z2(s), z3(s)

)
: [a, b] → R4. Moreover, consider a totally neutral system of N

point charges σ1, σ2, . . . , σN (possibly with infinitesimally large absolute values) satisfying

N∑
k=1

σk = 0, (9.21)

with four dimensional trajectory of the k-th particle,

χk(s) :=
(
z0(s) + l0k(s), z1(s) + l1k(s), z2(s) + l2k(s), z3(s) + l3k(s)

)
: [a, b]→ R4 ∀ k = 1, 2, . . . N,

parameterized by the same proper parameter s ∈ [a, b], and such that χk(s) is infinitesimally close

to z(s) for every s ∈ [a, b] and every k = 1, 2, . . . , N , so that ljk(s) is infinitesimally small for all

j = 0, 1, 2, 3 and all k = 1, 2, . . . N . Then, since ljk(s) is infinitesimally small, by (9.9), (9.16) and

(9.20) we deduce

Υmn(x0, x1, x2, x3) → Pmn(x0, x1, x2, x3) ∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (9.22)

Therefore, by (9.22) we can rewrite (9.12) as:

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Pmn
}

= jm , (9.23)

where (j0, j1, j2, j3) is the contravariant four-vector of the charge current, created by the infinitesimal

multipole.

Definition 9.5. Given a union of finite number of infinitesimal multipoles, we define the two-times

contravariant antisymmetric tensor field of polarization-magnetization {Pmn}n,m=0,1,2,3 of this union

as a sum of polarizations of every infinitesimal multipole in the union. Then, by (9.23) we have

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Pmn
}

= jmp , (9.24)

where (j0
p , j

1
p , j

2
p , j

3
p) is the contravariant four-vector of the charge current of polarization, created by

the union of infinitesimal multipoles.
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Next, given a moving dielectric and para/dia-magnetic continuum medium, by (2.115) we have

the following Maxwell Equations:

3∑
j=0

∂

∂xj

(
3∑

m=0

3∑
n=0

|det {Kp q}p,q=0,1,2,3|−
1
2 KkmKjn

(
∂An
∂xm

− ∂Am
∂xn

))

= −4π |det {Kp q}p,q=0,1,2,3|−
1
2
(
jk + jkp

)
∀ k = 0, 1, 2, 3 , (9.25)

where (j0
p , j

1
p , j

2
p , j

3
p) is the contravariant four-vector of the charge current of polarization-magnetization,

created by the dielectric and para/dia-magnetic medium (this medium can be represented as the

union of infinitesimal multipoles) and (j0, j1, j2, j3) is the contravariant four-vector of the free (real)

charge current. Therefore, by (9.24) and (9.25) we deduce the following Maxwell Equations in the

dielectric medium:

3∑
j=0

∂

∂xj

{
|det {Kp q}p,q=0,1,2,3|−

1
2

(
4πP kj +

3∑
m=0

3∑
n=0

KkmKjn

(
∂An
∂xm

− ∂Am
∂xn

))}

= −4π |det {Kp q}p,q=0,1,2,3|−
1
2 jk ∀ k = 0, 1, 2, 3 . (9.26)

Next in the case of the simplest isotropic dielectric and para/dia-magnetic continuum medium we

have

Pmn =

3∑
j=0

3∑
j=0

κKmjKnk

(
∂Ak
∂xj

− ∂Aj
∂xk

)

+

3∑
k=0

3∑
j=0

(γ − κ)

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1 (
Kmjunuk + umujKnk

)(∂Ak
∂xj

− ∂Aj
∂xk

)
=

3∑
j=0

3∑
j=0

κKmjKnk

(
∂Ak
∂xj

− ∂Aj
∂xk

)

+

3∑
k=0

3∑
j=0

(γ−κ)

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1 (
unKmj − umKnj

)
uk
(
∂Ak
∂xj

− ∂Aj
∂xk

)
∀m,n = 0, 1, 2, 3.

(9.27)

where γ and κ are scalar fields and (u1, u2, u3, u4) is the contravariant four-vector field of velocities

of the moving dielectric continuum medium. In other words,

P kj =

3∑
j=0

3∑
j=0

κKjmKkn

(
∂An
∂xm

− ∂Am
∂xn

)
+

3∑
m=0

3∑
n=0

(γ−κ)
(
Kkmũj ũn + ũkũmKjn

)(∂An
∂xm

− ∂Am
∂xn

)

=

3∑
j=0

3∑
j=0

κKjmKkn

(
∂An
∂xm

− ∂Am
∂xn

)
+

3∑
m=0

3∑
n=0

(γ − κ)
(
ũjKkm − ũkKjm

)
ũn
(
∂An
∂xm

− ∂Am
∂xn

)
∀ k, j = 0, 1, 2, 3. (9.28)

where we denote

ũj :=

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)− 1
2

uj ∀ j = 0, 1, 2, 3 . (9.29)
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Thus, inserting (9.28) into (9.26) implies

3∑
j=0

∂

∂xj

{
3∑

m=0

3∑
n=0

|det {Kp q}p,q=0,1,2,3|−
1
2

(

(1 + 4πκ)

(
Kkm +

4π(γ − κ)√
1 + 4πκ

ũkũm
)(

Kjn +
4π(γ − κ)√

1 + 4πκ
ũj ũn

))(
∂An
∂xm

− ∂Am
∂xn

)}
= −4π |det {Kp q}p,q=0,1,2,3|−

1
2 jk ∀ k = 0, 1, 2, 3 . (9.30)

(Note here that the normalized quantity (ũ0, ũ1, ũ2, ũ3) is the same as the four-speed on the usual

Theory of Relativity).

9.1 Polarization and magnetization in a cartesian coordinate system

Consider the simplified model of the gravity, ruled by the Lagrangian in (2.219), (2.220) and con-

sider we deal with a cartesian coordinate system. Then, {Kmn}n,m=0,1,2,3 is given by (4.29) and

{Kmn}n,m=0,1,2,3 is given by (4.30), so that
K00 = 1

Kjm = −δjm + vjvm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3,

(9.31)


K00 = 1− |v|2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = vj ∀1 ≤ j ≤ 3 ,

(9.32)

where we denote

(v0, v1, v2, v3) := (1,v) with v := (v1, v2, v3) ∈ R3 . (9.33)

Furthermore, consider {Λmn}n,m=0,1,2,3 as

Λmn = vmvn −Kmn ∀m,n = 0, 1, 2, 3 . (9.34)

Then, by (9.31) {Λmn}n,m=0,1,2,3 is given by
Λ00 = 0

Λjm = δjm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = 0 ∀1 ≤ j ≤ 3.

(9.35)

Next, let {Fmn}n,m=0,1,2,3 be an anti-symmetric two-times covariant tensor, defined by

Fmj :=
∂Aj
∂xm

− ∂Am
∂xj

∀m, j = 0, 1, 2, 3 . (9.36)
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Then, denoting

(x0, x1, x2, x3) = (x0,x) where x := (x1, x2, x3) ∈ R3 , (9.37)

(A0, A1, A2, A3) = (Ψ,−A) where A0 = Ψ and (A1, A2, A3) = −A, (9.38)

B := (B1, B2, B3) := curlxA,

E := (E1, E2, E3) := −∇xΨ− ∂A
∂x0 ,

D(0) := (D
(0)
1 , D

(0)
2 , D

(0)
3 ) := E + v ×B,

H(0) := (H
(0)
1 , H

(0)
2 , H

(0)
3 ) := B + v ×D(0) = B + v × (E + v ×B) ,

(9.39)

and

Fmn :=

3∑
k=0

3∑
j=0

KmjKnkFjk =

3∑
k=0

3∑
j=0

KmjKnk

(
∂Ak
∂xj

− ∂Aj
∂xk

)
∀m,n = 0, 1, 2, 3, (9.40)

by Lemma 4.1 we have 

F00 = 0

F0j = −Fj0 = Ej ∀ j = 1, 2, 3

Fjj = 0 ∀ j = 1, 2, 3

F12 = −F21 = −B3

F13 = −F31 = B2

F23 = −F32 = −B1 ,

(9.41)

and 

F 00 = 0

F 0j = −F j0 = −D(0)
j ∀ j = 1, 2, 3,

F jj = 0 ∀ j = 1, 2, 3,

F 12 = −F 21 = −H(0)
3

F 13 = −F 31 = H
(0)
2

F 23 = −F 32 = −H(0)
1 .

(9.42)

Next, given a moving dielectric and para/dia-magnetic medium, represented by a system of N0

infinitesimal multipoles at the points

zk(x0) :=:
(
z0
k(x0), z1

k(x0), z2
k(x0), z3

k(x0)
)

=
(
x0, zk(x0)

)
where

zk(x0) :=
(
z1
k(x0), z2

k(x0), z3
k(x0)

)
∈ R3 ∀ k = 1, 2, . . . , N0 , (9.43)

parameterized by the first coordinate z0
k(z0) := z0, with the infinitesimal multipole momentum

Dk
(
zk(z0)

)
: (−∞,+∞)→ R4, given by

Dk
(
zk(z0)

)
=
(
D0
k

(
zk(z0)

)
,D1

k

(
zk(z0)

)
,D2

k

(
zk(z0)

)
,D3

k

(
zk(z0)

))
=
(
0,d(z0)

)
where d(z0) :=

(
D1
k

(
zk(z0)

)
,D2

k

(
zk(z0)

)
,D3

k

(
zk(z0)

))
∈ R3 ∀ k = 1, 2, . . . , N0 , (9.44)
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where obviously we have D0
k

(
zk(z0)

)
= 0, consider the two-times contravariant antisymmetric tensor

{Pmn}n,m=0,1,2,3, given by Definition 9.5 together with (9.20), so that we have

Pmn(x0, x1, x2, x3) =

N0∑
k=1

+∞∫
−∞

{
Dmk

(
zk(z0)

) dznk
dz0

(z0)−Dnk
(
zk(z0)

) dzmk
dz0

(z0)

}
δ
(
x0 − z0

k(z0), x1 − z1
k(z0), x2 − z2

k(z0), x3 − z3
k(z0)

)
dz0

=

N0∑
k=1

{
Dmk

(
zk(x0)

) dznk
dx0

(x0)−Dnk
(
zk(x0)

) dzmk
dx0

(x0)

}
δ
(
x1 − z1

k(x0), x2 − z2
k(x0), x3 − z3

k(x0)
)

∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (9.45)

Thus, by (9.24) we have
3∑

n=0

∂Pmn

∂xn
= jmp , (9.46)

In particular, by (9.45) we have

P 0n(x0, x1, x2, x3) = −
N0∑
k=1

Dnk
(
zk(x0)

)
δ
(
x1 − z1

k(x0), x2 − z2
k(x0), x3 − z3

k(x0)
)

∀n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (9.47)

Thus, considering P := (P1, P2, P3) ∈ R3 and M := (M1,M2,M3) ∈ R3, defined by

P 00 = 0

P 0j = −P j0 = −Pj ∀ j = 1, 2, 3,

P jj = 0 ∀ j = 1, 2, 3,

P 12 = −P 21 = −M3

P 13 = −P 31 = M2

P 23 = −P 32 = −M1 ,

(9.48)

by (9.47) and (9.45) we have

P(x0, x1, x2, x3) =

N0∑
k=1

dk
(
zk(x0)

)
δ
(
x1 − z1

k(x0), x2 − z2
k(x0), x3 − z3

k(x0)
)

∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (9.49)

and

M(x0, x1, x2, x3) =

N0∑
k=1

dzk
dx0

(x0)× dk
(
zk(x0)

)
δ
(
x1 − z1

k(x0), x2 − z2
k(x0), x3 − z3

k(x0)
)

∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 . (9.50)
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On the other hand by (9.48) and (9.46) we have

divx P = −
3∑

n=1

∂P 0n

∂xn
= −j0

p = −ρp , (9.51)

and
∂P1

∂x0
−
(
∂M3

∂x2
− ∂M2

∂x3

)
=
∂P 10

∂x0
+

3∑
n=1

∂P 1n

∂xn
= j1

p , (9.52)

∂P2

∂x0
−
(
∂M1

∂x3
− ∂M3

∂x1

)
=
∂P 20

∂x0
+

3∑
n=1

∂P 2n

∂xn
= j2

p , (9.53)

∂P3

∂x0
−
(
∂M2

∂x1
− ∂M1

∂x2

)
=
∂P 30

∂x0
+

3∑
n=1

∂P 3n

∂xn
= j3

p , (9.54)

so that divx P = −ρp
∂P
∂x0 − curlxM = jp .

(9.55)

where as before, we denote (x0, x1, x2, x3) := (x0,x) with x := (x1, x2, x3) ∈ R3 and (j0
p , j

1
p , j

2
p , j

3
p) :=

(ρp, jp) with jp := (j1
p , j

2
p , j

3
p) ∈ R3. However, by (9.40) and (9.31) we rewrite (9.25) as

3∑
j=0

∂F kj

∂xj
= −4π

(
jk + jkp

)
∀ k = 0, 1, 2, 3 , (9.56)

where Fmn is given by (9.42) and (j0, j1, j2, j3) := (ρ, j) is the contravariant four vector of the free

(real) charge current with j := (j1, j2, j3) ∈ R3. Therefore, similarly to that we get in (9.55) we

rewrite (9.56) as: divx D(0) = 4π (ρ+ ρp)

curlxH(0) = 4π (j + jp) + ∂D(0)

∂x0 ,

(9.57)

where by (9.39) we haveD(0) = E + v ×B,

H(0) = B + v ×D(0) = B + v × (E + v ×B) .

(9.58)

Thus, by (9.55) we rewrite (9.57) as:divx

(
D(0) + 4πP

)
= 4π ρ

curlx
(
H(0) + 4πM

)
= 4π j + ∂

∂x0

(
D(0) + 4πP

)
.

(9.59)

Therefore, denoting: D := D(0) + 4πP = E + v ×B + 4πP

H := H(0) + 4πM = B + v × (E + v ×B) + 4πM ,

(9.60)
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we rewrite (9.59) or equivalently (9.26) in the cartesian coordinate system as:

divx D = 4πρ

curlxH = 4πj + ∂D
∂x0

curlxE + ∂B
∂x0 = 0

divx B = 0 ,

(9.61)

where D is the electric displacement field and H is an auxiliary magnetic field in the dielectric

medium, given by D := E + v ×B + 4πP

H := B + v × (E + v ×B) + 4πM .

(9.62)

Next consider two-times contravariant tensor {Gmn}m,n=0,1,2,3 defined by:

Gmn :=

3∑
k=0

3∑
j=0

(
Kmjunuk + umujKnk

)
Fjk =

3∑
k=0

3∑
j=0

(
unKmj − umKnj

)
ukFjk

∀m,n = 0, 1, 2, 3, (9.63)

where (u1, u2, u3, u4) is the contravariant four-vector field of velocities of the moving dielectric con-

tinuum medium and we have

(u0, u1, u2, u3) := (1,u) with u := (u1, u2, u3) ∈ R3 . (9.64)

In particular, since the tensor {Gmn}m,n=0,1,2,3 is antisymmetric, i.e. Gmn = −Gnm ∀m,n =

0, 1, 2, 3, then we have 

G00 = 0

Gmm = 0 ∀m = 1, 2, 3,

G0m = −Gm0

Gmn = −Gnm ∀m 6= n = 1, 2, 3.

(9.65)

Next by (9.34), since {Fjk}j,k=0,1,2,3 is an antisymmetric matrix, we rewrite (9.63) as:

Gmn =

3∑
k=0

3∑
j=0

(
un(vmvj − Λmj)− um(vnvj − Λnj)

)
ukFjk = −

3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

+

3∑
k=0

3∑
j=0

(
unvmvj − umvnvj

)
ukFjk = −

3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

+ (unvm − umvn)

 3∑
j=0

3∑
k=0

vjukFjk

 = −
3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

+

3∑
k=0

3∑
j=0

(un(vm − um)− um(vn − un))

 3∑
j=0

3∑
k=0

(vj − uj)ukFjk

 ∀m,n = 0, 1, 2, 3. (9.66)
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So,

Gmn = −
3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

+ (un(um − vm)− um(un − vn))

 3∑
j=0

3∑
k=0

(uj − vj)ukFjk

 ∀m,n = 0, 1, 2, 3. (9.67)

Next consider two-times contravariant tensor {G̃mn}m,n=0,1,2,3 defined by:

− G̃mn :=

3∑
k=0

3∑
j=0

(
Λmjunuk + umujΛnk

)
Fjk =

3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

∀m,n = 0, 1, 2, 3. (9.68)

In particular, since the tensor {G̃mn}m,n=0,1,2,3 is antisymmetric, i.e. G̃mn = −G̃nm ∀m,n =

0, 1, 2, 3, then we have 

G̃00 = 0

G̃mm = 0 ∀m = 1, 2, 3,

G̃0m = −G̃m0

G̃mn = −G̃nm ∀m 6= n = 1, 2, 3.

(9.69)

On the other hand, by (9.67) and (9.68) together we deduce:

Gmn = G̃mn + (un(um − vm)− um(un − vn))

 3∑
j=0

3∑
k=0

(uj − vj)ukFjk

 ∀m,n = 0, 1, 2, 3.

(9.70)

In particular, in the case we have

|u− v|2 � 1 , (9.71)

by (9.70), using (9.33) and (9.64), we rewrite (9.63) as

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1

Gmn =

3∑
k=0

3∑
j=0

(
3∑
r=0

3∑
d=0

Krd u
r ud

)−1 (
unKmj − umKnj

)
ukFjk

≈ G̃mn = −
3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk

∀m,n = 0, 1, 2, 3. (9.72)
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Next we rewrite (9.68) as:

− G̃mn =

3∑
k=0

3∑
j=0

(
unΛmj − umΛnj

)
ukFjk =

3∑
j=0

(
unΛmj − umΛnj

)(
Fj0 +

3∑
k=1

ukFjk

)

=
(
unΛm0 − umΛn0

)(
F00 +

3∑
k=1

ukF0k

)
+

3∑
j=1

(
unΛmj − umΛnj

)(
Fj0 +

3∑
k=1

ukFjk

)

=
(
unΛm0 − umΛn0

)( 3∑
k=1

ukF0k

)
+

3∑
j=1

(
unΛmj − umΛnj

)
Fj0

+

3∑
j=1

(
unΛmj − umΛnj

)( 3∑
k=1

ukFjk

)
∀m,n = 0, 1, 2, 3. (9.73)

So, by (9.35) and (9.73) we deduce

G̃n0 = −G̃0n =

(
unΛ00 − Λn0

)( 3∑
k=1

ukF0k

)
+

3∑
j=1

(
unΛ0j − Λnj

)
Fj0 +

3∑
j=1

(
unΛ0j − Λnj

)( 3∑
k=1

ukFjk

)
=

−
3∑
j=1

δnjFj0 −
3∑
j=1

δnj

(
3∑
k=1

ukFjk

)
= −Fn0 −

3∑
k=1

ukFnk =

(
En −

3∑
k=1

ukFnk

)
∀n = 1, 2, 3.

(9.74)

Therefore, by (9.41) and (9.74) we have
G̃10 = −G̃01 =

(
E1 − u2F12 − u3F13

)
=
(
E1 +

(
u2B3 − u3B2

))
G̃20 = −G̃02 =

(
E2 − u3F23 − u1F21

)
=
(
E2 +

(
u3B1 − u1B3

))
G̃30 = −G̃03 =

(
E3 − u1F31 − u2F32

)
=
(
E3 +

(
u1B2 − u2B1

))
.

(9.75)

On the other hand, by (9.35) and (9.73) we obtain

− G̃mn =

3∑
j=1

(unδmj − umδnj)Fj0 +

3∑
j=1

(unδmj − umδnj)

(
3∑
k=1

ukFjk

)

= unFm0 − umFn0 + un

(
3∑
k=1

ukFmk

)
− um

(
3∑
k=1

ukFnk

)

= −

(
un

(
Em −

3∑
k=1

ukFmk

)
− um

(
En −

3∑
k=1

ukFnk

))
∀m,n = 1, 2, 3. (9.76)

Thus, considering G := (G1, G2, G3) ∈ R3 and V := (V1, V2, V3) ∈ R3, defined by

G00 = 0

G0j = −Gj0 = −Gj ∀ j = 1, 2, 3,

Gjj = 0 ∀ j = 1, 2, 3,

G12 = −G21 = −V3

G13 = −G31 = V2

G23 = −G32 = −V1 ,

(9.77)
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by (9.74), (9.76), (9.75) and (9.72), together with (9.70), we deduce:
(

3∑
k=0

3∑
d=0

Kkd u
k ud

)−1

G ≈ E + u×B(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1

V =

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1

u×G ≈ u× (E + u×B) ,

(9.78)

provided, we have (9.71). Next in the case of the simplest isotropic continuum medium we rewrite

(9.27) as:

Pmn =

3∑
j=0

3∑
j=0

κKmjKnkFjk + (γ − κ)

(
3∑
k=0

3∑
d=0

Kkd u
k ud

)−1

Gmn ∀m,n = 0, 1, 2, 3 , (9.79)

where γ ad κ are scalar fields. Thus, by (9.48), (9.77) and (9.78), together with (9.79) and (9.42)

we have P ≈ (γ − κ) (E + u×B) + κ (E + v ×B)

M ≈ (γ − κ) u× (E + u×B) + κ (B + v × (E + v ×B)) .

(9.80)

We rewrite (9.81) as:P ≈ γ (E + u×B)− κ (u− v)×B

M ≈ u× (γ (E + u×B− κ (u− v)×B)) + κB− κ(u− v)× (E + v ×B) .

(9.81)

Thus, by (9.81) we rewrite (9.62) as

D ≈ (1 + 4πγ)

(
E +

(
1

1 + 4πγ
v +

4πγ

1 + 4πγ
u− 4πκ

1 + 4πγ
(u− v)

)
×B

)
=

(1 + 4πγ)

(
E +

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×B

)
(9.82)

and

H ≈ (1 + 4πκ)B + (1 + 4πγ)

(
1

1 + 4πγ
v +

4πγ

1 + 4πγ
u

)
×E + v × (v ×B) + 4πγ u× (u×B)

− 4πκu× ((u− v)×B)− 4πκ(u− v)× (E + v ×B) =

(1 + 4πκ)B + (1 + 4πγ)

(
1

1 + 4πγ
v +

4πγ

1 + 4πγ
u− 4πκ

1 + 4πγ
(u− v)

)
×E + v × (v ×B)

+ 4πγ u× (u×B)− 4πκu× ((u− v)×B)− 4πκ(u− v)× (v ×B) = (1 + 4πκ)B

+ (1 + 4πγ)

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×
(

E +

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×B

)
− (1 + 4πγ)

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×
((

1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×B

)
+ v × (v ×B) + 4πγ u× (u×B)− 4πκu× ((u− v)×B)− 4πκ(u− v)× (v ×B) . (9.83)
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Thus, by (9.82) we rewrite (9.83) as:

H ≈ (1 + 4πκ)B +

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×D

− (1 + 4πγ)

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×
((

1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×B

)
+ v × (v ×B) + 4πγ u× (u×B)− 4πκu× ((u− v)×B)− 4πκ(u− v)× (v ×B) =

(1 + 4πκ)B +

(
1 + 4πκ

1 + 4πγ
v +

(
1− 1 + 4πκ

1 + 4πγ

)
u

)
×D

+ (1 + 4πκ)
(1 + 4πγ)− (1 + 4πκ)

1 + 4πγ
(u− v)× ((u− v)×B) . (9.84)

Therefore, denoting
γ0 := 1

1+4πγ

κ0 := (1 + 4πκ)

ũ := (γ0κ0v + (1− γ0κ0) u) =
(

1+4πκ
1+4πγ v +

(
1− 1+4πκ

1+4πγ

)
u
)
,

(9.85)

and using (9.71) we rewrite (9.82) and (9.84) as:E = γ0D− ũ×B

H = κ0B + ũ×D + κ0 (1− γ0κ0) (u− v)× ((u− v)×B) .

(9.86)

In particular, if

|κ0| |1− γ0κ0| |u− v|2 � 1 , (9.87)

we have E = γ0D− ũ×B

H = κ0B + ũ×D .

(9.88)

Thus, the case of (9.87), by (9.88) we rewrite (9.61), or equivalently we approximate (9.30) in the

cartesian coordinate system as:

divx D = 4πρ

curlxH = 4πj + ∂D
∂x0

curlxE + ∂B
∂x0 = 0

divx B = 0

E = γ0D− (γ0κ0v + (1− γ0κ0) u)×B

H = κ0B + (γ0κ0v + (1− γ0κ0) u)×D ,

(9.89)

provided we have

|κ0| |1− γ0κ0| |u− v|2 � 1 . (9.90)
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Moreover, we can rewrite (9.89) as:

divx D = 4πρ

curlx (κ0B) = 4πj + ∂D
∂x0 − curlx (ũ×D)

curlx (γ0D) = −
(
∂B
∂x0 − curlx (ũ×B)

)
divx B = 0

E = γ0D− ũ×B

H = κ0B + ũ×D

ũ := (γ0κ0v + (1− γ0κ0) u) .

(9.91)

We call γ0 the dielectric permeability of the dielectric medium, we call κ0 the magnetic permeability

of the medium and we call the speed-like vector field ũ ∈ R3 the optical displacement of the moving

dielectric medium. Finally, note that the Maxwell Equations in the medium in the form (9.91) agree

with the Fizeau experiment.

10 Detailed proves of the stated Theorems, Propositions and

Lemmas

First of all we would like to remind the definitions of the vectors, covectors and covariant and

contravariant tensors of second order in R4:

Definition 10.1. Let R4 be an open domain and let S := S(R4) be the group of all smooth

non-degenerate invertible transformations from R4 onto R4 having the form

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3).

(10.1)

We say that a one-component field a := a(x0, x1, x2, x3), defined on R4, is a covariant (contravariant)

scalar field on the group S, if under the coordinate transformation in the group S of the form (10.1)

this field transforms as:

a′ = a. (10.2)

Next we say that a four-component field (a0, a1, a2, a3), defined on R4, is a contravariant four-vector

field on the group S, if under the coordinate transformation in the group S of the form (10.1) every

of four components of this field transforms as:

a′j =

3∑
k=0

∂f (j)

∂xk
ak ∀j = 0, 1, 2, 3. (10.3)
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Next we say that a four-component field (a0, a1, a2, a3), defined on R4, is a four-covector field on

the group S, if under the coordinate transformation in the group S of the form (10.1) every of four

components of this field transforms as:

aj =

3∑
k=0

∂f (k)

∂xj
a′k ∀j = 0, 1, 2, 3. (10.4)

Furthermore, we say that a 16-component field {amn}m,n=0,1,2,3, defined on R4, is a two-times

covariant tensor field on the group S, if under the coordinate transformation in the group S of the

form (10.1) every of 16 components of this field transforms as:

amn =

3∑
j=0

3∑
k=0

∂f (k)

∂xm
∂f (j)

∂xn
a′kj ∀m,n = 0, 1, 2, 3. (10.5)

Next we say that a 16-component field {amn}m,n=0,1,2,3, defined on R4, is a two-times contravariant

tensor field on the group S, if under the coordinate transformation in the group S of the form (10.1)

every of 16 components of this field transforms as:

a′mn =

3∑
j=0

3∑
k=0

∂f (m)

∂xk
∂f (n)

∂xj
akj ∀m,n = 0, 1, 2, 3. (10.6)

Then it is well known that for every two contravariant four-vectors (a0, a1, a2, a3) and (b0, b1, b2, b3)

on S, the 16-component field {cmn}m,n=0,1,2,3, defined in every coordinate system by

cmn := ambn ∀m,n = 0, 1, 2, 3, (10.7)

is a two-times contravariant tensor on S. Moreover, for every two four-covectors (a0, a1, a2, a3) and

(b0, b1, b2, b3) on S, the 16-component field {cmn}m,n=0,1,2,3, defined in every coordinate system by

cmn := ambn ∀m,n = 0, 1, 2, 3, (10.8)

is a two-times covariant tensor on S. It is also well known that if {amn}m,n=0,1,2,3 is a two times

contravariant tensor field on the group S and if a 16-component field {bmn}m,n=0,1,2,3 satisfies

3∑
k=0

amkbkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3, (10.9)

then {bmn}m,n=0,1,2,3 is a two-times covariant tensor on S. Next it is well known that, given a four-

covector (a0, a1, a2, a3) a four-vector (b0, b1, b2, b3), a two-times covariant tensor {cmn}m,n=0,1,2,3

and a two-times contravariant tensor {dmn}m,n=0,1,2,3 on the group S, the quantities

3∑
k=0

akb
k and

3∑
m=0

3∑
n=0

cmnd
mn (10.10)

are covariant (contravariant) scalars on S, the four-component fields defined by{ 3∑
k=0

dmkak

}
m=0,1,2,3

and
{ 3∑
k=0

cmkb
k
}
m=0,1,2,3

(10.11)
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are covariant four-vector and contravariant four-covector on S and moreover, 16-component fields

{ĉmn}m,n=0,1,2,3 and {d̂mn}m,n=0,1,2,3 defined by

ĉmn :=

3∑
k=0

3∑
j=0

dmjdnkcjk and d̂mn :=

3∑
j=0

3∑
k=0

cmjcnkd
jk ∀m,n = 0, 1, 2, 3, (10.12)

are two-times contravariant and two-times covariant tensors on S. Next, it is also well known

that given a two-times covariant tensor {cmn}m,n=0,1,2,3 and a two-times contravariant tensor

{dmn}m,n=0,1,2,3 on the group S the 16-component fields {cnm}m,n=0,1,2,3 and {dnm}m,n=0,1,2,3 are

also two-times covariant and two-times contravariant tensors on S. Finally, it is well known that, if

a := a(x0, x1, x2, x3) is a scalar field on the group S, then the four-component field (w0, w1, w2, w3)

defined by:

wj :=
∂a

∂xj
∀ j = 0, 1, 2, 3, (10.13)

is a four-covector field on the group S.

Proof of Proposition 2.1. By (2.8) we obviously deduce that {Λmn}m,n=0,1,2,3 is a symmetric two-

times contravariant tensor field. Next, as in (2.5), by (2.4) we have

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 ∀ (x0, x1, x2, x3) ∈ R4. (10.14)

Moreover, by (2.4) we deduce

3∑
j=0

vjwj =

 3∑
j=0

3∑
k=0

Kjkwjwk

 1
2

, (10.15)

and thus, by (2.8), (10.15) and (2.4) we have

3∑
j=0

Λmjwj = 0 ∀m = 0, 1, 2, 3 . (10.16)

Next, fix a constant point (x0, x1, x2, x3) ∈ R4. Then, since Kmn(x0, x1, x2, x3) has one positive and

three negative eigenvalues, by the Sylvester’s law of inertia there exist a coordinate system, that we

now fix, such that at the fixed point (x0, x1, x2, x3) we have
K00(x0, x1, x2, x3) = 1

Kjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

K0j(x0, x1, x2, x3) = Kj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.17)

Then, we also have
K00(x0, x1, x2, x3) = 1

Kjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

K0j(x
0, x1, x2, x3) = Kj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.18)
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In particular, by (2.8) and (10.17) we have at the point (x0, x1, x2, x3):
Λ00(x0, x1, x2, x3) =

(
v0(x0, x1, x2, x3)

)2 − 1

Λjm(x0, x1, x2, x3) = δjm + vj(x0, x1, x2, x3)vm(x0, x1, x2, x3) ∀1 ≤ j,m ≤ 3

Λ0j(x0, x1, x2, x3) = Λj0(x0, x1, x2, x3) = v0(x0, x1, x2, x3)vj(x0, x1, x2, x3) .

(10.19)

Furthermore, by (10.19), (10.14) and (10.18), using Lemma 11.4 from the Appendix, we deduce that

the matrix Λmn(x0, x1, x2, x3) is degenerate and moreover, it has one vanishing and three positive

eigenvalues at the point (x0, x1, x2, x3). Thus, since (x0, x1, x2, x3) ∈ R4 was chosen arbitrary, this

completes the proof.

Proof of Proposition 2.2. Consider {Kmn}m,n=0,1,2,3,, given as in (2.17) by

Kmn = vjvm − Λjm ∀ j,m = 0, 1, 2, 3 . (10.20)

Next, fix a constant point (y0, y1, y2, y3) ∈ R4. Then, since Λmn(y0, y1, y2, y3) has one vanishing

and three positive eigenvalues, by the Sylvester’s law of inertia there exist a coordinate system, that

we now fix, such that at the fixed point (y0, y1, y2, y3) we have
Λ00(y0, y1, y2, y3) = 0

Λjm(y0, y1, y2, y3) = δjm ∀1 ≤ j,m ≤ 3

Λ0j(y0, y1, y2, y3) = Λj0(y0, y1, y2, y3) = 0 ∀1 ≤ j ≤ 3 .

(10.21)

Moreover, by (2.15) and by (10.21) in the particular point (y0, y1, y2, y3) we must have

wj(y
0, y1, y2, y3) = 0 ∀ j = 1, 2, 3. (10.22)

Then by (10.22) and (2.16) we deduce

v0(y0, y1, y2, y3)w0(y0, y1, y2, y3) > 0 , (10.23)

and in particular, at the point (y0, y1, y2, y3) we must have

v0(y0, y1, y2, y3) 6= 0 . (10.24)

Thus, by (10.20), (10.21) and (10.24), using Lemma 11.5 from the Appendix we deduce that at the

point (y0, y1, y2, y3) we have

det
({
Kmn(y0, y1, y2, y3)

}
m,n=0,1,2,3

)
6= 0 , (10.25)

and moreover, the matrix {Kmn(y0, y1, y2, y3)}0≤m,n≤3 necessary has one positive and three negative

eigenvalues at the point (y0, y1, y2, y3). Thus, since a point (y0, y1, y2, y3) ∈ R4 was chosen arbitrary,

we deduce that the tensor field {Kmn}m,n=0,1,2,3, given by (10.20) indeed forms a contravariant
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pseudo-metrics and a valid generalized-Lorentz’s structure on R4. On the other hand, by (2.15) and

(10.20), at every point (x0, x1, x2, x3) ∈ R4 we have

3∑
j=0

Kjm wj = vm

 3∑
j=0

vjwj

− 3∑
j=0

Λjmwj = vm

 3∑
j=0

vjwj

 ∀m = 0, 1, 2, 3 . (10.26)

Thus, by (10.26) we deduce we also infer

3∑
m=0

 3∑
j=0

Kjm wj

wm =

 3∑
j=0

vjwj

2

> 0 ∀ (x0, x1, x2, x3) ∈ R4 , (10.27)

so, by (10.27) and (2.16) we get

3∑
j=0

vjwj =

 3∑
j=0

3∑
k=0

Kjm wjwk

 1
2

> 0 ∀ (x0, x1, x2, x3) ∈ R4 , (10.28)

and moreover, by the Definition 2.3, pseudo-metrics Kjm and the time direction (w0, w1, w2, w3) are

weakly correlated. Finally, by (10.28) and (10.26) we deduce

vm =

 3∑
j=0

3∑
k=0

Kjm wjwk

− 1
2
 3∑
j=0

Kjmwj

 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

(10.29)

This completes the proof.

Proof of Theorem 2.1. Let 

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3).

(10.30)

be the corresponding change of coordinates and assume that in the first coordinate system we have
Λ00 = 0 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = 0 ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn := δmn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

(10.31)

and (
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4. (10.32)

However, by (10.4) we have

∂ϕ

∂xj
=

3∑
k=0

∂f (k)

∂xj
∂ϕ

∂x′k
∀j = 0, 1, 2, 3 , (10.33)
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and by (10.6) we have

Λ′mn =

3∑
j=0

3∑
k=0

∂f (m)

∂xk
∂f (n)

∂xj
Λkj ∀m,n = 0, 1, 2, 3. (10.34)

Thus, by (10.32) and (10.33) we have

δ0j =

3∑
k=0

∂f (k)

∂xj
∂ϕ

∂x′k
∀j = 0, 1, 2, 3 . (10.35)

Moreover, by (10.31) and (10.34) we deduce

Λ′mn =

3∑
j=1

3∑
k=1

∂f (m)

∂xk
∂f (n)

∂xj
δkj =

3∑
j=1

∂f (m)

∂xj
∂f (n)

∂xj
∀m,n = 0, 1, 2, 3. (10.36)

In particular, by (10.36) we deduce that the following identity
Λ′

00
= 0 ∀(x′0, x′1, x′2, x′3) ∈ R4

Λ′
0j

= Λ′
j0

= 0 ∀ j = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4

Λ′
mn

= δmn ∀m,n = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4,

(10.37)

is equivalent to identity: 

3∑
k=1

∣∣∣∂f(0)

∂xk

∣∣∣2 = 0

3∑
k=1

∂f(0)

∂xk
∂f(j)

∂xk
= 0 ∀ j = 1, 2, 3

3∑
j=1

∂f(m)

∂xj
∂f(n)

∂xj = δmn ∀m,n = 1, 2, 3.

(10.38)

In other words, (10.37) is equivalent to the following:
(
∂f(0)

∂x1 ,
∂f(0)

∂x2 ,
∂f(0)

∂x3

)
= 0

3∑
j=1

∂f(j)

∂xm
∂f(j)

∂xn =
3∑
j=1

∂f(m)

∂xj
∂f(n)

∂xj = δmn ∀m,n = 1, 2, 3.
(10.39)

However, using Corollary 11.1 from the Appendix, we deduce that (10.39) is equivalent to the

following: 
x′0 = ζ(x0),

x′m =
3∑
j=1

Amj(x
0)xj + zm(x0) ∀m = 1, 2, 3 ,

(10.40)

where {Amn(x0)}n,m=1,2,3 ∈ R3×3 is a 3× 3-matrix, depending on the coordinate x0 only (indepen-

dent on x := (x1, x2, x3)), and satisfying

3∑
j=1

Amj(x
0)Anj(x

0) =

3∑
j=1

Ajm(x0)Ajn(x0) = δmn ∀m,n = 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 ,

(10.41)

ζ(x0) ∈ R is depending on the coordinate x0 only (independent on x := (x1, x2, x3)) and z(x0) :=(
z1(x0), z2(x0), z3(x0)

)
∈ R3 is a three-dimensional vector field, depending on the coordinate x0
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only (independent on x := (x1, x2, x3)). So, (10.37) is equivalent to (10.40). On the other hand, by

(10.35) the following equality(
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (1, 0, 0, 0) ∀ (x′0, x′1, x′2, x′3) ∈ R4 (10.42)

is equivalent to

δ0j =

3∑
k=0

∂f (k)

∂xj
δ0k =

∂f (0)

∂xj
∀j = 0, 1, 2, 3 . (10.43)

In other words, (10.42) is equivalent to the following:

x′0 = x0 + c , (10.44)

where c is a constant independent on (x0, x1, x2, x3) ∈ R4. Finally, by the above, (10.37) and (10.42)

together are equivalent to (10.40) and (10.44) together. In other words, (10.37) and (10.42) together

are equivalent to (2.44). This completes the proof.

Proof of Theorem 2.2. Let 

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3).

(10.45)

be the corresponding change of coordinates and assume that in the first coordinate system we have
K00 = 1 ∀ (x0, x1, x2, x3) ∈ R4

K0j = Kj0 = 0 ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Kjm := −δjm ∀ j,m = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

(10.46)


Λ00 = 0 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = 0 ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn := δmn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

(10.47)

and (
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (1, 0, 0, 0) ∀ (x0, x1, x2, x3) ∈ R4. (10.48)

In particular, denoting a two-times contravariant tensor {Ξmn}m,n=0,1,2,3, defined by

Ξmn := Kmn + Λmn ∀m,n = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (10.49)

by (10.46) and (10.47) we have
Ξ00 = 1 ∀(x0, x1, x2, x3) ∈ R4

Ξ0j = Ξj0 = 0 ∀ j = 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4

Ξjm := 0 ∀ j,m = 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 ,

(10.50)
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However, by (10.6) we have

Ξ′mn =

3∑
j=0

3∑
k=0

∂f (m)

∂xk
∂f (n)

∂xj
Ξkj ∀m,n = 0, 1, 2, 3. (10.51)

Thus, by (10.51) and (10.50) we deduce:

Ξ′mn =
∂f (m)

∂x0

∂f (n)

∂x0
∀m,n = 0, 1, 2, 3. (10.52)

In particular, by (10.52) we deduce that the following identity
Ξ′

00
= 1 ∀(x′0, x′1, x′2, x′3) ∈ R4

Ξ′
0j

= Ξ′
j0

= 0 ∀(x′0, x′1, x′2, x′3) ∈ R4

Ξ′
mn

= 0 ∀m,n = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4,

(10.53)

is equivalent to identity: 

(
∂f(m)

∂x0

)2

= 0 ∀m = 1, 2, 3

∂f(m)

∂x0
∂f(n)

∂x0 = 0 ∀m,n = 1, 2, 3

∂f(j)

∂x0
∂f(0)

∂x0 ∀ j = 1, 2, 3(
∂f(0)

∂x0

)2

= 1 .

(10.54)

In other words, (10.53) is equivalent to the following:
∂f(m)

∂x0 = 0 ∀m = 1, 2, 3(
∂f(0)

∂x0

)2

= 1 .

(10.55)

On the other hand, using Theorem 2.1 we deduce that
Λ′

00
= 0 ∀(x′0, x′1, x′2, x′3) ∈ R4

Λ′
0j

= Λ′
j0

= 0 ∀ j = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4

Λ′
mn

= δmn ∀m,n = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4,

(10.56)

and (
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (1, 0, 0, 0) ∀ (x′0, x′1, x′2, x′3) ∈ R4 (10.57)

together are equivalent to the following relations:
x′0 = x0 + c,

x′m =
3∑
j=1

Amj(x
0)xj + zm(x0) ∀m = 1, 2, 3 ,

(10.58)

where {Amn(x0)}n,m=1,2,3 ∈ R3×3 is a 3× 3-matrix, depending on the coordinate x0 only (indepen-

dent on x := (x1, x2, x3)), and satisfying

3∑
j=1

Amj(x
0)Anj(x

0) =

3∑
j=1

Ajm(x0)Ajn(x0) = δmn ∀m,n = 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 ,

(10.59)
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c ∈ R is a constant (independent on (x0, x1, x2, x3) ∈ R4) and z(x0) :=
(
z1(x0), z2(x0), z3(x0)

)
∈ R3

is a three-dimensional vector field, depending on the coordinate x0 only (independent on x :=

(x1, x2, x3)). Therefore, inserting (10.55) into (10.58) we deduce that, (10.53), (10.56) and (10.57)

together are equivalent to (10.58), where Amj and zm are constants (independent on x0). So, we

deduced that 
K ′

00
= 1 ∀ (x′0, x′1, x′2, x′3) ∈ R4

K ′
0j

= K ′
j0

= 0 ∀ j = 1, 2, 3 ∀ (x′0, x′1, x′2, x′3) ∈ R4

K ′
jm

:= −δjm ∀ j,m = 1, 2, 3 ∀ (x′0, x′1, x′2, x′3) ∈ R4 ,

(10.60)

together with (10.56) and (10.57) are equivalent to the following
x′0 = x0 + c0,

x′m =
3∑
j=1

Bmjx
j + cm ∀m = 1, 2, 3 ,

(10.61)

where {Bmn}n,m=1,2,3 ∈ R3×3 is a constant (independent on (x0, x1, x2, x3) ∈ R4) matrix, satisfying

3∑
j=1

BmjBnj =
3∑
j=1

BjmBjn = δmn ∀m,n = 1, 2, 3 , (10.62)

and (c0, c1, c2, c3) ∈ R4 is a constant (independent on (x0, x1, x2, x3) ∈ R4) vector. This completes

the proof.

Proof of Theorem 2.5. First, by Proposition 2.1 we obviously obtain

3∑
j=0

Λjmwj = 0 ∀m = 0, 1, 2, 3 , (10.63)

and
3∑
j=0

3∑
m=0

Jjmr
jrm = 1 ∀ (x0, x1, x2, x3) ∈ R4 . (10.64)

Thus, by (2.122), using Proposition 2.2, we deduce that {Kmn}m,n=0,1,2,3, given by (2.123), is a

symmetric non-degenerate two-times contravariant tensor field, which forms a contravariant pseudo-

metrics and a valid generalized-Lorentz’s structure on R4. Moreover, by Proposition 2.2 we also

have

3∑
j=0

Kmj wj =

 3∑
j=0

vjwj

 vm ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 , (10.65)

3∑
j=0

3∑
k=0

Kjm wjwk =

 3∑
j=0

vjwj

2

∀ (x0, x1, x2, x3) ∈ R4 , (10.66)

and therefore,

vm =

 3∑
j=0

3∑
k=0

Kjm wjwk

− 1
2
 3∑
j=0

Kjmwj

 ∀m = 0, 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4 ,

(10.67)
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So, (v0, v1, v2, v3) is a potential of generalized gravity, corresponding to Kmn and (w0, w1, w2, w3).

In particular, we have

det ({Kmn}m,n=0,1,2,3) < 0 , (10.68)

and there exists the inverse to {Kmn}m,n=0,1,2,3 covariant pseudo-metrics, which satisfies

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3. (10.69)

Moreover, again, at every point in R4 we also have

3∑
j=0

3∑
m=0

Kjmv
jvm = 1 . (10.70)

Next, fix a constant point (x0, x1, x2, x3) ∈ R4. Then, since {Jmn}m,n=0,1,2,3 has one positive

and three negative eigenvalues, by the Sylvester’s law of inertia together with (10.64), using Lemma

11.7 from the Appendix, we deduce that there exist a coordinate system, that we now fix, such that

in this coordinate system at the fixed point (x0, x1, x2, x3) we have
J00(x0, x1, x2, x3) = 1

Jjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

J0j(x0, x1, x2, x3) = Jj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 ,

(10.71)

and

(r0, r1, r2, r3)(x0, x1, x2, x3) = (1, 0, 0, 0) . (10.72)

Then, we also obviously have
J00(x0, x1, x2, x3) = 1

Jjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

J0j(x
0, x1, x2, x3) = Jj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.73)

Moreover, by (2.121), (10.71) and (10.72) we deduce that at the fixed point (x0, x1, x2, x3) we have
Λ00(x0, x1, x2, x3) = 0

Λjm(x0, x1, x2, x3) = δjm ∀1 ≤ j,m ≤ 3

Λ0j(x0, x1, x2, x3) = Λj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.74)

On the other hand, by (2.120) and (10.72), in the same coordinate system we deduce

wj(x
0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 and w0(x0, x1, x2, x3) > 0 . (10.75)

Then, by (10.75) and (2.122) we deduce that

w0(x0, x1, x2, x3)v0(x0, x1, x2, x3) =

3∑
j=0

vj(x0, x1, x2, x3)wj(x
0, x1, x2, x3) > 0 . (10.76)
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In particular, we have

v0(x0, x1, x2, x3) > 0 . (10.77)

Furthermore, using Lemma 11.5 from the Appendix, we deduce that {Kmn}m,n=0,1,2,3 is given at

the point (x0, x1, x2, x3), in the coordinate system, where (10.74) holds, by the following:
K00(x0, x1, x2, x3) =

(
1

(v0)2
− |v|2

(v0)2

)
(x0, x1, x2, x3)

Kjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

K0j(x
0, x1, x2, x3) = Kj0(x0, x1, x2, x3) =

(
vj

v0

)
(x0, x1, x2, x3) ∀1 ≤ j ≤ 3 ,

(10.78)

with v := (v1, v2, v3), and moreover, by Lemma 11.5 from the Appendix, we have

det
(
{Kmn(x0, x1, x2, x3)}m,n=0,1,2,3

)
= −

(
v0
)2

(x0, x1, x2, x3) < 0 . (10.79)

Thus, by (10.79) we obviously have

(−det ({Kmn}m,n=0,1,2,3))
−1

(x0, x1, x2, x3) =
(
v0
)2

(x0, x1, x2, x3) . (10.80)

Therefore, by (10.80) and (10.77) we deduce

(−det ({Kmn}m,n=0,1,2,3))
− 1

2 (x0, x1, x2, x3) = v0(x0, x1, x2, x3) . (10.81)

In particular, by (10.78) and (10.72) we have

3∑
j=0

K0j(x
0, x1, x2, x3)rj(x0, x1, x2, x3) =

K00(x0, x1, x2, x3)r0(x0, x1, x2, x3) +

3∑
j=1

K0j(x
0, x1, x2, x3)rj(x0, x1, x2, x3)

=

(
1

(v0)
2

(
1− |v|2

))
(x0, x1, x2, x3)

and

3∑
j=0

Kmj(x
0, x1, x2, x3)rj(x0, x1, x2, x3) =

Km0(x0, x1, x2, x3)r0(x0, x1, x2, x3) +

3∑
j=0

Kmj(x
0, x1, x2, x3)rj(x0, x1, x2, x3) =(

1

v0
vm
)

(x0, x1, x2, x3) ∀1 ≤ m ≤ 3 . (10.82)

Next, if we consider, a covariant four-covector (S0, S1, S2, S3), defined by:

Sm :=
1

2

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Kmjr
j

− 1

2

 3∑
j=0

vjwj

−1 3∑
j=0

Jmjv
j

 ∀ 0 ≤ m ≤ 3 ,

(10.83)
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then by (10.82), (10.73), (10.75), (10.77) and (10.72) we deduce

S0(x0, x1, x2, x3) =

(
1

2w0

(
1

(v0)2

(
1− |v|2

)
− 1

))
(x0, x1, x2, x3)

and Sm(x0, x1, x2, x3) =

(
1

w0v0
vm
)

(x0, x1, x2, x3) ∀1 ≤ m ≤ 3 . (10.84)

On the other hand, by (10.78) and (10.73) we have
(K00 − J00) (x0, x1, x2, x3) =

(
1

(v0)2

(
1− |v|2

)
− 1
)

(Kjm − Jjm) (x0, x1, x2, x3) = 0 ∀1 ≤ j,m ≤ 3

(K0j − J0j) (x0, x1, x2, x3) = (Kj0 − Jj0) (x0, x1, x2, x3) = w0

w0v0
vj ∀1 ≤ j ≤ 3 .

(10.85)

Thus, by (10.84) and (10.85) we deduce
(K00 − J00) (x0, x1, x2, x3) = 2(w0S0)(x0, x1, x2, x3)

(Kjm − Jjm) (x0, x1, x2, x3) = 0 ∀1 ≤ j,m ≤ 3

(K0j − J0j) (x0, x1, x2, x3) = (Kj0 − Jj0) (x0, x1, x2, x3) = (w0Sj)(x
0, x1, x2, x3) ∀1 ≤ j ≤ 3 .

(10.86)

Therefore, inserting (10.75) into (10.86) we deduce
(K00 − J00) (x0, x1, x2, x3) = 2(w0S0)(x0, x1, x2, x3)

(Kjm − Jjm) (x0, x1, x2, x3) = (wjSm + wmSj) ∀1 ≤ j,m ≤ 3

(K0j − J0j) (x0, x1, x2, x3) = (Kj0 − Jj0) (x0, x1, x2, x3) = (w0Sj + wjS0) ∀1 ≤ j ≤ 3 .

(10.87)

We can rewrite (10.87) in the equivalent form:

Kjm(x0, x1, x2, x3) = Jjm(x0, x1, x2, x3)+(wjSm + wmSj) (x0, x1, x2, x3) ∀ 0 ≤ j,m ≤ 3 . (10.88)

On the other hand, since by (10.71) and (10.75) we have
√√√√ 3∑
m=0

3∑
n=0

Jmnwmwn

 (x0, x1, x2, x3) = w0(x0, x1, x2, x3) , (10.89)

by (10.73), (10.89), (10.76) and (10.81) we deduce:
√√√√√ (− det ({Jmn}m,n=0,1,2,3))

(
3∑

m=0

3∑
n=0

Jmnwmwn

)
(−det ({Kmn}m,n=0,1,2,3))

 (x0, x1, x2, x3)

=

 3∑
j=0

vjwj

 (x0, x1, x2, x3) > 0 . (10.90)

Next, since (x0, x1, x2, x3) ∈ R4 in (10.88) and (10.90) was chosen arbitrary, and moreover since

(10.88) and (10.90) are independent on the coordinate system, we deduce that the inverse to
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{Kmn}m,n=0,1,2,3 covariant pseudo-metrics is given at every point in R4 by the following

Kjm = (Jjm + wjSm + wmSj) ∀ 0 ≤ j,m ≤ 3 , (10.91)

where the covariant four-covector (S0, S1, S2, S3) is defined by (10.83) and, moreover, we have
√√√√√ (− det ({Jmn}m,n=0,1,2,3))

(
3∑

m=0

3∑
n=0

Jmnwmwn

)
(−det ({Kmn}m,n=0,1,2,3))

 =

 3∑
j=0

vjwj

 > 0 . (10.92)

Finally, by (10.66) and (10.92) we deduce

3∑
m=0

3∑
j=0

Kjmwjwm =

(−det ({Jmn}m,n=0,1,2,3))

(
3∑

m=0

3∑
n=0

Jmnwmwn

)
(−det ({Kmn}m,n=0,1,2,3))

. (10.93)

Proof of Theorem 2.6. As before, we have

rm :=

 3∑
j=0

3∑
k=0

Jjkwjwk

− 1
2
 3∑
j=0

Jmjwj

 ∀m = 0, 1, 2, 3, (10.94)

and

Λjm := rjrm − Jjm ∀ j,m = 0, 1, 2, 3 , (10.95)

so that
3∑
j=0

3∑
m=0

Jjmr
jrm = 1 ∀ (x0, x1, x2, x3) ∈ R4 . (10.96)

Next, consider, an arbitrary covariant four-covector (S0, S1, S2, S3) such that a two-times covariant

tensor field {Kmn}m,n=0,1,2,3, defined by (2.129) satisfies (2.130) at every point in R4. Then, by

(2.130) there exists the inverse to {Kmn}m,n=0,1,2,3 two-times contravariant symmetric tensor field

{Kmn}m,n=0,1,2,3, which satisfies

3∑
k=0

KmkKkn =

1 if m = n

0 if m 6= n

∀m,n = 0, 1, 2, 3. (10.97)

Next fix a constant point (x0, x1, x2, x3) ∈ R4. Then, by (10.96), since {Jmn}m,n=0,1,2,3 has one

positive and three negative eigenvalues, by the Sylvester’s law of inertia together with (10.96), using

Lemma 11.7 from the Appendix, we deduce that there exist a coordinate system, that we now fix,

such that in this coordinate system at the fixed point (x0, x1, x2, x3) we have
J00(x0, x1, x2, x3) = 1

Jjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

J0j(x0, x1, x2, x3) = Jj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 ,

(10.98)
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and

(r0, r1, r2, r3)(x0, x1, x2, x3) = (1, 0, 0, 0) . (10.99)

Then, we also obviously have
J00(x0, x1, x2, x3) = 1

Jjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

J0j(x
0, x1, x2, x3) = Jj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.100)

Moreover, by (10.95), (10.98) and (10.99) we deduce that at the fixed point (x0, x1, x2, x3) we have
Λ00(x0, x1, x2, x3) = 0

Λjm(x0, x1, x2, x3) = δjm ∀1 ≤ j,m ≤ 3

Λ0j(x0, x1, x2, x3) = Λj0(x0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 .

(10.101)

Thus, by (10.94) and (10.99), in the same coordinate system we deduce

wj(x
0, x1, x2, x3) = 0 ∀1 ≤ j ≤ 3 and w0(x0, x1, x2, x3) > 0 , (10.102)

and by (10.102) and (10.98) we also have
√√√√ 3∑
m=0

3∑
n=0

Jmnwmwn

 (x0, x1, x2, x3) = w0(x0, x1, x2, x3) . (10.103)

Next by (10.102), (10.100) and (2.129) we deduce that {Kmn(x0, x1, x2, x3)}m,n=0,1,2,3 is given at the

point (x0, x1, x2, x3), in the coordinate system, where (10.100) and (10.99) holds, by the following:
K00(x0, x1, x2, x3) = 1 + (2w0S0) (x0, x1, x2, x3)

Kjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

K0j(x
0, x1, x2, x3) = Kj0(x0, x1, x2, x3) = (w0Sj) (x0, x1, x2, x3) ∀1 ≤ j ≤ 3 .

(10.104)

We rewrite (10.104) as
K00(x0, x1, x2, x3) = 1 +

(
2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3)−
(
w2

0|S|2
)

(x0, x1, x2, x3)

Kjm(x0, x1, x2, x3) = −δjm ∀1 ≤ j,m ≤ 3

K0j(x
0, x1, x2, x3) = Kj0(x0, x1, x2, x3) = (w0Sj) (x0, x1, x2, x3) ∀1 ≤ j ≤ 3 ,

(10.105)

where we denote S := (S1, S2, S3). Thus, by (10.105) for every (h0, h1, h2, h3) ∈ R4, with h :=

(h1, h2, h3) ∈ R3, we have

3∑
j=0

3∑
m=0

Kjm(x0, x1, x2, x3)hjhm =

(
1 + 2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3)(h0)2 −
(∣∣h− h0w0S

∣∣2) (x0, x1, x2, x3) . (10.106)
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Thus, if we assume that
(
1 + 2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3) < 0, then by (10.106) we deduce that

the matrix {−Kmn(x0, x1, x2, x3)}m,n=0,1,2,3 is positively defined, which contradicts to (2.130). On

the other hand, if we assume that
(
1 + 2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3) = 0 then, by (10.106) we

deduce that (h0, h1, h2, h3) ∈ R4, defined byh
0 = 1

hj = w0Sj ∀1 ≤ j ≤ 3 ,

(10.107)

is an eigenvector of the matrix {Kmn(x0, x1, x2, x3)}m,n=0,1,2,3, corresponding to the vanishing eigen-

value, and therefore, the matrix {Kmn(x0, x1, x2, x3)}m,n=0,1,2,3 is degenerate, which also contradicts

to (2.130). So, (2.130) necessary implies(
1 + 2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3) > 0 . (10.108)

Therefore, by (10.108), using Lemma 11.5 from the Appendix, we deduce that the inverse to

{Kmn(x0, x1, x2, x3)}m,n=0,1,2,3 matrix {Kmn(x0, x1, x2, x3)}m,n=0,1,2,3 is given by the following
K00(x0, x1, x2, x3) = 1

1+2w0S0+w2
0|S|2

(x0, x1, x2, x3)

Kjm(x0, x1, x2, x3) =
(

w2
0SjSm

1+2w0S0+w2
0|S|2

)
(x0, x1, x2, x3)− δjm ∀1 ≤ j,m ≤ 3

K0j(x0, x1, x2, x3) = Kj0(x0, x1, x2, x3) =
(

w0Sj
1+2w0S0+w2

0|S|2

)
(x0, x1, x2, x3) ∀1 ≤ j ≤ 3 ,

(10.109)

and moreover, we have(
−det

(
{Kmn}m,n=0,1,2,3

))−1

=
(
−det

(
{Kmn}m,n=0,1,2,3

))
=
(
1 + 2w0S0 + w2

0|S|2
)

(x0, x1, x2, x3) > 0 . (10.110)

Then, by (10.110) and (10.109) we infer

K00(x0, x1, x2, x3) = 1

(− det ({Kmn}m,n=0,1,2,3))
(x0, x1, x2, x3)

Kjm(x0, x1, x2, x3) =

(
w2

0SjSm

(− det ({Kmn}m,n=0,1,2,3))

)
(x0, x1, x2, x3)− δjm ∀1 ≤ j,m ≤ 3

K0j(x0, x1, x2, x3) = Kj0(x0, x1, x2, x3) =

(
w0Sj

(− det ({Kmn}m,n=0,1,2,3))

)
(x0, x1, x2, x3) ∀1 ≤ j ≤ 3.

(10.111)

Thus, by (10.101), (10.99), (10.103) and (10.100) using (10.111) we deduce

Kmn(x0, x1, x2, x3) = vm(x0, x1, x2, x3)vn(x0, x1, x2, x3)− Λmn(x0, x1, x2, x3)

∀m,n = 0, 1, 2, 3 , (10.112)

where the contravariant vector field (v0, v1, v2, v3) is given by

vm :=


√√√√√ −det

(
{Jkn}k,n=0,1,2,3

)
−det

(
{Kkn}k,n=0,1,2,3

)

√√√√ 3∑

j=0

3∑
k=0

Jjkwjwk

 3∑
j=0

ΛmjSj

+ rm


∀m = 0, 1, 2, 3 . (10.113)
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Moreover, by (10.113), (10.99), (10.101) and (10.102) we obtain 3∑
j=0

vjwj

 (x0, x1, x2, x3) =

w0

√√√√√ −det
(
{Jmn}m,n=0,1,2,3

)
−det

(
{Kmn}m,n=0,1,2,3

)
 (x0, x1, x2, x3) > 0 . (10.114)

Next, since (x0, x1, x2, x3) ∈ R4 in (10.112) and (10.114) was chosen arbitrary, and moreover since

(10.112) and the left hand side of (10.114) are independent on the coordinate system, we deduce

that at every point we have

Kmn = vmvn − Λmn ∀m,n = 0, 1, 2, 3 . (10.115)

where the contravariant vector field (v0, v1, v2, v3) is given by (10.113) and moreover, we have 3∑
j=0

vjwj

 > 0 . (10.116)

Thus we can apply Theorem 2.5 to complete the proof.

Proof of Proposition 2.3. Differentiating (2.58) in Definition 2.13 gives,

∂x′m

∂xn
=

Bmn

(
3∑
k=0

wkx
k

)
+

 3∑
j=0

dBmj
ds

(
3∑
k=0

wkx
k

)
xj +

dzm

ds

(
3∑
k=0

wkx
k

)wn ∀m,n = 0, 1, 2, 3 .

(10.117)

However, differentiating the identity

B−1(s) ·B(s) = Id4×4 ∀s ∈ R , (10.118)

gives
dB−1

ds
(s) ·B(s) +B−1(s) · dB

ds
(s) = 0 ∀s ∈ R , (10.119)

that implies,
dB−1

ds
(s) = −B−1(s) · dB

ds
(s) ·B−1(s) ∀s ∈ R . (10.120)

Therefore, by (2.60) in Definition 2.13 together with (10.120) we deduce:

d

ds

 3∑
j=0

wj

({
B−1

}
jm

(s)
) =

3∑
j=0

wj

({
dB−1

ds

}
jm

(s)

)
=

−
3∑
j=0

wj

({
B−1(s) · dB

ds
(s) ·B−1(s)

}
jm

(s)

)
=

−
3∑
k=0

3∑
j=0

wj

({
B−1 · dB

ds

}
jk

(s)

)({
B−1

}
km

(s)
)

= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R . (10.121)
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In particular,

3∑
j=0

wj

({
B−1

}
jm

(s)
)

=

3∑
j=0

wj

({
B−1

}
jm

(0)
)

∀m = 0, 1, 2, 3, ∀s ∈ R . (10.122)

Then, using (10.117) and (10.122), together with (2.60) and (2.61) in Definition 2.13 we deduce:

3∑
m=0

w′m
∂x′m

∂xn
=

3∑
m=0

3∑
j=0

wj

({
B−1

}
jm

(0)
) ∂x′m
∂xn

=

3∑
m=0

3∑
j=0

wj

({
B−1

}
jm

(
3∑
k=0

wkx
k

))
∂x′m

∂xn

=

3∑
m=0

3∑
j=0

wj

({
B−1

}
jm

(
3∑
k=0

wkx
k

))
Bmn

(
3∑
k=0

wkx
k

)

+

3∑
m=0

3∑
j=0

wj

({
B−1

}
jm

(
3∑
k=0

wkx
k

))(
3∑
r=0

dBmr
ds

(
3∑
k=0

wkx
k

)
xr +

dzm

ds

(
3∑
k=0

wkx
k

))
wn

= wn ∀n = 0, 1, 2, 3 . (10.123)

Moreover, by (2.57) and (2.59) in Definition 2.13 we deduce

3∑
m=0

3∑
n=0

Mmnw′mw
′
n =

3∑
m=0

3∑
n=0

Mmn

 3∑
j=0

wj

({
B−1

}
jm

(0)
)( 3∑

k=0

wk
({
B−1

}
kn

(0)
))

=

3∑
j=0

3∑
k=0

M jkwjwk = 1 . (10.124)

This completes the proof.

Proof of Proposition 2.4. By Definition 2.13 we have,

x′m :=

3∑
j=0

Bmj

(
3∑
k=0

wkx
k

)
xj + zm

(
3∑
k=0

wkx
k

)
∀m = 0, 1, 2, 3 , (10.125)

where B(s) := {Bmj(s)}m,j=0,1,2,3 : R→ R4×4 and
(
z0(s), z1(s), z2(s), z3(s)

)
: R→ R4 satisfy

Mmn =

3∑
j=0

3∑
k=0

Bmj(s)Bnk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R , (10.126)

3∑
j=0

wj

({
B−1 · dB

ds

}
jm

(s)

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R , (10.127)

and
3∑

m=0

3∑
j=0

wj

({
B−1

}
jm

(s)
) dzm
ds

(s) = 0 ∀s ∈ R . (10.128)

However, by (2.72) in Proposition 2.3 there exists a constant C ∈ R such that we have( 3∑
k=0

w′kx
′k
)

= C +

( 3∑
k=0

wkx
k

)
. (10.129)

Thus, by (10.125) and (10.129) we deduce

x′m =

3∑
j=0

Bmj

(
3∑
k=0

w′kx
′k − C

)
xj + zm

(
3∑
k=0

w′kx
′k − C

)
∀m = 0, 1, 2, 3 , (10.130)
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that we rewrite as:

xm =

3∑
j=0

{
B−1

}
mj

(
3∑
k=0

w′kx
′k − C

)
x′j −

3∑
j=0

{
B−1

}
mj

(
3∑
k=0

w′kx
′k − C

)
zj

(
3∑
k=0

w′kx
′k − C

)

∀m = 0, . . . , 3. (10.131)

Thus, denoting B′(s) :=
{
B′mj(s)

}
m,j=0,1,2,3

: R→ R4×4 and
(
z′0(s), z′1(s), z′2(s), z′3(s)

)
: R→ R4,

given by B
′(s) = B−1(s− C)

z′m(s) = −
∑3
j=0

{
B−1

}
mj

(s− C) zj (s− C) ∀m = 0, . . . , 3 ,

(10.132)

by (10.131) we infer

xm =

3∑
j=0

B′mj

(
3∑
k=0

w′kx
′k

)
x′j + z′m

(
3∑
k=0

w′kx
′k

)
∀m = 0, . . . , 3 . (10.133)

However, by (10.126) and (10.132) we deduce

Mmn =

3∑
j=0

3∑
k=0

B′mj(s)B
′
nk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R , (10.134)

Moreover, by (10.132) and (2.70) in Proposition 2.3 we deduce

3∑
j=0

w′j

({
B′−1 · dB

′

ds

}
jm

(s)

)
=

3∑
m=0

3∑
j=0

wj
d

ds

{
B−1

}
jm

(s− C) ∀m = 0, 1, 2, 3, ∀s ∈ R ,

(10.135)

and

3∑
m=0

3∑
j=0

w′j

({
B′−1

}
jm

(s)
) dz′m

ds
(s) =

3∑
m=0

3∑
j=0

wm
d

ds

(
−

3∑
k=0

{
B−1

}
mk

(s− C) zk (s− C)

)

=

3∑
m=0

3∑
j=0

wm

(
−

3∑
k=0

d

ds

({
B−1

}
mk

(s− C)
)
zk (s− C)

)

+

3∑
m=0

3∑
j=0

wm

(
−

3∑
k=0

{
B−1

}
mk

(s− C)
dzk

ds
(s− C)

)
∀s ∈ R . (10.136)

On the other hand, as in (10.120) we have:

dB−1

ds
(s− C) = −B−1(s− C) · dB

ds
(s− C) ·B−1(s− C) ∀s ∈ R . (10.137)

Thus, by (10.135) and (10.137) together, using (10.127) we deduce

3∑
j=0

w′j

({
B′−1 · dB

′

ds

}
jm

(s)

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R . (10.138)
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Finally, by (10.136) and (10.137) together, using (10.127) and (10.128) we deduce

3∑
m=0

3∑
j=0

w′j

({
B′−1

}
jm

(s)
) dz′m

ds
(s) = 0 ∀s ∈ R . (10.139)

This completes the proof.

Lemma 10.1. Given a constant vector (w0, w1, w2, w3) ∈ R4, satisfying

(w0)2 −
3∑
j=1

(wj)
2 = 1 , (10.140)

assume that that the change of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) belongs to the

class PL(w0, w1, w2, w3). Next, as before, let (w′0, w′1, w
′
2, w

′
3) ∈ R4 be defined as

w′m =

3∑
j=0

wj

({
B−1

}
jm

(0)
)

∀m = 0, 1, 2, 3, ∀s ∈ R , (10.141)

where B(s) := {Bmj(s)}m,j=0,1,2,3 : R → R4×4 be as in (2.58). Furthermore, consider another

change of coordinate system (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belonging to the class PL(w′0, w
′
1, w

′
2, w

′
3).

Then, the composition of the above two changes of coordinate systems:

(x0, x1, x2, x3) → (x′′0, x′′1, x′′2, x′′3) = (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3)

also belongs to the class PL(w0, w1, w2, w3).

Proof of Lemma 10.1. As before, assume that (w0, w1, w2, w3) ∈ R4, B(s) := {Bmj(s)}m,j=0,1,2,3 :

R→ R4×4 and
(
z0(s), z1(s), z2(s), z3(s)

)
: R→ R4 satisfy

3∑
j=0

3∑
m=0

M jmwjwm = 1 , (10.142)

Mmn =

3∑
j=0

3∑
k=0

Bmj(s)Bnk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R , (10.143)

3∑
j=0

wj

({
B−1 · dB

ds

}
jm

(s)

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R , (10.144)

and
3∑

m=0

3∑
j=0

wj

({
B−1

}
jm

(s)
) dzm
ds

(s) = 0 ∀s ∈ R . (10.145)

Then, consider

x′m =

3∑
j=0

Bmj

(
3∑
k=0

wkx
k

)
xj + zm

(
3∑
k=0

wkx
k

)
∀m = 0, 1, 2, 3 , (10.146)

Furthermore, let (w′0, w
′
1, w

′
2, w

′
3) ∈ R4 be defined as

w′m =

3∑
j=0

wj

({
B−1

}
jm

(0)
)

∀m = 0, 1, 2, 3, ∀s ∈ R , (10.147)
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and assume that B′(s) :=
{
B′mj(s)

}
m,j=0,1,2,3

: R → R4×4 and
(
z′0(s), z′1(s), z′2(s), z′3(s)

)
: R →

R4 satisfy

Mmn =

3∑
j=0

3∑
k=0

B′mj(s)B
′
nk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R , (10.148)

3∑
j=0

w′j

({
B′−1 · dB

′

ds

}
jm

(s)

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R , (10.149)

and
3∑

m=0

3∑
j=0

w′j

({
B′−1

}
jm

(s)
) dz′m

ds
(s) = 0 ∀s ∈ R . (10.150)

Then, consider

x′′m =

3∑
j=0

B′mj

(
3∑
k=0

w′kx
′k

)
x′j + z′m

(
3∑
k=0

w′kx
′k

)
∀m = 0, 1, 2, 3 . (10.151)

However by (2.72) in Proposition 2.3 we have( 3∑
k=0

w′kx
′k
)

= C +

( 3∑
k=0

wkx
k

)
. (10.152)

In particular, (2.72) in Proposition 2.3 together with (10.146) in the case xj = 0, with the help of

(10.147), give us the following:

3∑
m=0

3∑
r=0

({
B−1

}
rm

(0)
)
wrz

m (0) = C . (10.153)

Therefore, by (10.153) we rewrite (10.152) as:

3∑
m=0

w′mx
′m =

3∑
j=0

wjx
j +

3∑
m=0

3∑
r=0

({
B−1

}
rm

(0)
)
wrz

m (0) . (10.154)

Thus, by (10.151), (10.146) and (10.154) we have

x′′m =

3∑
j=0

B′′mj

(
3∑
k=0

wkx
k

)
xj + z′′m

(
3∑
k=0

wkx
k

)
∀m = 0, 1, 2, 3 , (10.155)

with B′′(s) :=
{
B′′mj(s)

}
m,j=0,1,2,3

: R→ R4×4 is given by

B′′mj (s) :=

3∑
q=0

B′mq (τs) Bqj (s) ∀m, j = 0, 1, 2, 3 ∀ s ∈ R , (10.156)

and with

z′′m (s) :=

3∑
j=0

B′mj (τs) z
j (s) + z′m (τs) ∀m = 0, 1, 2, 3 ∀ s ∈ R , (10.157)

where we denote

τs := s+

3∑
d=0

3∑
r=0

({
B−1

}
rd

(0)
)
wrz

d (0) . (10.158)
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In particular, by (10.143), (10.148) and (10.156) we deduce

Mmn =

3∑
j=0

3∑
k=0

B′′mj(s)B
′′
nk(s)M jk ∀m,n = 0, 1, 2, 3, ∀s ∈ R . (10.159)

Moreover, by (10.156) we have

3∑
j=0

wj

({
B′′−1 · dB

′′

ds

}
jm

(s)

)
=

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs) ·

(
dB′

ds
(τs) ·B(s)

)}
jm

)

+

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs) ·

(
B′ (τs) ·

dB

ds
(s)

)}
jm

)
=

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs) ·

(
dB′

ds
(τs) ·B(s)

)}
jm

)
+

3∑
j=0

wj

({
B−1(s) · dB

ds
(s)

}
jm

)

∀m = 0, 1, 2, 3, ∀s ∈ R . (10.160)

Thus, by (2.68) and (2.70) in Proposition 2.3 and (10.144), (10.149), we rewrite (10.160) as:

3∑
j=0

wj

({
B′′−1 · dB

′′

ds

}
jm

(s)

)
=

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs) ·

(
dB′

ds
(τs) ·B(s)

)}
jm

)
+

3∑
j=0

wj

({
B−1(s) · dB

ds
(s)

}
jm

)

=

3∑
j=0

wj

({
B−1(0) ·B′−1 (τs) ·

(
dB′

ds
(τs) ·B(s)

)}
jm

)
=

3∑
j=0

w′j

({
B′−1 (τs) ·

(
dB′

ds
(τs) ·B(s)

)}
jm

)
= 0 ∀m = 0, 1, 2, 3, ∀s ∈ R . (10.161)

Similarly, by (2.68) and (2.70) in Proposition 2.3 together with (10.145), (10.150), (10.156), (10.149)
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and (10.157), using (10.158) we obtain:

3∑
m=0

3∑
j=0

wj

({
B′′−1

}
jm

(s)
) dz′′m

ds
(s) =

3∑
m=0

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs)

}
jm

) d

ds

(
3∑
k=0

B′mk (τs) z
k (s) + z′m (τs)

)

=

3∑
m=0

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs)

}
jm

)( 3∑
k=0

dB′mk
ds

(τs) z
k (s)

)

+

3∑
m=0

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs)

}
jm

)( 3∑
k=0

B′mk (τs)
dzk

ds
(s)

)

+

3∑
m=0

3∑
j=0

wj

({
B−1(s) ·B′−1 (τs)

}
jm

) dz′m
ds

(τs)

=

3∑
j=0

3∑
k=0

w′j

({
B′−1 (τs) ·

dB′

ds
(τs)

}
jk

)
zk (s) +

3∑
k=0

3∑
j=0

wj

({
B−1(s)

}
jk

) dzk

ds
(s)

+

3∑
m=0

3∑
j=0

w′j

({
B′−1 (τs)

}
jm

) dz′m
ds

(τs) = 0 ∀s ∈ R . (10.162)

This completes the proof.

Lemma 10.2. For every constant vector (w0, w1, w2, w3) ∈ R4, satisfying

3∑
j=0

3∑
m=0

M jmwjwm = 1 , (10.163)

the classes L
(

(w0, w1, w2, w3), (1, 0, 0, 0)
)

and L
(

(1, 0, 0, 0), (w0, w1, w2, w3)
)

are not empty. More-

over, for every transformation in L
(

(w0, w1, w2, w3), (1, 0, 0, 0)
)

, the inverse transformation belongs

to L
(

(1, 0, 0, 0), (w0, w1, w2, w3)
)

.

Proof of Lemma 10.2. Follows by Lemma 11.7.

Corollary 10.1. For every given two fixed constant vectors (w0, w1, w2, w3) ∈ R4, (w′0, w
′
1, w

′
2, w

′
3) ∈

R4, satisfying 
∑3
j=0

∑3
m=0M

jmwjwm = 1∑3
j=0

∑3
m=0M

jmw′jw
′
m = 1 ,

(10.164)

the class L
(

(w0, w1, w2, w3), (w′0, w
′
1, w

′
2, w

′
3)
)

is not empty. Moreover, for every transformation in

L
(

(w0, w1, w2, w3), (w′0, w
′
1, w

′
2, w

′
3)
)

, the inverse transformation belongs to

L
(

(w′0, w
′
1, w

′
2, w

′
3), (w0, w1, w2, w3)

)
.

Lemma 10.3. Assume that the new coordinate system is obtained from some old Pseudo-Lorentzian

system by a Lorentz’s transformation. Then the new coordinate system is also a Pseudo-Lorentzian

system.
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Proof of Lemma 10.3. Consider a ancillary contravariant pseudo-metrics {Lmn}m,n=0,1,2,3, given in

the old coordinate system by 
L00 = 1

L0j = Lj0 = 0 ∀ j = 1, 2, 3

Ljm := −δjm ∀ j,m = 1, 2, 3 ,

(10.165)

Note that in general this metrics can differ from pseudo-metrics {Kmn}m,n=0,1,2,3. Then, since

the old system is Pseudo-Lorentzian, there exists a covector, which in this system is equal to some

constant (independent on the point (x0, x1, x2, x3) ∈ R4) vector (w0, w1, w2, w3) ∈ R4 satisfying

3∑
m=0

3∑
j=0

Lmjwmwj = 1 , (10.166)

and such that in the old system we have

Λmn = −Lmn +

( 3∑
k=0

Lmkwk

)( 3∑
k=0

Lnkwk

)
∀ 0 ≤ m,n ≤ 3 . (10.167)

and and at the same time in the old coordinate system we have(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (w0, w1, w2, w3) ∀ (x0, x1, x2, x3) ∈ R4 . (10.168)

On the other hand since the new system is obtained from the old one by some Lorentz’s transfor-

mation, that are also necessarily linear, in the new coordinate system we also have
L′00 = 1

L′0j = L′j0 = 0 ∀ j = 1, 2, 3

L′jm := −δjm ∀ j,m = 1, 2, 3 ,

(10.169)

and moreover, the covector (w′0, w
′
1, w

′
2, w

′
3) ∈ R4 also in the new system is equal to some constant

vector in R4 (independent on the point (x′0, x′1, x′2, x′3) ∈ R4). Finally, by covariance of (10.166),

(10.167) and (10.168), in the new system obviously we have

3∑
m=0

3∑
j=0

L′mjwmw
′
j = 1 , (10.170)

Λ′mn = −L′mn +

( 3∑
k=0

L′mkw′k

)( 3∑
k=0

L′nkw′k

)
∀ 0 ≤ m,n ≤ 3 . (10.171)

and (
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (w′0, w

′
1, w

′
2, w

′
3) ∀ (x′0, x′1, x′2, x′3) ∈ R4 ,

(10.172)

Thus, using (10.169), we deduce by (10.170), (10.171) and (10.172) that the new system is also

Pseudo-Lorentzian.
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Proof of Theorem 2.3. Consider a Pseudo-Lorentzian coordinate system, so that
Λ00 = (w0)2 − 1 ∀ (x0, x1, x2, x3) ∈ R4

Λ0j = Λj0 = −w0wj ∀ j = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4

Λmn = δmn + wmwn ∀m,n = 1, 2, 3 ∀ (x0, x1, x2, x3) ∈ R4,

(10.173)

and at the same time in the same coordinate system we have(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (w0, w1, w2, w3) ∀ (x0, x1, x2, x3) ∈ R4 , (10.174)

where (w0, w1, w2, w3) ∈ R4 is some constant (independent on the point (x0, x1, x2, x3) ∈ R4) vector,

satisfying

(w0)2 −
3∑
j=1

(wj)
2 = 1 , (10.175)

Next again let {Lmn}m,n=0,1,2,3 be an ancillary contravariant pseudo-metrics, satisfying
L00 = 1

L0j = Lj0 = 0 ∀ j = 1, 2, 3

Ljm := −δjm ∀ j,m = 1, 2, 3 ,

(10.176)

in the given coordinate system. Then, by Lemma 11.7, there exists a constant non-degenerate

matrix {Amn}0≤m,n≤3 ∈ R4×4, such that det ({Amn}0≤m,n≤3) 6= 0, and if we consider a matrix

{L′mn}0≤m,n≤3 ∈ R4×4, defined by

L′mn :=

3∑
j=0

3∑
k=0

AmkAnjL
kj ∀m,n = 0, 1, 2, 3, (10.177)

and a vector (w′0, w′1, w′2, w′3) ∈ R4, defined by

w′j :=

3∑
k=0

Ajkw
k ∀j = 0, 1, 2, 3, (10.178)

then we have: 
L′00 = 1

L′jm = −δjm ∀1 ≤ j,m ≤ 3

L′0j = L′j0 = 0 ∀1 ≤ j ≤ 3 ,

(10.179)

and

(w′0, w′1, w′2, w′3) = (1, 0, 0, 0) . (10.180)

Obviously matrix {Amn}0≤m,n≤3 ∈ R4×4 represents some Lorentz’s transformation leading to a new

system. However, by (10.173), (10.174) and (10.175) we have

3∑
m=0

3∑
j=0

Lmjwmwj = 1 , (10.181)
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Λmn = −Lmn +

( 3∑
k=0

Lmkwk

)( 3∑
k=0

Lnkwk

)
∀ 0 ≤ m,n ≤ 3 . (10.182)

and(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
(x0, x1, x2, x3) = (w0, w1, w2, w3) ∀ (x0, x1, x2, x3) ∈ R4 . (10.183)

Thus, again by a covariance in the new system we also observe:

3∑
m=0

3∑
j=0

L′mjwmw
′
j = 1 , (10.184)

Λ′mn = −L′mn +

( 3∑
k=0

L′mkw′k

)( 3∑
k=0

L′nkw′k

)
∀ 0 ≤ m,n ≤ 3 . (10.185)

and (
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (w′0, w

′
1, w

′
2, w

′
3) ∀ (x′0, x′1, x′2, x′3) ∈ R4 ,

(10.186)

Therefore, inserting (10.180) into (10.186) gives(
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (1, 0, 0, 0) ∀ (x′0, x′1, x′2, x′3) ∈ R4 , (10.187)

and inserting (10.180) together with (10.179) into (10.185) gives,
Λ′00 = 0

Λ′0j = Λ′j0 = 0 ∀ j = 1, 2, 3

Λ′jm = δjm ∀ j,m = 1, 2, 3 .

(10.188)

Therefore, by (10.187) and (10.188) the new system is cartesian and obtained from the old system

by some Lorentz’s transformation. Thus, since the inverse transform to Lorentz’s transformation

is also a Lorentz’s transformation, we deduce that the original system (old) is obtained from the

cartesian system (new) by some Lorentz’s transformation.

Conversely, if any new system is obtained from the old cartesian coordinate system by Lorentz’s

transformation, then since every cartesian system is also a Pseudo-Lorentzian coordinate system, by

Lemma 10.3 we deduce that the new system is also a Pseudo-Lorentzian coordinate system.

Proof of Theorem 2.4. Indeed, assume that the transformation in (2.67) is of class PL ((w0, w1, w2, w3)).

Then, obviously there exists another constant vector (w′0, w
′
1, w

′
2, w

′
3) ∈ R4, satisfying

(w′0)2 −
3∑
j=1

(w′j)
2 = 1 , (10.189)

and such that the transformation in (2.67) is of class PL ((w0, w1, w2, w3); (w′0, w
′
1, w

′
2, w

′
3)). Then by

Corollary 2.8 there exists three other changes of coordinate system (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3),

belonging to the class L
(

(w0, w1, w2, w3); (1, 0, 0, 0)
)

,
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(x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belonging to the class PL
(

(1, 0, 0, 0); (1, 0, 0, 0)
)

and (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3), belonging to the class

L
(

((1, 0, 0, 0); (w′0, w
′
1, w

′
2, w

′
3)
)

, so that the original transformation

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) is a composition of the above three changes of coordinate

systems:

(x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) =

(x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3) . (10.190)

However, since the original system with coordinates (x0, x1, x2, x3) is Pseudo-Lorntzian and since,

the change (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3), belongs to the class L
(

(w0, w1, w2, w3); (1, 0, 0, 0)
)

,

by Lemma 10.3 the system with coordinates (x′0, x′1, x′2, x′3) is Pseudo-Lorntzian, and moreover,

we have(
∂ϕ

∂x′0
,
∂ϕ

∂x′1
,
∂ϕ

∂x′2
,
∂ϕ

∂x′3

)
(x′0, x′1, x′2, x′3) = (1, 0, 0, 0) ∀ (x′0, x′1, x′2, x′3) ∈ R4 , (10.191)

and thus also 
Λ′00 = 0 ∀ (x′0, x′1, x′2, x′3) ∈ R4

Λ′0j = Λ′j0 = 0 ∀ j = 1, 2, 3 ∀ (x′0, x′1, x′2, x′3) ∈ R4

Λ′mn = δmn ∀m,n = 1, 2, 3 ∀ (x′0, x′1, x′2, x′3) ∈ R4,

(10.192)

so that the system with coordinates (x′0, x′1, x′2, x′3) is cartesian. Therefore, since the change

(x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belongs to the class PL
(

(1, 0, 0, 0); (1, 0, 0, 0)
)

, by Corollary

2.7 we deduce that the system with coordinates (x′′0, x′′1, x′′2, x′′3) is also cartesian, and thus in

particular, the system with coordinates (x′′0, x′′1, x′′2, x′′3) is Pseudo-Lorentzian. Finally, since the

change (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3) is a Lorentian transformation, and since the

system with coordinates (x′′0, x′′1, x′′2, x′′3) is Pseudo-Lorentzian, by Lemma 10.3 we deduce that

the system with coordinates (x′′′0, x′′′1, x′′′2, x′′′3) is also Pseudo-Lorntzian.

Conversely, assume that the system with coordinates (x′′′0, x′′′1, x′′′2, x′′′3) is Pseudo-Lorntzian.

Then, by Theorem 2.3, there exists two Lorentz’s transformations (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3)

and (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3), so that the both systems with coordinates

(x′0, x′1, x′2, x′3) and (x′′0, x′′1, x′′2, x′′3) are cartesian. Then, again by Corollary 2.7, the change

(x′0, x′1, x′2, x′3) → (x′′0, x′′1, x′′2, x′′3), belongs to the class PL
(

(1, 0, 0, 0); (1, 0, 0, 0)
)

. However,

since the system with coordinates (x′0, x′1, x′2, x′3) is cartesian, by (2.65) we deduce that the transfor-

mation (x0, x1, x2, x3) → (x′0, x′1, x′2, x′3) also belongs to the class PL
(

(w0, w1, w2, w3); (1, 0, 0, 0)
)

.

Therefore, by Proposition 2.5 we obtain that the transformation (x0, x1, x2, x3) → (x′′0, x′′1, x′′2, x′′3)

also belongs to the class PL
(

(w0, w1, w2, w3); (1, 0, 0, 0)
)

. On the other hand, since the change

(x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3) is a Lorentz’s transformation, it also belongs to the
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class PL
(
(1, 0, 0, 0)

)
. Then, by Corollary 2.6 together with Proposition 2.5, we finally deduce that

the composed transformation (x0, x1, x2, x3) → (x′′′0, x′′′1, x′′′2, x′′′3) given through:

(x0, x1, x2, x3) → (x′′0, x′′1, x′′2, x′′3) → (x′′′0, x′′′1, x′′′2, x′′′3)

belongs to the class PL ((w0, w1, w2, w3)).

Proof of Proposition 3.1. For every smooth scalar classical function with compact support

ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)
, by (3.7) we have∫∫∫∫

R4

{
div

(
I0
W , I

1
W , I

2
W , I

3
W

)}
K
ξ(x0, x1, x2, x3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0 dx1 dx2 dx3 =

∫∫∫∫
R4

3∑
j=0

∂IjW
∂xj

(x0, x1, x2, x3) ξ(x0, x1, x2, x3)
∣∣∣det

(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0 dx1 dx2 dx3+

∫∫∫∫
R4

3∑
j=0

IjW (x0, x1, x2, x3)ξ(x0, x1, x2, x3)
∂

∂xj

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
dx0dx1dx2dx3.

(10.193)

However, by the definition of the derivative of the distribution we have,

∫∫∫∫
R4

3∑
j=0

∂IjW
∂xj

(x0, x1, x2, x3)

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

ξ

)
(x0, x1, x2, x3) dx0 dx1 dx2 dx3 =

−
∫∫∫∫

R4

3∑
j=0

IjW
∂

∂xj

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

ξ

)
(x0, x1, x2, x3) dx0 dx1 dx2 dx3 =

−
∫∫∫∫

R4

3∑
j=0

IjW
∂

∂xj

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

)
ξ(x0, x1, x2, x3) dx0 dx1 dx2 dx3

−
∫∫∫∫

R4

3∑
j=0

IjW

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2 ∂ξ

∂xj
(x0, x1, x2, x3) dx0 dx1 dx2 dx3 . (10.194)

Thus, inserting (10.194) into (10.193) gives∫∫∫∫
R4

{
div

(
I0
W , I

1
W , I

2
W , I

3
W

)}
K
ξ(x0, x1, x2, x3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0 dx1 dx2 dx3 =

−
∫∫∫∫

R4

3∑
j=0

IjW

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2 ∂ξ

∂xj
(x0, x1, x2, x3) dx0 dx1 dx2 dx3. (10.195)

On the other hand, by (3.5) we deduce:

∫∫∫∫
R4

3∑
j=0

IjW (x0, x1, x2, x3)

(∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2 ∂ξ

∂xj

)
(x0, x1, x2, x3) dx0 dx1 dx2 dx3

=

b∫
a

W (s)

 3∑
j=0

∂ξ

∂xj
(χ(s))

dχj

ds
(s)

 ds =

b∫
a

W (s)
d

ds
(ξ (χ(s))) ds . (10.196)
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Thus, if we assume that W (s) is a constant across the trajectory of the motion, so that W (s) = W0

where W0 is independent on s, then by (10.195) and (10.196), using the Newton-Leibnitz formula,

we deduce:∫∫∫∫
R4

{
div

(
I0
W , I

1
W , I

2
W , I

3
W

)}
K
ξ(x0, x1, x2, x3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0 dx1 dx2 dx3

= −
b∫
a

W (s)
d

ds
(ξ (χ(s))) ds = −W0

b∫
a

d

ds
(ξ (χ(s))) ds = W0 (ξ (χ(a))− ξ (χ(b))) . (10.197)

However, since ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)

has a compact support, by (3.8) we obtain

ξ (χ(b)) = ξ (χ(a)) = 0 , (10.198)

and thus, inserting (10.198) into (10.197) gives:∫∫∫∫
R4

{
div

(
I0
W , I

1
W , I

2
W , I

3
W

)}
K
ξ(x0, x1, x2, x3)

∣∣∣det
(
{Kmn}n,m=0,1,2,3

)∣∣∣− 1
2

dx0 dx1 dx2 dx3

= 0 ∀ ξ ∈ C∞c
(
R4
)
. (10.199)

Therefore, since the test function ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)

in (10.199) is arbitrary, by (10.199),

using the basic properties of distributions, we finally deduce (3.9). This completes the proof.

Proof of Lemma 4.1. By inserting (4.60) into (4.58) we deduce:

F00 = 0

F0j = −Fj0 = −∂(−Aj)
∂x0 − ∂Ψ

∂xj ∀ j = 1, 2, 3

Fjj = 0 ∀ j = 1, 2, 3

Fmj = −Fjm = ∂(−Am)
∂xj − ∂(−Aj)

∂xm ∀m 6= j = 1, 2, 3 ,

(10.200)

Thus, if we define, as usual the magnetic and the electric field:B := curlxA,

E := −∇xΨ− ∂A
∂x0 ,

(10.201)

then denoting E := (E1, E2, E3) and B := (B1, B2, B3), by (10.201) we rewrite (10.200) as:

F00 = 0

F0j = −Fj0 = Ej ∀ j = 1, 2, 3

Fjj = 0 ∀ j = 1, 2, 3

F12 = −F21 = −B3

F13 = −F31 = B2

F23 = −F32 = −B1 ,

(10.202)
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so that we get (4.63). Next consider two-times contravariant tensor {Fmn}m,n=0,1,2,3 defined by:

Fmn :=

3∑
k=0

3∑
j=0

KmjKnkFjk ∀m,n = 0, 1, 2, 3. (10.203)

We rewrite (10.203) as:

Fmn =

Km0Kn0F00 +

3∑
k=1

Km0KnkF0k +

3∑
j=1

KmjKn0Fj0 +

3∑
k=1

3∑
j=1

KmjKnkFjk ∀m,n = 0, 1, 2, 3.

(10.204)

In particular, by inserting (4.29) into (10.204) we deduce:

F 00 = F00 +
∑3
k=1 v

kF0k +
∑3
j=1 v

jFj0 +
∑3
k=1

∑3
j=1 v

jvkFjk

Fm0 = vmF 00 − Fm0 −
∑3
k=1 v

kFmk ∀m = 1, 2, 3,

F 0n = vnF 00 − F0n −
∑3
j=1 v

jFjn ∀n = 1, 2, 3,

Fmn = vmvnF 00 −
∑3
k=1 v

nvkFmk −
∑3
j=1 vmv

jFjn − vmF0n − vnFm0 + Fmn ∀m,n = 1, 2, 3.

(10.205)

We rewrite (10.205) as:

F 00 = F00 +
∑3
k=1 v

kF0k +
∑3
j=1 v

jFj0 +
∑3
k=1

∑3
j=1 v

jvkFjk

Fm0 = vmF 00 − Fm0 −
∑3
k=1 v

kFmk ∀m = 1, 2, 3,

F 0n = vnF 00 − F0n −
∑3
j=1 v

jFjn ∀n = 1, 2, 3,

Fmn = vmF 0n + vnFm0 − vmvnF 00 + Fmn ∀m,n = 1, 2, 3.

(10.206)

In particular, since the tensor {Fmn}m,n=0,1,2,3 is antisymmetric, i.e. Fmn = −Fnm ∀m,n =

0, 1, 2, 3, then we simplify (10.206) as

F 00 = 0

Fmm = 0 ∀m = 1, 2, 3,

F 0m = −Fm0 = −F0m +
∑3
k=1 v

kFmk ∀m = 1, 2, 3,

Fmn = vmF 0n − vnF 0m + Fmn ∀m,n = 1, 2, 3.

(10.207)

In particular, since {Fmj}0≤m,j≤3 is the antisymmetric two times covariant tensor field, then by
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inserting (10.202) into (10.207) we deduce:

F 00 = 0

F jj = 0 ∀ j = 1, 2, 3,

F 01 = −F 10 = −F01 + v2F12 + v3F13 = −
(
E1 +

(
v2B3 − v3B2

))
F 02 = −F 20 = −F02 + v1F21 + v3F23 = −

(
E2 +

(
v3B1 − v1B3

))
F 03 = −F 30 = −F03 + v1F31 + v2F32 = −

(
E3 +

(
v1B2 − v2B1

))
F 12 = −F 21 = v1F 02 − v2F 01 + F12 = −

(
B3 +

(
v1F 20 − v2F 10

))
F 13 = −F 31 = v1F 03 − v3F 01 + F13 = B2 +

(
v3F 10 − v1F 30

)
F 23 = −F 32 = v2F 03 − v3F 02 + F23 = −

(
B1 +

(
v2F 30 − v3F 20

))
.

(10.208)

Thus, defining: D := E + v ×B

H := B + v ×D,

(10.209)

and denoting D := (D1, D2, D3) and H := (H1, H2, H3) we rewrite (10.208) as:

F 00 = 0

F 0j = −F j0 = −Dj ∀ j = 1, 2, 3,

F jj = 0 ∀ j = 1, 2, 3,

F 12 = −F 21 = −H3

F 13 = −F 31 = H2

F 23 = −F 32 = −H1 ,

(10.210)

so that we get (4.64). In particular, by (10.202) and (10.210), using (10.209) and using the definition

(4.58), we deduce that(
3∑

n=0

3∑
k=0

3∑
m=0

3∑
p=0

KmnKpk

(
∂Ap
∂xm

− ∂Am
∂xp

)(
∂Ak
∂xn

− ∂An
∂xk

))
=

3∑
j=0

3∑
k=0

F jkFjk

= F 00F00 +

3∑
k=1

F 0kF0k +

3∑
j=1

F j0Fj0 +

3∑
j=1

3∑
k=1

F jkFjk = −2E ·D + 2B ·H =

− 2 ((D− v ×B) ·D−B · (B + v ×D)) = −2
(
|D|2 − |B|2

)
, (10.211)

and so by (10.211), (10.209) and (10.201) we finally obtain (4.65).

Proof of Lemma 6.1. Since the current coordinate system is cartesian, by Theorem 2.1 there exists

a change of variables from the kinematically preferable coordinate system to the current cartesian
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coordinate system of the form:
x0 = x′0 + c,

xm =
3∑
j=1

Amj(x
′0)x′j + zm(x′0) ∀m = 1, 2, 3 ,

(10.212)

where {Amn(x′0)}n,m=1,2,3 ∈ R3×3 is a 3 × 3-matrix, depending on the coordinate x′0 only (inde-

pendent on x′ := (x′1, x′2, x′3)), and satisfying

3∑
j=1

Amj(x
′0)Anj(x

′0) =

3∑
j=1

Ajm(x′0)Ajn(x′0) = δmn ∀m,n = 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4 ,

(10.213)

c ∈ R is a constant (independent on (x′0, x′1, x′2, x′3) ∈ R4) and z(x′0) :=
(
z1(x′0), z2(x′0), z3(x′0)

)
∈

R3 is a three-dimensional vector field, depending on the coordinate x′0 only (independent on

x′ := (x′1, x′2, x′3)). On the other hand, since the kinematically preferable system is simultane-

ously Lorentzian and cartesian, in this system we have

(r′0, r′1, r′2, r′3) = (1, 0, 0, 0) so that r′ := (r′1, r′2, r′3) = (0, 0, 0) . (10.214)

On the other hand, by the rule of transformations of contravariant vector in (10.3), using (10.212),

(10.214) and (10.213) we deduce

r0 = 1, (10.215)

and

rm =

3∑
j=1

dAmj
dx′0

(x′0)x′j +
dzm

dx′0
(x′0) =

3∑
j=1

3∑
n=1

dAmj
dx0

(x0)Anj(x
0)
(
xn − zn(x0)

)
+
dzm

dx0
(x0) ∀m = 1, 2, 3. (10.216)

Therefore, differentiating (10.216) gives:

∂rm

∂xn
=

3∑
j=1

dAmj
dx0

(x0)Anj(x
0) ∀m,n = 1, 2, 3. (10.217)

Thus, by (10.217) and (10.213) we deduce

(
∂rm

∂xn
+
∂rn

∂xm

)
=

3∑
j=1

(
dAmj
dx0

(x0)Anj(x
0) +

dAnj
dx0

(x0)Amj(x
0)

)

=
d

dx0


3∑
j=1

Amj(x
0)Anj(x

0)

 =
d

dx0
{δmn} = 0 ∀m,n = 1, 2, 3. (10.218)

In particular, 
(
∂rm

∂xn + ∂rn

∂xm

)
= 0 ∀m,n = 1, 2, 3

divx r =
3∑

n=1

∂rn

∂xn = 0 .
(10.219)
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Moreover, differentiating (10.217) one more time by xj gives

∂2rm

∂xj∂xn
= 0 ∀j,m, n = 1, 2, 3. (10.220)

So, by (10.219) and (10.220) we deduce (6.3).

Proof of Lemma 9.1. By the Theory of Distribution, the definition in (9.4) means that for every

smooth scalar classical function with compact support ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)

we have

∫∫∫∫
R4

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ (x0, x1, x2, x3), ξ(x0, x1, x2, x3) dx0dx1dx2dx3 =

1∫
0

b∫
a

σ

{

(χm(s)− zm(s))

(
τ
dχn

ds
(s) + (1− τ)

dzn

ds
(s)

)
− (χn(s)− zn(s))

(
τ
dχm

ds
(s) + (1− τ)

dzm

ds
(s)

)
}
ξ (τχ(s) + (1− τ)z(s)) ds dτ ∀m = 0, 1, 2, 3 , (10.221)

Next, since by the Theory of Distributions we have

3∑
n=0

∫∫∫∫
R4

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
ξ(x0, x1, x2, x3) dx0dx1dx2dx3 =

−
3∑

n=0

∫∫∫∫
R4

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

∂ξ

∂xn
(x0, x1, x2, x3) dx0dx1dx2dx3 ∀m = 0, 1, 2, 3 ,

(10.222)

by (10.221) we can proceed in (10.222) as:

3∑
n=0

∫∫∫∫
R4

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
ξ(x0, x1, x2, x3) dx0dx1dx2dx3 =

−
3∑

n=0

1∫
0

b∫
a

σ

{
(χm(s)− zm(s))

(
τ
dχn

ds
(s) + (1− τ)

dzn

ds
(s)

)

− (χn(s)− zn(s))

(
τ
dχm

ds
(s) + (1− τ)

dzm

ds
(s)

)}
∂ξ

∂xn
(τχ(s) + (1− τ)z(s)) dsdτ

∀m = 0, 1, 2, 3. (10.223)

Furthermore, by the Chain Rule we can rewrite (10.223) as:

3∑
n=0

∫∫∫∫
R4

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
ξ(x0, x1, x2, x3) dx0dx1dx2dx3 =

−
1∫

0

b∫
a

σ (χm(s)− zm(s))
∂ξ

∂s
(τχ(s) + (1− τ)z(s)) ds dτ

+

1∫
0

b∫
a

σ

(
τ
dχm

ds
(s) + (1− τ)

dzm

ds
(s)

)
∂ξ

∂τ
(τχ(s) + (1− τ)z(s)) ds dτ ∀m = 0, 1, 2, 3 .

(10.224)
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However, taking into account (9.3), integration by partes by s gives:

−
1∫

0

b∫
a

σ (χm(s)− zm(s))
∂ξ

∂s
(τχ(s) + (1− τ)z(s)) ds dτ =

1∫
0

b∫
a

σ

(
dχm

ds
(s)− dzm

ds
(s)

)
ξ (τχ(s) + (1− τ)z(s)) ds dτ ∀m = 0, 1, 2, 3 . (10.225)

On the other hand, integration by partes by τ gives:

1∫
0

b∫
a

σ

(
τ
dχm

ds
(s) + (1− τ)

dzm

ds
(s)

)
∂ξ

∂τ
(τχ(s) + (1− τ)z(s)) ds dτ

+

b∫
a

σ
dχm

ds
(s) ξ (χ(s))) ds−

b∫
a

σ
dzm

ds
(s) ξ (z(s))) ds

−
1∫

0

b∫
a

σ

(
dχm

ds
(s)− dzm

ds
(s)

)
ξ (τχ(s) + (1− τ)z(s)) ds dτ ∀m = 0, 1, 2, 3 , (10.226)

Thus, inserting (10.225) and (10.226) into (10.224) gives:

3∑
n=0

∫∫∫∫
R4

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
ξ(x0, x1, x2, x3) dx0dx1dx2dx3 =

b∫
a

σ
dχm

ds
(s) ξ (χ(s))) ds−

b∫
a

σ
dzm

ds
(s) ξ (z(s))) ds ∀m = 0, 1, 2, 3 . (10.227)

Thus, since ξ(x0, x1, x2, x3) ∈ C∞c
(
R4
)

was chosen arbitrary, by the Theory of Distributions, using

(10.227) we deduce

3∑
n=0

∂

∂xn

{∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

Υmn
σ

}
=

b∫
a

σ
dχm

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds−

b∫
a

σ
dzm

ds
(s) δ

(
x0 − z0(s), . . . , x3 − z3(s)

)
ds.

(10.228)

Finally, (10.228) obviously implies:

3∑
n=0

1∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣− 1
2

∂

∂xn

{∣∣∣det
(
{Kpq}(p,q)30

)∣∣∣− 1
2

Υmn
σ

}
=

∣∣∣det
(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σ
dχm

ds
(s) δ

(
x0 − χ0(s), . . . , x3 − χ3(s)

)
ds

−
∣∣∣det

(
{Kpq}p,q=0,1,2,3

)∣∣∣ 12 b∫
a

σ
dzm

ds
(s) δ

(
x0 − z0(s), . . . , x3 − z3(s)

)
ds . (10.229)
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11 Appendix: some technical statements

Lemma 11.1. Assume that a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 and a covector of the

time-direction (w0, w1, w2, w3) are weakly correlated (see Definition 2.3), so that we have everywhere

3∑
j=0

3∑
m=0

Kjmwjwm > 0 ∀ (x0, x1, x2, x3) ∈ R4. (11.1)

Moreover, assume that there exists a scalar field ϕ such that

lim{
(x0)2+(x1)2+(x2)2+(x3)2

}
→+∞

 3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm

 = 1 , (11.2)

(w0, w1, w2, w3) =

(
∂ϕ

∂x0
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

)
∀ (x0, x1, x2, x3) ∈ R4 , (11.3)

and

3∑
j=0

∂

∂xj

{(
3∑

m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
− 1

)(
3∑

n=0

Kjn ∂ϕ

∂xn

)}
= 0 ∀ (x0, x1, x2, x3) ∈ R4 .

(11.4)

Then, scalar global time ϕ and pseudo-metrics {Kmn}m,n=0,1,2,3 are strongly correlated on R4, i.e.

ϕ satisfies the following eikonal-type equation:

3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
= 1 ∀ (x0, x1, x2, x3) ∈ R4 . (11.5)

Proof. Define

A1 =

(x0, x1, x2, x3) ∈ R4 :

 3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm

 (x0, x1, x2, x3)− 1 < 0

 , (11.6)

A2 =

(x0, x1, x2, x3) ∈ R4 :

 3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm

 (x0, x1, x2, x3)− 1 > 0

 . (11.7)

Then, we obviously have

3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xm
− 1 = 0 ∀ (x0, x1, x2, x3) ∈ ∂A1 ∪ ∂A2 . (11.8)

where by ∂A we denote the boundary of the set A. Therefor, by (11.4), (11.2) and (11.8), the

Gauss-Green formula gives

∫∫∫∫
Ak


(

3∑
m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
− 1

) 3∑
j=0

3∑
n=0

Kjn ∂ϕ

∂xj
∂ϕ

∂xn

 d(x0, x1, x2, x3) =

−
∫∫∫∫

Ak
ϕ

 3∑
j=0

∂

∂xj

{(
3∑

m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
− 1

)(
3∑

n=0

Kjn ∂ϕ

∂xn

)} d(x0, x1, x2, x3)

= 0 ∀ k = 1, 2 . (11.9)
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However, by (11.1) and (11.3) we have

3∑
j=0

3∑
m=0

Kjm ∂ϕ

∂xj
∂ϕ

∂xn
> 0 ∀ (x0, x1, x2, x3) ∈ R4. (11.10)

Thus, inserting (11.6), (11.7) and (11.10) into (11.9) gives

∫∫∫∫
Ak

∣∣∣∣∣∣
(

3∑
m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
− 1

) 3∑
j=0

3∑
n=0

Kjn ∂ϕ

∂xj
∂ϕ

∂xn

∣∣∣∣∣∣ d(x0, x1, x2, x3)

= 0 ∀ k = 1, 2 . (11.11)

So, by the definition of A1,A2 we must have

∫∫∫∫
R4

∣∣∣∣∣∣
(

3∑
m=0

3∑
n=0

Kmn ∂ϕ

∂xm
∂ϕ

∂xn
− 1

) 3∑
j=0

3∑
n=0

Kjn ∂ϕ

∂xj
∂ϕ

∂xn

∣∣∣∣∣∣ d(x0, x1, x2, x3) = 0 , (11.12)

which, together with (11.10), finally implies (11.5).

Lemma 11.2. Consider a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 and let

{Kmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4, associated with {Kmn}m,n=0,1,2,3.

Next, consider the Christoffel Symbols
{

Γmkj

}
K

, defined by (2.25). Then, in some coordinate system

we have {
Γjmn

}
K

= 0 ∀ j,m, n = 0, 1, 2, 3 , (11.13)

if and only if the tensor {Kmn}m,n=0,1,2,3 is independent on the local coordinates (x0, x1, x2, x3) ∈ R4

in the given coordinate system.

Proof. If in some fixed coordinate system {Kmn}m,n=0,1,2,3 is independent on the local coordinates

(x0, x1, x2, x3) ∈ R4, then by (2.25) we obviously deduce (11.13).

Conversely, if in some fixed coordinate system we have (11.13), then we obviously have

∂Kmn

∂xj
= {δjKmn}K = 0 ∀ j,m, n = 0, 1, 2, 3 , (11.14)

where {δjKmn}K is the covariant derivative of the pseudo-metrics K with respect to the same

pseudo-metrics K, which is vanishes, due to the well known rule of the tensor analysis. So, by (11.14)

we deduce that {Kmn}m,n=0,1,2,3 is indeed independent on the local coordinates (x0, x1, x2, x3) ∈

R4.

Lemma 11.3. Consider a contravariant pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 and let

{Kmn}m,n=0,1,2,3 be the inverse covariant pseudo-metrics on R4, associated with {Kmn}m,n=0,1,2,3.

Next, consider two coordinate systems in R4, so that the change of coordinates from the first to the
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second coordinate system is given by:

x′0 = f (0)(x0, x1, x2, x3),

x′1 = f (1)(x0, x1, x2, x3),

x′2 = f (2)(x0, x1, x2, x3),

x′3 = f (3)(x0, x1, x2, x3).

(11.15)

Finally, assume that the tensor {Kmn}m,n=0,1,2,3 is independent on the local coordinates in both given

coordinate systems, i.e. {Kmn}m,n=0,1,2,3 is independent on the coordinates (x0, x1, x2, x3) ∈ R4 and

{K ′mn}m,n=0,1,2,3 is independent on the coordinates (x′0, x′1, x′2, x′3) ∈ R4. Then, the transforma-

tions in (11.15) are linear, i.e.

∂2f (j)

∂xn∂xk
(x0, x1, x2, x3) = 0 ∀(x0, x1, x2, x3) ∈ R4 ∀j, k, n = 0, 1, 2, 3 . (11.16)

Proof. First of all, observe that since {Kmn}m,n=0,1,2,3 is independent on the coordinates

(x0, x1, x2, x3) ∈ R4 and {K ′mn}m,n=0,1,2,3 is independent on the coordinates (x′0, x′1, x′2, x′3) ∈ R4,

then, by (2.25) in both coordinate systems we have

{
Γjmn

}
K

= 0 ∀ j,m, n = 0, 1, 2, 3 (11.17)

and {
Γ′jmn

}
K′

= 0 ∀ j,m, n = 0, 1, 2, 3 . (11.18)

Next fix an index j ∈ {0, 1, 2, 3} and define the proper scalar field ψ′(x′0, x′1, x′2, x′3) = ψ(x0, x1, x2, x3)

by the following

ψ(x0, x1, x2, x3) = f (j)(x0, x1, x2, x3) ∀(x0, x1, x2, x3) ∈ R4 (11.19)

so that we have

ψ′(x′0, x′1, x′2, x′3) = x′j ∀(x′0, x′1, x′2, x′3) ∈ R4 . (11.20)

On the other hand, by (2.26) with the covector
(
∂ψ
∂x0 ,

∂ψ
∂x1 ,

∂ψ
∂x2 ,

∂ψ
∂x3

)
instead of (h0, h1, h2, h3), using

(11.17) and (11.18), in both coordinate systems we deduce{
δn

(
∂ψ

∂xk

)}
K

=
∂2ψ

∂xn∂xk
∀n, k = 0, 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 , (11.21)

and {
δ′n

(
∂ψ′

∂x′k

)}
K′

=
∂2ψ′

∂x′n∂x
′
k

∀n, k = 0, 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4 . (11.22)

However, by (11.20) and (11.22) together we deduce{
δ′n

(
∂ψ′

∂x′k

)}
K′

=
∂2ψ′

∂x′n∂x
′
k

=
∂2x′j

∂x′n∂x
′
k

= 0 ∀n, k = 0, 1, 2, 3 ∀(x′0, x′1, x′2, x′3) ∈ R4 .

(11.23)
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Therefore, since
{{

δn

(
∂ψ
∂xk

)}
K

}
n,k=0,1,2,3

is a proper two-times covariant tensor, by (11.23) we

deduce {
δn

(
∂ψ

∂xk

)}
K

= 0 ∀n, k = 0, 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 . (11.24)

Thus, by (11.24) and (11.21) we deduce

∂2ψ

∂xn∂xk
= 0 ∀n, k = 0, 1, 2, 3 ∀(x0, x1, x2, x3) ∈ R4 . (11.25)

Finally, by (11.25) and (11.19) we obtain

∂2f (j)

∂xn∂xk
(x0, x1, x2, x3) = 0 ∀(x0, x1, x2, x3) ∈ R4 ∀k, n = 0, 1, 2, 3 , (11.26)

and since the fixed index j ∈ {0, 1, 2, 3} was arbitrary, we deduce (11.16).

Corollary 11.1. Let f(x) := f(x1, x2, x3) : R3 → R3 be a smooth mapping. Next assume that the

Jacoby’s derivatives matrix dxf :=
{
∂fm
∂xn

}
1≤m,n≤3

of f satisfies (everywhere)

{dxf(x)}T · {dxf(x)} = I ∀x ∈ R3 , (11.27)

where I ∈ R3×3 is the identity matrix. Then dxf is a constant matrix (independent on x) in R3 and

so f is a linear orthogonal mapping, in other word there exists a constant matrix A ∈ R3×3 and a

constat vector w ∈ R3 such that

AT ·A = I , (11.28)

and we have

f(x) = A · x + w ∀x ∈ R3 . (11.29)

We give here the full proof, although, the result is well known.

Proof of Corollary 11.1. Consider two coordinate systems in R4, so that the change of coordinates

from the first to the second coordinate system is given by:

x′0 = x0,

x′1 = f1(x1, x2, x3),

x′2 = f2(x1, x2, x3),

x′3 = f3(x1, x2, x3),

(11.30)

where
(
f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)

)
:= f(x1, x2, x3). Next, consider a contravariant

pseudo-metrics {Kmn}m,n=0,1,2,3 on R4 and the corresponding inverse covariant pseudo-metrics

{Kmn}m,n=0,1,2,3, such that in the first coordinate system we have:
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kjm = −δjm ∀ j,m = 1, 2, 3

(11.31)
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at every point in R4, so that in the same coordinate system we have:
K00 = 1

K0j = Kj0 = 0 ∀ j = 1, 2, 3

Kjm = −δjm ∀ j,m = 1, 2, 3

(11.32)

at every point in R4. On the other hand, by (11.30) and (10.5) we have

K00 = K ′00 , (11.33)

Km0 = K0m =

3∑
k=1

∂f (k)

∂xm
K ′k0 =

3∑
k=1

∂f (k)

∂xm
K ′0k ∀m = 1, 2, 3. (11.34)

and

Kmn =

3∑
j=1

3∑
k=1

∂f (k)

∂xm
∂f (j)

∂xn
K ′kj ∀m,n = 1, 2, 3. (11.35)

Therefore, using (11.27) and (11.32), by (11.33), (11.34) and (11.35) we deduce
K ′00 = 1

K ′0j = K ′j0 = 0 ∀ j = 1, 2, 3

K ′jm := −δjm ∀ j,m = 1, 2, 3 .

(11.36)

Then, by (11.32) and (11.36) we can apply Lemma 11.3 to deduce

∂2f (j)

∂xn∂xk
(x1, x2, x3) = 0 ∀(x1, x2, x3) ∈ R3 ∀j, k, n = 1, 2, 3 . (11.37)

Therefore, there exists a constant (independent on x) matrix A ∈ R3×3 such that

AT ·A = I , (11.38)

and

dxf(x) = A ∀x ∈ R3 . (11.39)

So there exists a constat vector w ∈ R3, such that

f(x) = A · x + w ∀x ∈ R3 . (11.40)

This completes the proof.

Lemma 11.4. Given an arbitrary (w0, w1, w2, w3) ∈ R4 such that

(w0)2 − |w|2 = 1 , (11.41)

where w := (w1, w2, w3) ∈ R3, consider a matrix {Λmn}0≤m,n≤3 ∈ R4×4, defined by
Λ00 = (w0)

2 − 1

Λjm = δjm + wjwm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = w0wj ∀1 ≤ j ≤ 3,

(11.42)
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Then the matrix {Λmn}0≤m,n≤3 is degenerate and moreover, it has one vanishing and three positive

eigenvalues.

Proof of Lemma 11.4. By (11.42) and (11.41) we have
Λ00 = |w|2

Λjm = δjm + wjwm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = w0wj ∀1 ≤ j ≤ 3,

(11.43)

Thus, in the case w = 0 we obviously have
Λ00 = 0

Λjm = δjm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = 0 ∀1 ≤ j ≤ 3,

(11.44)

and so, by (11.44) we infer that {Λmn}0≤m,n≤3 is degenerate and moreover, it indeed has one

vanishing and three positive eigenvalues.

Next we assume from now that w 6= 0. Furthermore, observe that by (11.42), for every

(z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, we have

3∑
j=0

Λ0jzj = Λ00z0 +

3∑
j=1

Λ0jzj =
(

(w0)
2 − 1

)
z0 + w0 (w · z) (11.45)

and

3∑
j=0

Λmjzj = Λm0z0 +

3∑
j=1

Λmjzj = z0w
0wm +

3∑
j=1

(
δjm + wjwm

)
zj

= z0w
0wm + zm + (w · z)wm ∀m = 1, 2, 3. (11.46)

In other words, 
3∑
j=0

Λ0jzj = −z0 + (w0z0 + w · z)w0

3∑
j=0

Λmjzj = zm + (w0z0 + w · z)wm ∀m = 1, 2, 3.

(11.47)

Furthermore, assume that (z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, satisfiesz0 = 1
λ+1 w

0

z = 1
λ−1 w .

(11.48)

where λ solves

λ
(
λ−

(
1 + 2|w|2

))
= 0 , (11.49)

or in other words, λ satisfies

either λ = 0 or λ =
(
2(w0)2 − 1

)
=
(
1 + 2|w|2

)
> 1 . (11.50)
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Then, in particular, by (11.48) we have(
w0z0 + w · z

)
=

1

λ+ 1
(w0)2 +

1

λ− 1
|w|2 . (11.51)

Then by (11.41) and (11.51) we have(
w0z0 + w · z

)
=

(
1

λ+ 1
+

1

λ− 1

)
(w0)2 − 1

λ− 1
=

λ

λ2 − 1

(
2(w0)2 − 1

)
− 1

λ2 − 1
. (11.52)

If λ = 0 then, by (11.52) we have clearly

w0z0 + w · z = 1 (11.53)

On the other hand, if λ =
(
1 + 2|w|2

)
=
(
2(w0)2 − 1

)
then by (11.52) we also have(

w0z0 + w · z
)

=
λ

λ2 − 1
λ− 1

λ2 − 1
= 1 . (11.54)

Thus, if λ solves (11.49) then in both cases w0z0 + w · z = 1, and therefore, by (11.47) we deduce
3∑
j=0

Λ0jzj = −z0 + w0

3∑
j=0

Λmjzj = zm + wm ∀m = 1, 2, 3.

(11.55)

However, by (11.48) we have w
0 = (λ+ 1)z0

w = (λ− 1)z .

(11.56)

Thus by (11.55) and (11.56) we deduce
3∑
j=0

Λ0jzj = λz0

3∑
j=0

Λmjzj = λ zm ∀m = 1, 2, 3.

(11.57)

Thus, in the case where λ solves (11.49) and (z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, satisfies

(11.48), by (11.57) we deduce that (z0, z1, z2, z3) is an eigenvector of the matrix {Λmn}0≤m,n≤3. So,

λ0 = 0 and λ1 =
(
1 + 2|w|2

)
> 1 are two eigenvalues of the matrix {Λmn}0≤m,n≤3 . (11.58)

Furthermore if λ ∈ R and (z0, z1, z2, z3) ∈ R4 with (z1, z2, z3) := z ∈ R3 satisfy
λ = 1

z ·w = 0

z0 = 0 ,

(11.59)

then by (11.59) and (11.47) we have
3∑
j=0

Λ0jzj = 0 = λz0

3∑
j=0

Λmjzj = zm = λzm ∀m = 1, 2, 3 .

(11.60)
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However, obviously there exists two orthogonal unit vectors z1 ∈ R3 and z2 ∈ R3 such that

z1 ·w = z2 ·w = z1 · z2 = 0 .

Therefore, in the case λ = 1, if (z0, z1, z2, z3) ∈ R4 satisfies z0 = 0 and either (z1, z2, z3) = z1 or

(z1, z2, z3) = z2, then by (11.60) we deduce that in both cases (z0, z1, z2, z3) is an eigenvector of of

the matrix {Λmn}0≤m,n≤3. So,

λ2 = 1 and λ3 = 1 are two coinciding eigenvalues of the matrix {Λmn}0≤m,n≤3 . (11.61)

Therefore, by (11.58) and (11.61) we deduce that the matrix {Λmn}0≤m,n≤3 is degenerate, and

moreover it has one vanishing and three positive eigenvalues.

Lemma 11.5. Consider an arbitrary (w0, w1, w2, w3) ∈ R4 and consider a matrix {Kmn}0≤m,n≤3 ∈

R4×4, defined by: 
K00 = (w0)

2

Kjm = −δjm + wjwm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = w0wj ∀1 ≤ j ≤ 3 .

(11.62)

Then,

in the case w0 = 0 we have det ({Kmn}0≤m,n≤3) = 0 . (11.63)

On the other hand, in the case w0 6= 0 the matrix {Kmn}0≤m,n≤3 is invertible, its reverse matrix

{Kmn}0≤m,n≤3 ∈ R4×4 is defined by the following:
K00 = 1

(w0)2
− |w|2

(w0)2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = wj

w0 ∀1 ≤ j ≤ 3 ,

(11.64)

where w := (w1, w2, w3) ∈ R3. Moreover, the matrix {Kmn}0≤m,n≤3 necessary has one positive and

three negative eigenvalues and

det ({Kmn}0≤m,n≤3) = −(w0)2. (11.65)

Proof of Lemma 11.5. First of all, observe that in the case w0 = 0 the first row of the matrix, given

by (11.62), vanishes and thus we obviously deduce (11.63).

Next, assume from now that w0 6= 0. Then, consider a matrix {Kmn}0≤m,n≤3 ∈ R4×4 defined

by (11.64). Thus, by (11.62) and (11.64) we obtain

3∑
k=0

K0kK
k0 = K00K

00 +

3∑
k=1

K0kK
k0 = 1− |w|2 + |w|2 = 1,

3∑
k=0

KmkK
kj = Km0K

0j +

3∑
k=1

KmkK
kj = wmwj + δmj − wmwj = δmj ∀1 ≤ m, j ≤ 3,
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and
3∑
k=0

KmkK
k0 = Km0K

00 +

3∑
k=1

KmkK
k0 = wmw0 − wmw0 = 0 ∀1 ≤ m ≤ 3,

3∑
k=0

K0kK
kj = K00K

0j+

3∑
k=1

K0kK
kj =

1

w0

(
1− |w|2

)
wj−

3∑
k=1

wk

w0

(
δkj − wkwj

)
= 0 ∀1 ≤ j ≤ 3.

So,

3∑
k=0

KmkKkj =

1 if m = j

0 if i 6= j

∀m, j = 0, 1, 2, 3. (11.66)

Therefore, we deduce that {Kmn}0≤m,n≤3 is an inverse matrix to {Kmn}0≤m,n≤3 ∈ R4×4 and, in

particular, in the case w0 6= 0 matrix {Kmn}0≤m,n≤3 ∈ R4×4 is invertible.

Next, in the case w := (w1, w2, w3) = 0 we are done, since then matrix {Kmn}0≤m,n≤3 ∈ R4×4

obviously satisfies, 
K00 = (w0)

2

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = 0 ∀1 ≤ j ≤ 3 ,

(11.67)

and thus it has one positive eigenvalue λ0 = (w0)
2
, three negative eigenvalues λ1 = λ2 = λ3 = −1

and we have (11.65).

Thus, we assume from now that w0 6= 0 and w := (w1, w2, w3) 6= 0. Furthermore, observe that,

by (11.62) for every (z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, we have

3∑
j=0

K0jzj = K00z0 +

3∑
j=1

K0jzj = (w0)
2
z0 + w0 (w · z) (11.68)

and

3∑
j=0

Kmjzj = Km0z0 +

3∑
j=1

Kmjzj = z0w
0wm +

3∑
j=1

(
−δjm + wjwm

)
zj

= z0w
0wm − zm + (w · z)wm ∀m = 1, 2, 3. (11.69)

In other words, 
3∑
j=0

K0jzj = (w0z0 + w · z)w0

3∑
j=0

Kmjzj = −zm + (w0z0 + w · z)wm ∀m = 1, 2, 3.

(11.70)

Next, if (z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, satisfiesz = 1
λ+1 w

z0 = 1
λ w

0 ,

(11.71)
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where λ ∈ R is a solution of the following quadratic equation

λ2 +
(
1− (w0)2 − |w|2

)
λ− (w0)2 = 0 (11.72)

(obviously that if w0 6= 0 and w 6= 0, then λ ∈ {−1, 0} does not satisfies (11.72)). Thus in particular,

by (11.71) and (11.72) we have:

w0z0 + w · z =
1

λ
|w0|2 +

1

λ+ 1
|w|2 =

(λ+ 1)|w0|2 + λ|w|2

λ(λ+ 1)
= 1 . (11.73)

Therefore, by (11.73) and (11.70) we deduce:
3∑
j=0

K0jzj = w0

3∑
j=0

Kmjzj = −zm + wm ∀m = 1, 2, 3.

(11.74)

However, by (11.71) we have w = (λ+ 1)z

w0 = λ z0 .

(11.75)

Therefore, by (11.75) and (11.74) we deduce:

3∑
j=0

Kmjzj := λzm ∀m = 0, 1, 2, 3. (11.76)

So, we obtain that, if λ is a root of the quadratic equation (11.72) then, by (11.76) (z0, z1, z2, z3) ∈ R4,

with z := (z1, z2, z3) ∈ R3, given by (11.71), is an eigenvector of the matrix {Kmn}0≤m,n≤3. In other

words, every root of the quadratic equation (11.72) is an eigenvalue of the matrix {Kmn}0≤m,n≤3.

However, by Vieta’s formulas the quadratic equation (11.72) has to distinct real roots λ0 > 0 and

λ1 < 0 and λ0λ1 = −(w0)2. Moreover, if w0 6= 0 and w 6= 0 then −1 does not satisfies (11.72)), and

so,

λ0 > 0 and − 1 6= λ1 < 0 are two eigenvalues of the matrix {Kmn}0≤m,n≤3

and λ0λ1 = −(w0)2 . (11.77)

Furthermore, if λ ∈ R and (z0, z1, z2, z3) ∈ R4, with z := (z1, z2, z3) ∈ R3, satisfy
λ = −1

z ·w = 0

z0 = 0 ,

(11.78)

then by (11.78) and (11.70) we have
3∑
j=0

K0jzj = 0 = λz0

3∑
j=0

Kmjzj = −zm = λzm ∀m = 1, 2, 3.

(11.79)
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However, obviously there exists two orthogonal unit vectors z1 ∈ R3 and z2 ∈ R3 such that

z1 ·w = z2 ·w = z1 · z2 = 0 .

Therefore, in the case λ = −1, if (z0, z1, z2, z3) ∈ R4 satisfies z0 = 0 and either (z1, z2, z3) = z1 or

(z1, z2, z3) = z2, then by (11.79) we deduce that in both cases (z0, z1, z2, z3) is an eigenvector of of

the matrix {Kmn}0≤m,n≤3. So,

λ2 = −1 and λ3 = −1 are two coinciding eigenvalues of the matrix {Kmn}0≤m,n≤3 . (11.80)

Therefore, by (11.77) and (11.80) we deduce that the matrix {Kmn}0≤m,n≤3 has one positive and

three negative eigenvalues and moreover,

λ0λ1λ2λ3 = −(w0)2 . (11.81)

However, it is well known from the Linear Algebra that

λ0λ1λ2λ3 = det ({Kmn}0≤m,n≤3)

and thus, by (11.81) we finally deduce (11.65).

Lemma 11.6. Let {Λmn}0≤m,n≤3 ∈ R4×4 be a degenerate symmetric matrix, given by
Λ00 = 0

Λjm = δjm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = 0 ∀1 ≤ j ≤ 3 ,

(11.82)

with δjj = 1 ∀ j = 1, 2, 3

δjm = 0 ∀ j 6= m = 1, 2, 3 ,

(11.83)

and let (w0, w1, w2, w3) ∈ R4 be such that

w0 6= 0 . (11.84)

Then, there exists a non-degenerate matrix {Amn}0≤m,n≤3 ∈ R4×4, such that det ({Amn}0≤m,n≤3) 6=

0, and if we consider a matrix {Λ′mn}0≤m,n≤3 ∈ R4×4, defined by

Λ′mn :=

3∑
j=0

3∑
k=0

AmkAnjΛ
kj ∀m,n = 0, 1, 2, 3, (11.85)

and a vector (w′0, w′1, w′2, w′3) ∈ R4, defined by

w′j :=

3∑
k=0

Ajkw
k ∀j = 0, 1, 2, 3, (11.86)
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then we have: 
Λ′00 = 0

Λ′jm = δjm ∀1 ≤ j,m ≤ 3

Λ′0j = Λ′j0 = 0 ∀1 ≤ j ≤ 3 ,

(11.87)

and

(w′0, w′1, w′2, w′3) = (1, 0, 0, 0). (11.88)

Proof of Lemma 11.6. Consider a a non-degenerate matrix {Amn}0≤m,n≤3 ∈ R4×4 defined by:

A00 = 1
w0

Ajm = δjm ∀1 ≤ j,m ≤ 3

Aj0 = −w
j

w0 ∀1 ≤ j ≤ 3

A0j = 0 ∀1 ≤ j ≤ 3 .

(11.89)

Then, by (11.86) and (11.89) we obtain

w′j = Aj0w
0 +

3∑
k=1

Ajkw
k =

(
−w

j

w0

)
w0 +

3∑
k=1

δjkw
k = −wj + wj = 0 ∀j = 1, 2, 3, (11.90)

and

w′0 = A00w
0 +

3∑
k=1

A0kw
k =

(
1

w0

)
w0 + 0 = 1. (11.91)

So we deduce (11.88). On the other hand, by (11.85) and (11.82) we deuce:

Λ′mn =

3∑
j=0

3∑
k=0

AmkAnjΛ
kj =

3∑
j=1

3∑
k=1

AmkAnjδkj =

3∑
j=1

AmjAnj ∀m,n = 0, 1, 2, 3, (11.92)

Therefore, by (11.92) and (11.89) we infer

Λ′00 =

3∑
j=1

A2
0j = 0 , (11.93)

Λ′m0 = Λ′0m =

3∑
j=1

AmjA0j = 0 ∀m = 1, 2, 3, (11.94)

and

Λ′mn =

3∑
j=1

AmjAnj =

3∑
j=1

δmjδnj = δmn ∀m,n = 1, 2, 3. (11.95)

So, by (11.93), (11.94) and (11.95) we also deduce (11.87). This completes the proof.

Lemma 11.7. Let {Kmn}0≤m,n≤3 ∈ R4×4 be a non-degenerate symmetric matrix, given by
K00 = 1

Kjm = −δjm ∀1 ≤ j,m ≤ 3

K0j = Kj0 = 0 ∀1 ≤ j ≤ 3 ,

(11.96)
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and let (w0, w1, w2, w3) ∈ R4 be such that the real number M , given by

M :=
∣∣w0
∣∣2 − 3∑

j=1

∣∣wj∣∣2 , (11.97)

satisfies

M > 0 . (11.98)

Then, there exists a non-degenerate matrix {Amn}0≤m,n≤3 ∈ R4×4, such that det ({Amn}0≤m,n≤3) 6=

0, and if we consider a matrix {K ′mn}0≤m,n≤3 ∈ R4×4, defined by

K ′mn :=

3∑
j=0

3∑
k=0

AmkAnjK
kj ∀m,n = 0, 1, 2, 3, (11.99)

and a vector (w′0, w′1, w′2, w′3) ∈ R4, defined by

w′j :=

3∑
k=0

Ajkw
k ∀j = 0, 1, 2, 3, (11.100)

then we have: 
K ′00 = 1

K ′jm = −δjm ∀1 ≤ j,m ≤ 3

K ′0j = K ′j0 = 0 ∀1 ≤ j ≤ 3 ,

(11.101)

and

(w′0, w′1, w′2, w′3) =
(√

M, 0, 0, 0
)
. (11.102)

Proof of Lemma 11.7. Without any loss of generality we may assume M = 1 in (11.97), otherwise

we just replace (w0, w1, w2, w3) by
(
w0
√
M
, w

1
√
M
, w

2
√
M
, w

3
√
M

)
. So consider from now that M = 1. In

other words, we have ∣∣w0
∣∣2 − 3∑

j=1

∣∣wj∣∣2 = 1 . (11.103)

Then, by (11.103), using Lemma 11.4 we deduce that a matrix {Λmn}0≤m,n≤3 ∈ R4×4, defined by
Λ00 = (w0)

2 − 1

Λjm = δjm + wjwm ∀1 ≤ j,m ≤ 3

Λ0j = Λj0 = w0wj ∀1 ≤ j ≤ 3,

(11.104)

has one vanishing and three positive eigenvalues. Therefor, by the Sylvester’s law of inertia, there

exists a non-degenerate matrix {Bmn}0≤m,n≤3 ∈ R4×4, such that det ({Bmn}0≤m,n≤3) 6= 0, and if

we consider a matrix {Λ′′mn}0≤m,n≤3 ∈ R4×4, defined by

Λ′′mn :=

3∑
j=0

3∑
k=0

BmkBnjΛ
kj ∀m,n = 0, 1, 2, 3, (11.105)
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then we have 
Λ′′00 = 0

Λ′′jm = δjm ∀1 ≤ j,m ≤ 3

Λ′′0j = Λ′′j0 = 0 ∀1 ≤ j ≤ 3 .

(11.106)

However, by (11.101) and (11.104) we have

Kmn = wmwn − Λmn : ∀m,n = 0, 1, 2, 3. (11.107)

Thus, if we consider a vector (w′′0, w′′1, w′′2, w′′3) ∈ R4, defined by

w′′j :=

3∑
k=0

Bjkw
k ∀j = 0, 1, 2, 3, (11.108)

and a matrix {K ′′mn}0≤m,n≤3 ∈ R4×4, defined by

K ′′mn :=

3∑
j=0

3∑
k=0

BmkBnjK
kj ∀m,n = 0, 1, 2, 3, (11.109)

then, by (11.107) and (11.109) we deduce

K ′′mn = w′′mw′′n − Λ′′mn : ∀m,n = 0, 1, 2, 3. (11.110)

Then, by (11.110) and (11.106) we obtain
K ′′00 = (w′′0)

2

K ′′jm = w′′jw′′m − δjm ∀1 ≤ j,m ≤ 3

K ′′0j = K ′′j0 = w′′0w′′j ∀1 ≤ j ≤ 3,

(11.111)

In particular, since the matrix {K ′′mn}0≤m,n≤3 is non-degenerate (follows by the fact that

{Kmn}0≤m,n≤3 is non-degenerate), we deduce from (11.111) that we necessary have

w′′0 6= 0 . (11.112)

Therefore, we can apply Lemma 11.6 to deduce that, there exists a non-degenerate matrix

{A′mn}0≤m,n≤3 ∈ R4×4, such that det ({A′mn}0≤m,n≤3) 6= 0, and if we consider a matrix

{Λ′mn}0≤m,n≤3 ∈ R4×4, defined by

Λ′mn :=

3∑
j=0

3∑
k=0

A′mkA
′
njΛ

′′kj ∀m,n = 0, 1, 2, 3, (11.113)

and a vector (w′0, w′1, w′2, w′3) ∈ R4, defined by

w′j :=

3∑
k=0

A′jkw
′′k ∀j = 0, 1, 2, 3, (11.114)
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then we have: 
Λ′00 = 0

Λ′jm = δjm ∀1 ≤ j,m ≤ 3

Λ′0j = Λ′j0 = 0 ∀1 ≤ j ≤ 3 ,

(11.115)

and

(w′0, w′1, w′2, w′3) = (1, 0, 0, 0). (11.116)

Therefore, considering a non-degenerate matrix {Amn}0≤m,n≤3 ∈ R4×4, defined by

Amn :=

3∑
k=0

A′mkBkn ∀j = 0, 1, 2, 3, (11.117)

we obviously deduce, det ({Amn}0≤m,n≤3) 6= 0 and moreover, by (11.105) and (11.113) we have

Λ′mn :=

3∑
j=0

3∑
k=0

AmkAnjΛ
kj ∀m,n = 0, 1, 2, 3, (11.118)

and by (11.108) and (11.114) we have

w′j :=

3∑
k=0

Ajkw
k ∀j = 0, 1, 2, 3. (11.119)

Thus, if we consider a matrix {K ′mn}0≤m,n≤3 ∈ R4×4, defined by

K ′mn :=

3∑
j=0

3∑
k=0

AmkAnjK
kj ∀m,n = 0, 1, 2, 3, (11.120)

then, by (11.118), (11.119) and (11.107) we deduce

K ′mn = w′mw′n − Λ′′mn : ∀m,n = 0, 1, 2, 3. (11.121)

Finally, inserting (11.115) and (11.116) into (11.121) gives
K ′00 = 1

K ′jm = −δjm ∀1 ≤ j,m ≤ 3

K ′0j = K ′j0 = 0 ∀1 ≤ j ≤ 3 ,

(11.122)

and

(w′0, w′1, w′2, w′3) = (1, 0, 0, 0), (11.123)

where {K ′mn}0≤m,n≤3 is given by (11.120) and (w′0, w′1, w′2, w′3) is given by (11.119) with

det ({Amn}0≤m,n≤3) 6= 0. This completes the proof.
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