Lorentzian geometrical structures with global time, Gravity

and Electrodynamics

ARKADY POLIAKOVSKY !

Department of Mathematics, Ben Gurion University of the Negev,

P.O.B. 653, Be’er Sheva 84105, Israel

Abstract

We investigate Lorentzian structures in the four-dimensional space-time, supplemented either
by a covector field of the time-direction or by a scalar field of the global time. Furthermore,
we propose a new metrizable model of the gravity. In contrast to the usual Theory of General
Relativity where all ten components of the symmetric pseudo-metrics are independent variables,
the presented here model of the gravity essentially depend only on single four-covector field,
restricted to have only three-independent components. However, we prove that the Gravitational
field, ruled by the proposed model and generated by some massive body, resting and spherically
symmetric in some coordinate system, is given by a pseudo-metrics {Kmn }m,n=0,1,2,3, which
coincides with the well known Schwarzschild metric from the General Relativity. The Maxwell
equations and Electrodynamics are also investigated in the frames of the proposed model. In

particular, we derive the covariant formulation of Electrodynamics of moving dielectrics and

para/diamagnetic mediums.

1 Preliminary introduction

In the classical theories of Special and General Relativity the inertia and the gravity are described
by certain pseudo-metrics of signature {1,—1,—1,—1} in the four-dimensional space-time. On the
other hand, in the frames of the Newton-Cartan Theory (see [1], [2], [3], [4] [5], [6]) the geometry
of the space-time is (incompletely) described by the two-times contravariant symmetric degenerate
tensor {h™"},, n=0.1,23 of signature {0,1,1,1} and a covector (wp, w1, ws,ws) of time direction,

everywhere non-vanishing and satisfying

3
> hmMw;=0  Ym=0,1,2,3. (1.1)
§=0
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Moreover, in the case that there exists a scalar field 7 satisfying

or

= — Vm=0,1,2,3 1.2
axm m s Ly <y ( )

Wm

this field can serve as a global time in R*. In this paper we unify both these approaches and build the
model, completely describing the geometry and the gravity in R*, which includes both the pseudo-
metrics and the global time scalar field (or more generally the covector of the time direction). One
of the goal of the paper was to unify the Relativistic and the Non-Relativistic approaches to the
study of the space-time.

We postulate that all real physical processes appear in some valid pseudo-metrics { K™}, n=0,1,2,3,
describing the generalized gravity field, weakly correlated with some covector of time direction
(wo, w1, we,ws) (see definitions in the sequent section 2). Furthermore, we distinguish two types of
generalized gravity. First, type is the fictitious gravity which we call inertia. This type of gravity
depends only on the flat geometry of empty space-time via the choice of specific coordinate system
and it is independent on the surrounding real matter consisting of gravitational masses or other real
physical fields. The second type of the gravity is the genuine (real) gravity, which depends essentially
on the real physical matter, especially on gravitational masses. We assume that this type of gravity
vanishes away from essential gravitational masses and strong real physical fields. Then we state the

First Law of the Newton as the following;:

e In the parts of the space-time where we observes the absence of genuine gravity, and in par-

ticular away from essential real physical bodies and fields, we have
KM= gmn Vm,n=20,1,2,3, (1.3)

and

09 9zl 9x2’ §a3 (1.4)

where the strongly-correlating flat Minkowski’s pseudo-metrics {J™" },, 1=0,1,2,3 and the fixed

IRERt)

Op Jp Jp Oy
('U)O,'U}l,’LUQ,wg) = a 199 9 a2 9

scalar field ¢, called kinematical global time, form the standard kinematical Lorentz’s structure
with global time on R*, as defined in the Definition 2.7 of the sequent section. In particular

they assumed to satisfy, firstly the following eikonal-type equation

3 3
0@ Op
Jgm _
Z Z 7 Oz dx™ 1 (15)

7j=0m=0

Op .
{@- (W)}JZO Vk,j=0,1,2,3. (1.6)

where by {6j (a—‘i)}J we denote the tensor of the covariant derivatives of the covector

and secondly

o
xr
0p D¢ Oy 99 with t to th dometrics J™n
9200 9zl 92 9z W1 respec (6] € pseudometrics .



Then it easily can be derived that there exists some coordinate system where matrix {J™" },, n=0.1,2,3

s L4y

has a form of
J% =1
JU =gi%=0 Vvj=1,23 (1.7)
JIM = —bim, Vim=1,2,3

and at the same coordinate system the covector of time direction for the global time ¢ has a form

(&p Op ¢ 5‘@) (2%, 21, 22, 2%) = (1,0,0,0) V (20, 2!, 2%, 23) e R, (1.8)

0x0’ 9z’ 92’ O3
We call this particular system kinematically preferable and we show that it is unique, up to equiva-

lence. Furthermore, we define the kinematical tensor of three-dimensional Geometry {0™"},,, n=0.1,2,3,

given by
: I . I
mn ,__ mj nj 2t _ ymn _
Om" .= }:J o }:J o J Vm,n=0,1,2,3, (1.9)
7=0 Jj=0
where
. 2y < 2y < 2y < O
05 77 15 27 25 2 35 2
ZJ axj’zj 8xj’zj (%cj’ZJ Ozi (1.10)
7=0 j=0 Jj=0 Jj=0
is the contravariant vector of inertia. Obviously, we have
3 9
Yol —0  ¥m=0,1,23, (1.11)
= ox7

(as in (1.1)), forming the standard Galilean structure. In particular, in the kinematically preferable

coordinate system, where (1.7) and (1.8) holds we have

Q% —
¥ =010=0 Vj=123 (1.12)
OIm = 6, Vjim=1,23.

Furthermore, given arbitrary coordinate system, it is called cartesian if in this system we have
simultaneously (1.12) and (1.8) but, we do not necessary have (1.7). On the other hand, given
arbitrary coordinate system, it is called Lorentzian if in this system we have (1.7) but, we do not
necessary have (1.12) or (1.8). Finally, given arbitrary coordinate system, we call it inertial, if we can
get it from kinematically preferable coordinate system by a linear transformation. In the sequence
we prove, that we obtain a coordinate system which is simultaneously cartesian and inertial from
another such system by Galilean transformations. On the other hand, we obtain a coordinate system
which is Loretzian (and then also inertial) from another such system by Lorentz’s transformations.
The unique, up to equivalence, coordinate system which is simultaneously cartesian and Loretzian
is a kinematically preferable coordinate system. In subsection 2.1.1 we define Pseudo-Lorentzian

coordinate systems that generalize both cartesian and Lorentzian systems. We also find the group



of transformation of such systems including, in particular as subgroups Lorentzian and Galilean
transformations.

Furthermore, we describe our model of the gravity: given, an arbitrary dynamical four-covector
of the dynamical time direction, (wg,w;,ws,ws) (formally unrelated to the kinematical global
time ), which is weakly correlated with {J™"},, n=01,2,3 and an arbitrary four-covector field

(So, 51, 52,53), which we call the four-covector of genuine gravity, consider the two-times covari-

ant tensor { K, tm,n=0,1,2,3 defined by:
Kj :(ij+ijm+mej) VOgj,mgi’), (113)
and assume that (So, S1,S2,53) is such that {K,ntm.n=0123 in (1.13) satisfies

det ({Kmn}m,nzo,l,Z,B) = det ({Jmn}m,n:O,l,Q,B) . (114)

Then, one can prove that {K,,,}m n=0,1,23, is a valid pseudometrics of signature {1, -1, -1, -1},
correlated with the time-direction (wq,ws,ws,ws). Moreover, we call such a dynamical pseudo-
metrics {Knn bm,n=0,1,2,3, with time-direction (wp, w1, we, ws), correlated pseudometrics with time-
direction (wp, w1, ws,ws), corresponding to the covector of genuine gravity (Sg, S1,52,53). In the

case of the simplified approximating model we get

dp O Op Oy
(wo,wl,wg,wg)% (W’M’W’ax?’ s (1.15)
and (1.13) reeds as
- Iy 9 ,
Kjm = (ij+533jsm+8xm j) VO<jm<3, (1.16)

where ¢ is the kinematical global time. Next for the the dynamical time direction, (wq, w1, wsa, w3)
and the covector of genuine gravity (Sp, S1,S2,53) one can consider Proca-like Lagrangians, see in
the sequel.

In the following sections we prove, in particular, that in the frames of our simplified model, the
Gravitational field, generated by some massive body, resting and spherically symmetric in some
cartesian and inertial coordinate system, is given by the pseudo-metrics {Kpmsn}m n=01,23, such
that there exists some curvilinear (non-cartesian) coordinate system in R*, where {Kmn}mn=01,23
coincides with the well known Schwarzschild metric from the General Relativity! In particular, all
the optical effects that we find in the frames of our model coincide with the effects considered in the
frames of General Relativity for the Schwarzschild metric. Finally, all the mechanical effects will be
the same in the frame of our model like in the case of the General relativity for the Schwarzschild
metric, provided that the time does not appear explicitly in this effects. Furthermore, we also prove
that Gravitational field, ruled by our model, generated by a general slowly (non-relativistically)
moving massive matter in some cartesian coordinate system, can be well approximated, by the

classical model of the Newtonian Gravity.



Note here about the following advantage of the presented model of gravity with respect to the
usual Theory of General Relativity. The simplified model for the gravity depends only on four-
component field (Sp, S1,S2,53), which is by (1.16) and (1.14) has only three independent compo-
nents. Even the full model dependent only on (S, S1, Sz, S3) and (wq, wy, wa, ws), that is by (1.13)
and (1.14) has only seven independent components. On the other hand, in the General Relativity
the symmetric tensor { K }m.n=0,1,2,3 has all ten independent components that makes the corre-
sponding system of partial differential equations to be much more complicated.

Finally, in section 9 we give the covariant formulation of the Electrodynamics of the moving
dielectric and para/dia-magnetic continuum mediums in arbitrary dynamical pseudo-metrics. The
Lorentz’s covariant theory of the moving para/dia-magnetic continuum mediums in the flat Lorentz’s
pseudo-metrics was first introduced in [8] by H. Minkowski (1908). Here we formulate the generally
covariant theory in the different alternative way, that suite to formulate it in a general pseudo-metrics
including the presence of the genuine gravity.

The next section plays a role of comprehensive introduction. In the sequent sections we give more
detailed description of our results. In the end of the paper including Appendix we give detailed prove

of all mathematical statements.

2 Basic definitions and statements of the main results

2.1 Generalized-Lorentz’s structures with time-direction and global time

Definition 2.1. We say that the generalized-Lorentz’s structure on R* is chosen, if R* is equipped
with symmetric non-degenerate two-times contravariant tensor field {K"™"},, n=01,2,3, such that
the matrix K™" has one positive and three negative eigenvalues at every point in R*. Then,
{K™"},.n=0,1,2,3 is called a contravariant pseudo-metrics on R%. Moreover, the inverse symmetric
non-degenerate two-times covariant tensor field {K,,n }m, n=0,1,2,3 which satisfies

3 1 if m=n
> K™Ky, = Vm,n=0,1,2,3, (2.1)
k=0

0 if m#n
is called a covariant pseudo-metrics on R* associated with {K™} 1 n=0,1,2,3-

Definition 2.2. We say that a direction of the global time on R* is chosen, if R* is equipped with

a four-covector field (wo, w1, wa, w3) := (wo, w1, wa, w3)(x°, 1, 2%, 2%), non-vanishing at every point

in R* (the last property is obviously independent on the choice of a coordinate system in R*). Then,
chosen co-vector field (wp, w1, ws,ws) is called the co-vector of the time-direction. Furthermore,
we say that a scalar global time on R* is chosen, if R?* is equipped with a covariant scalar field

¢ := (20 z, 2% 2?) such that the four-covector field (wq, wy, we,w3), defined by

9y

wj =g ¥j=0123, (2.2)



does not vanish at any point on R%. Then ¢ is called a global time in R* and w; := w;(z°, x1, 22, 2%),

given by (2.2) is called the co-vector of the time-direction of the given global time .

Definition 2.3. We say that a contravariant pseudo-metrics {K™"},, n—0.1.2,3 and a covector of

IR

the time-direction (wg, w1, ws,ws) are weakly correlated, if we have everywhere

Z Z K™ w0, > 0 V(2% xt 2% 2%) € RE. (2.3)

7j=0m=0

In that case we say that generalized-Lorentz’s structure with time-direction on R* is chosen. Then,

we define the contrvariant four-vector field of the potential of generalized-gravity (v°,v!,v?,v3) by

1
2 3

3 3
o= | YO KR wjuy > KM, Vm=0,1,2,3. (2.4)
§=0 k=0 j=0
so that we have
3 3
Z Z Kimviv™ =1 V(2% 2!, 2% 2%) e R% (2.5)
=0 m=0

Furthermore, we say that a contravariant pseudo-metrics { K"}, n=0.1,2,3 and a scalar global time
¢ are strongly correlated on R* if o satisfies the following eikonal-type equation in pseudo-metrics
{Kmn}’rn,n=0,1,2,3:
3 3 5‘30 0
d> KIm— =1 V(' 2% 2% e R, (2.6)

In that case we say that generalized-Lorentz’s structure with global time on R* is chosen. Moreover,
in the later case we rewrite the definition of the contrvariant four-vector field of the potential of

generalized-gravity (v vl v ) (2.4) as
™= g K™= Ym=20,1,2,3. (2.7)
oxJ T

Then we prove the following:

Proposition 2.1. Given a contravariant pseudo-metrics { K™} n=01,2,3 0N R*, weakly correlated
with a covector of the time-direction (wo, w1, ws,ws), define the two-times contravariant symmetric

tensor field {A™"} 1 n=01,2,3 given by
A= pIyp™ — K9 Y im =0,1,2,3, (2.8)

with (v°,v!,v% v3) defined by (2.4). Then, the matrizx A™" has one vanishing and three positive
eigenvalues at every point in R%, and we call {A™"} 1 n=0,1,2.3 the contravariant tensor of three-

dimensional Geometry on R*. Moreover, we have

3 3 3
Zvjwj: ZZ K jwy, , (2.9)

j=0 §=0 k=0



and
3

> A™Mw; =0  ¥Ym=0,1,2,3. (2.10)
j=0

Corollary 2.1. Given a contravariant pseudo-metrics {K™" }m n=01.2,3 0N R%, strongly correlated
with a scalar global time @, define the contravariant tensor field {A™"},, n=0.1,2,3, given by

A= piy™ — K9 Y im=0,1,2,3, (2.11)

with (v°, v, v% v3), defined by (2.7). Then, the matriz A™" has one vanishing and three positive

eigenvalues at every point in R*. Moreover, we have

) 8@
J T —
Zv o =1 (2.12)
7=0
and
3 5
YAmE —0 ¥m=0,1,2,3. (2.13)
= oI

Here, it is important to note that in the frames of the Newton-Cartan Theory we have the

following definition (see [1], [2], [3], [4] [5], [6]):

Definition 2.4. The Galilean structure in R* consists of a fixed two-times contravariant symmetric
tensor {A™"},, n=01,2,3 in R%, such that the matrix A™" has one vanishing and three positive
eigenvalues at every point in R*, and a fixed covector (wg, w1, ws,ws), non-vanishing at every every

point in R* and such that
3 .
S AMw; =0  Ym=0,1,23 V(@ 2'2%2%) R (2.14)
j=0

Then, we prove the inverse to Proposition 2.1 statement:

Proposition 2.2. Let {A™"},, n=0.1,2,3 be a two-times contravariant symmetric tensor, such that
the matriz A™" has one vanishing and three positive eigenvalues at every point in R, and let
(wo, w1, we,w3) be a covector, non-vanishing at every every point in R* and such that

3
ZAmjwj =0 Ym=0,1,2,3 V(20 2t 2% 23) € R, (2.15)
3=0

that form together a Galileian structure. Next, given an arbitrary contravariant four-vector field

(09, v, 02,03 satisfying the covariant relation

3
Zvjwj >0 V(20 2t 2% 23) € R, (2.16)
§=0

consider a contravariant symmetric tensor field {K™" }, n=01,2,3, given by

KM — ’Uj’UTn _ A]m VJ’m = 0’ 17 2,3 . (217)



Then, { K™}y, n=0,1,2,3 15 a valid contravariant pseudo-metrics. Moreover, the generalized-Lorentz’s
structure, given by {K™"}y, n=0,1,2,3 s weakly correlated with the time direction (wq, w1, ws, ws).
Finally, we also have

1

3 3 3
ZZ Kimwwy, | = Zvjwj V(20 2t 2? 2) € RY, (2.18)
3=0

7=0 k=0

and

Nl

3 3 3
ZZ K™ wjwy, > KM, vm=0,1,2,3  V(z°, 2", 2% 2% e R?*,
7=0 k=0 j

(2.19)

So, {A™"},, n=0.1,2,3 is a contravariant tensor of three-dimensional Geometry and (09, v, 0% 03) s
a potential of generalized gravity, corresponding to the pseudo-metrics K™™ and the time-direction

(w0,w17w2,w3)-

Corollary 2.2. Let {A™"},, n=0,1,2.3 be a two-times contravariant symmetric tensor, such that the
matriz A™" has one vanishing and three positive eigenvalues at every point in R*, and let ¢ be a
covariant scalar field such that the four-covector field (wo,wy, ws, ws), defined by

Jip

wj =g Vj=0123, (2.20)

does not vanish at any point on R* and such that
& )
ZAW%:O ¥Ym=0,1,23 V(° 2! 2223 e R (2.21)
, x
Next, given an arbitrary contravariant four-vector field (v°, v, v? v3) satisfying the covariant relation
3
Z a—@ V(2% 2t 2? 23) € RY, (2.22)

consider a contravariant symmetric tensor field { K™}y n=01,23, given by

K™ = plg™ — AV Yjim=0,1,2,3. (2.23)

Then, { K™}, n=0,1,2,3 15 a valid contravariant pseudo-metrics. Moreover, the generalized-Lorentz’s
structure, given by {K™"},, n=01,2,3 i strongly correlated with the global time ¢. Finally, we also

IR

have

3
vaZOijg; ¥Ym=0,1,23 V(2" 2%2%) R, (2:24)

So, {A™"} ), n=0,1,2,3 s a contravariant tensor of three-dimensional Geometry and (09, v, 0% 03) s

a potential of generalized gravity, corresponding to the pseudo-metrics K™™ and the global time .



Remark 2.1. The above Proposition and Corollary show that the Galilean structure alone in-
completely describes the geometry of the space-time and for complete description, in addition to
{A™} ) n=0,1,2,3 and (wo, w1, ws,ws), above we need to specify one more contravariant vector field

(v9, v, 0% v3) (that we call here the potential of generalized-gravity) satisfying either

Zvjwj>0 V(2% 2t 22 23) € RY,
in the case of the weak coupling, or
Zvjwjzl V(2% 2t 2? 23) € RY,

in the case of the strong coupling. Then we can define a Lorentz’s-like contravariant pseudo-metrics

{Kmn}mn 0,1,2,3 as:

s Ly

Kmn :Ujvm_Aj7n vj,m:07172737

that will either weakly or strongly correlate with the time direction (wg,ws,ws,ws). Moreover, in

the case of strong coupling, the contravariant vector (v°,v!,v? v3) is just a lifted time-direction

(wo, w1, w2, w3) with respect to a pseudo-metrics {K™"},, n—01.23. Very similar to (v°,v!,v% v?)

contravariant vector field appears implicitly in in the equation (2.2) and before it on [5] (it was
denoted (10,1, 1% 1) there). Moreover, then it can be easily shown that the covariant degenerate
tensor field {Rpmn }m,n=0,1,2,3 in (2.2) on [5] is just the lowering-index of the tensor {h™" },, 1n=0,1,2,3 :=

{A™"},, n=0,1,2,3, With respect to the covariant pseudo-metrics {Kpn}m,n=01,23, which is inverse

to the contravariant pseudo-metrics
K™n = plg™ — AI™ = pJy™ — pI™ Vij,m=20,1,2,3.

Definition 2.5. Consider a contravariant pseudo-metrics {K™"},;, n—0,1,2,3 on R* and let

{Kmn}m.n=01,23 be the inverse covariant pseudo-metrics on R*, associated with {K™} 1 n=0,1,2,3-

Then, in every coordinate system define the Christoffel Symbols {kaj}K by

) _ 1 (9Kjm Kjn  0Kmn
{Fj,mn}K‘ 2( gan T Bm"‘ I

‘ 3 4 Vj,m,n=0,12 3. (2.25)
{Fgmn}]( = kzo K]k {Fk,mn}K

Furthermore, given a covariant four-vector field (hg, h1, ha, h3), define the covariant derivative of
(ho, h1, ha, h3) by

Ohy, .
{05} =55 = Z {Tr} e bm Yk, j=0,1,2,3. (2.26)

is a two-times covariant tensor.

Then, it is well known that {{0,hm} g}, o123

Definition 2.6. Consider a contravariant pseudo-metrics {K™"},, n=0,1,2,3 on R* and let

{Kyn}m.n—0123 be the inverse covariant pseudo-metrics on R?*, associated with {K™"},, ,—01.2.3-



Next, consider the Christoffel Symbols {FZ; }K, defined by (2.25). Given a coordinate system in R?,

we call it inertial coordinate system with respect to { K™}, ,=0,1,2,3 if, in this particular coordinate

system we have

{T7,,} =0 Vjmn=01,2,3. (2.27)

Then, using Lemma 11.2 from the Appendix, we deduce that, given coordinate system in R* is
inertial with respect to {K™"},,, n=01,2,3 if and only if the tensor {K,un}m,n=01,23 is independent

on the local coordinates (2, 2!, 2%, 23) € R* in this particular coordinate system.

Definition 2.7. If there exists some coordinate system where matrix {K™"},, n=0.1,2,3 has a form
of
K% =1
KY%=Ki"=0 Vvj=123 (2.28)
Kim = —§;m Vim=1,2,3
at every point in R* and at the same time the covector of time direction for ¢ has a form

(55 05 o ) (2t = (L0.0,0) W(alataf) e R (229)

in the same coordinate system, then the contravariant pseudo-metrics {K™"},, n=0,1,2,3 and the
global time ¢ are obviously strongly correlated on R* and we say that the standard kinematical
Lorentz’s structure with global time on R* is chosen. Moreover, in that case we call the contrvariant

1

four-vector field of the potential of generalized gravity (v°, v!,v?,v3), corresponding to that structure

and defined, as in (2.7), by

3
o™= ;ijgfj Vm=0,1,2,3, (2.30)
the contrvariant four-vector of the potential of inertia. Furthermore, we call the coordinate sys-
tem where (2.28) and (2.29) hold simultaneously, kinematically-preferable for the given generalized-
Lorentz’s structure with the global time. In particular, it is clear that a kinematically-preferable sys-

tem is inertial with respect to {K™"},, n=0,1,2,3 (see Definition 2.6) Furthermore, in kinematically-

preferable coordinate system we obviously have
(vo,vl,v2,v3) (2% 2, 2%, 2%) = (1,0,0,0) V (20, 2t 22, 23) e R, (2.31)

Moreover, in the same coordinate system the contravariant tensor field {A™"},, n=0.1,2,3, given as

in (2.11) by

A= lp™ — KI™ Yim=0,1,2,3, (2.32)
obviously satisfies
A% =0
AV =AO=0 Vj=1,23 (2.33)

A= 6, Vijim=123.

10



Finally, using Lemma 11.3 from the Appendix in the end, we deduce that a general coordinate

system is inertial, with respect to the above pseudo-metrics, if this coordinate system is obtained

from kinematically-preferable system by a general linear transformation of the form:
3 .
= Cpja? +¢™ ¥m=0,1,2,3, (2.34)

where {Cpntnm=123 € R*** is a constant (independent on (2%, 2!, 2% 23) € R?*) non-degenerate

matrix, and (¢, ¢!, c?, ) € R?* is a constant (independent on (20, 21, 22, 23) € R*) vector.

Definition 2.8. Given a contravariant pseudo-metrics {K™"},,, ,=0,1,2,3, We say that a given general

L4y

coordinate system in R* is Lorentzian with respect to { K™"},;, n=0.1,2.3, if {K™" };n.n=0.1,2,3 has the

IRl

following simple form in the chosen coordinate system:

K% =1 V(22! 2% 2%) e R?
K™ = —§pn V1<m,n<3 V(20 2t 22 2%) e R* (2.35)
KWV =K%=0 vV1<;j<3 V(20 2t 2%, 23) € R,

Note that (2.35) also implies:

Koo=1
Ky = —bmn VI<m,n<3 (2.36)
Koj=Kjo=0 V1<j<3.

Moreover, due to Definition 2.6, every Lorentzian coordinate system is obviously inertial with respect

to {Kmn}m,n=0,1,2,3~

Definition 2.9. Let

FO) (20

20,2t 22 23),

(

f(l)(xo,x 22, 13),
o (2.37)
=f

'3 :f(S)(z Il 72 IS)

20, 2t 22 23),

be a change of the first general coordinate system to the second coordinate system. We say that
transformations (2.37) are Lorentz’s transformations if, for arbitrary contravariant pseudo-metrics

{K™"}1.n=0,1,2,3, such that in the first coordinate system we have

K™ = —§p, V1<m,n<3 V(2% 2t 22, 2%) € RY (2.38)

11



in the second coordinate system we also have
K% =1 v(9a2" 22 27%) e R
K™ = —§,., V1<m,n<3 V(20 2t 22, 2"3) € R (2.39)
K% =Ki%=0 V1<j<3 V(20 2t 2" 2") e RY.

In particular, observe that, using Lemma 11.3 from the Appendix, we deduce that every Lorentz’s

transformation is necessarily linear.

Definition 2.10. Consider a standard kinematical Lorentz’s structure with global time ¢ on R*,
together with the corresponding tensor of three-dimensional Geometry {A™"},, n—01.2.3. We say
that a given general coordinate system in R* is cartesian with respect to the tensor of the three-

dimensional geometry {A™"}., n=0,12

sLr4y

3 and the global time ¢, if {A™"},, ,=0,1,2.3 has the following
simple form in the chosen coordinate system:
A =0 V (20,21, 2% 23) e RY
A =A0=0 Vji=1,23 V(a2 %) cR? (2.40)
A = 6n Vm,n=1,2,3 V(20 2t 22, 23) € R4,

and at the same time in the same coordinate system we have

Op Op Op Oy
0z0’ 9z’ 9x2’ Ox3

Definition 2.11. We say that two cartesian coordinate systems in R* are equivalent if the change

) (2%, 2%, 2% 2%) = (1,0,0,0) V(2% 2t 22 23) e RY. (2.41)

of coordinates from one system to another is given by

20 = 20 + 0,
(2.42)

3 .
2’ =3 Bpjal +c7" Ym=1,2,3,
Jj=1

where {Byn }tnm=123 € R3*3 is a constant (independent on (z°, 2!, 22, 2%) € R*) matrix, satisfying

3 3
Zijan = ZBijjn =0mn  Ym,n=1,23, (2.43)
j=1

Jj=1

and (%, ¢!, c?,¢?) € R* is a constant (independent on (20, 2!, 22, 23) € R*) vector.
Then we prove the following:

Theorem 2.1. Consider a standard kinematical Lorentz’s structure with global time on R* together
with the corresponding tensor of three-dimensional Geometry {A™"}y, n=0,1,2,3. Next consider the
first cartesian, with respect to {A™"};, n—01,23 and @, coordinate system in R* and the second
general coordinate system in R*. Then, the second coordinate system is also cartesian if and only if
the change of the first coordinate system to the second one is given by the following relations:

2’0 = 2% 4 ¢,

. | (2.44)
2= S a2 46 Ym=1,2,3,
j=1

12



where { Apn (2°) }r,m=1,2,3 € R3*3 is a 3x3-matriz, depending on the coordinate x° only (independent

on x = (2!, 22, 2%)), and satisfying

> Ami(a0)An(2%) =D Ajm (22 Ajn(2°) = 6 Ym,m=1,2,3 V(@' a', 2% 2%) e R,
j=1 j=1

(2.45)
¢ € R is a constant (independent on (z°,2',22,2%) € R*) and z(2°) := (2'(2), 22(29),23(2")) €
R3 is a three-dimensional vector field, depending on the coordinate z° only (independent on x :=

(xt, 2%, 2%)). In particular, up to equivalence of cartesian coordinate systems (see Definition 2.11),

(2.44) reduces to

(2.46)
x'=A(2%) x4z (a),
where A(z°) € SO(3) is a rotation, depending on the coordinate z° only and where z (xo) s a

three-dimensional vector field, depending on the coordinate z° only.

As a consequence of Theorem 2.1 together with Lemma 11.3 from the Appendix, we deduce the

following:

Corollary 2.3. Consider a standard kinematical Lorentz’s structure with global time on R*. Next

consider the first coordinate system in R*, which is simultaneously inertial and cartesian, with respect

to this structure, and the second general coordinate system in R*. Then, the second coordinate system

s also simultaneously inertial and cartesian if and only if the change of the first coordinate system

to the second one is given by the following relations:

20 = 20 1+ 0,

3 _ (2.47)
'™ = 3" Bpjxd +wma® 4 ™ Ym=1,2,3,
j=1
where { Bin }n.m=1,2.3 € R3*3 is a constant 3 x 3-matriz (independent on (z°,z', 2% x3) € R*), and
satisfying
> BmjBnj =Y BjmBjn=0mn  Ym,n=123, (2.48)
j=1 j=1

(¥, ct, 2, c®) € R* is a constant vector (independent on (2°, z1, 2% 2%) € R*) and w := (wl, w?, w3) €

R3 is a constant three-dimensional vector (independent on (z°, 2%, 2%, 23) € R*). In particular, up
to equivalence of cartesian coordinate systems (see Definition 2.11), (2.47) reduces to the classical

Galilean Transformations:

(2.49)
' =™ 4wl Ym=1,2,3,
where w 1= (wl7 w?, w3) € R3 is a constant three-dimensional vector field (independent on the point

(20,21, 2% 2%) e RY).
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Theorem 2.2. Consider a standard kinematical Lorentz’s structure with global time on R*. Next
consider the first coordinate system in R*, which is kinematically-preferable and the second general
coordinate system in R*. Then, the second coordinate system is also kinematically-preferable, if and

only if the first and the second coordinate systems are equivalent cartesian systems.

Remark 2.2. Consider a standard kinematical Lorentz’s structure with global time on R*. Next

consider a coordinate system in R*, which is simultaneously cartesian and Lorentzian, with respect

to this structure. Then, by Definition 2.7 this system is kinematically-preferable, with respect to
this structure. Moreover, note that, all kinematically-preferable systems are equivalent cartesian
and Lorentzian systems. Finally, note that the arbitrary coordinate system is Lorentzian if and only

if it can be obtained from the kinematically-preferable system by some Lorentz’s transformation.

2.1.1 Pseudo-Lorentzian coordinate systems

Definition 2.12. Consider a standard kinematical Lorentz’s structure with global time on R* (see
Definition 2.7), consisting of contravariant pseudo-metrics {K™"},, n=0,1,2,3 and the global time ¢,
together with the corresponding tensor of three-dimensional Geometry {A™"},, ,—0.1,2.3, defined, as
in (2.32) by

AT = dp™ — K™ Vim=0,1,2,3, (2.50)

where (v°, v, 9%, v3) is the contrvariant four-vector field of the potential of generalized gravity, given,

as in (2.30), by ‘
m-—iKW‘a—‘p ¥Ym=0,1,2,3 (2.51)
"= > B m=0,1,2,3. .
o

We say that a given general coordinate system in R* is Pseudo-Lorentzian with respect to the tensor

of the three-dimensional geometry {A™"},, n=01,2,3 and the global time ¢, if {A"™"},, ,—01,2,3 has

the following simple form in the chosen coordinate system:

A® = ()2 —1 V(2% 2l 22 2%) € R*
A% = A0 = —wqw; Vji=1,2,3 V (20, 2!, 2% 23) e R4 (2.52)
A = §n + W W, VYm,n=1,2,3 V (20, 2t 22, 23) € R4,

and at the same time in the same coordinate system we have

Op Op Op 0
<8;7PO’ 6—;, 8—;’;, 8;'03) (zo,ml,xQ,xS) = (wo, w1, wa, w3) V(xo ol 22 x ) e R*, (2.53)

where (wo, w1, wy, w3) € R* is some constant (independent on the point (2%, 2!, 22, 23) € R*) vector,

satisfying

3
(wo)® =) (w;)? =1, (2.54)

j=1
(Note that by Lemma 11.4 the matrix {A™" }o<m n<s3 in (2.52) is degenerate and moreover, it has

one vanishing and three positive eigenvalues).
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Remark 2.3. Obviously every Lorentzian coordinate system, where

K% =1
K% = K% =90 Vi=1,2,3
K™ = —6,un Ym,n=1,2,3,
is a Pseudo-Lorentzian system, since such a system obtained from the kinematically-preferable sys-

tem by a linear Lorentz’s transformation. Moreover, every cartesian coordinate system is also

Pseudo-Lorentzian system with

(55 05 5 5 ) (2t a%a) = (1L0.0,0) ¥(a0,ala?a®) € R,

Theorem 2.3. Given coordinate system is Pseudo-Lorentzian, if and only if it obtained from some

cartesian coordinate system by some Lorentz’s transformation.

Definition 2.13. In every coordinate system (possibly curvilinear) we consider the following ma-

trices
M =1
MY% =MIO:=0 Vj=1,2,3 (2.55)
Mi™ .= —0jm Vim=1,2,3,

and
MOO =1
Moj =Mjp:=0 Vj=12.3 (2.56)
Mjm ::féj Vj,m:1,2,3,

(note that M*J and My, are not tensors). Next for given fixed constant vector (wq, w1, we, ws) € R%,
satisfying

3 3
SO MM ww,, =1, (2.57)

7j=0m=0

0 .2 /3)

we say that the change of coordinate system (20, 2! 22 23) — (2/0,2'1,22,2'3) is of the class

PL(wp, w1, ws,ws) if we have

3 3 3
'™ = Z Bj (Z wk:ck> x4 2™ <Z wkxk> Ym=0,1,2,3, (2.58)

7=0 k=0 k=0

where B(s) := {Bm;(s)},, j0.123 R = R and (29(s), 2 (s), 2%(s), 2%(s)) : R — R* satisfy

3 3
M =33 Buy(s) Bus(5)M7* ¥m,n=0,1,2,3,  VseR, (2.59)
=0 k=0
3
_, dB
3w <{B .ds} (s)> =0 Vm=0,1,23  VseR, (2.60)
§=0 gm
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and
3 3 m
Z ij ({Bil}jm (s)) ddz—s(s) =0 Vs e R. (2.61)
m=0 j=0

As a direct consequence of Definition 2.13 we have the following:

Corollary 2.4. Given change of coordinate system (x°, x', 2% 23) — (20, 2", 2%, 2'3) is a Lorentz’s

transformation, if and only if this transformation is of class PL(wg, w1, ws,ws) for every fized

constant vector (wo, w1, we, w3) € R* satisfying (2.57), where B := {Bp,;},. e R¥>4 gnd

,J=0,1,2,3

(zo, 21,22, z3) € R* in (2.58) are independent on the argument s.

As the second direct consequence of Definition 2.13 and Theorem 2.1 we have the following:

Corollary 2.5. Consider a standard kinematical Lorentz’s structure with global time ¢ on R* to-

gether with the corresponding tensor of three-dimensional Geometry {A™"}, n=0123. Next con-
sider the first cartesian, with respect to {A™"},, n=01,2,3 and @, coordinate system in R* and the
second general coordinate system in R*. Then, the second coordinate system is also cartesian if and
only if the change of the first coordinate system to the second one is of class PL(1,0,0,0) where
B(s) == {Bmj(s)}, j—0103 R = R4*4 in (2.58) is given by

Boo(s) =1 Vs
Bo;(s) = Bjo(s) =0  Vj=1,2,3 Vs (2.62)
Bn(s) = Apn(s) Vm,n=1,2,3 Vs,
where { Apn(8) }n,m=1,23 € R3*3 is a 3 x 3-matriz, satisfying
3 3
ZAmj(s)Anj (s) = ZAjm(s)Ajn(s) = Omn Vm,n=1,2,3 Vs. (2.63)
i1 =1

Theorem 2.4. Consider a fized Pseudo-Lorentzian coordinate system, so that

A% = (wg)? -1 V(2% 21, 2%, 23) € R?
A% = A0 = —wow;  Vi=1,2,3 V(2 !, 22, 23) € R (2.64)
A™ = §pn + W wy, Vm,n=1,2,3 V (20, 21, 2%, 23) € R,

and at the same time in the same coordinate system we have

Op Op Op O
(&;)0()’8;’3;’%) (mo,xl,xQ,x3) = (wp, w1, wa, w3) V(xo,xl,xQ,xB) e R*, (2.65)

where (wo, w1, wa, w3) € R* is some constant (independent on the point (x°,x1, 22 23) € R*) vector,

satisfying

3
(wo)® = (w;)* =1. (2.66)

Jj=1
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Nexat, assume that the new coordinate system is obtained from the given above (old) system by the

following transformation

(.%’O,.CC171'2,:L‘3) N (:L‘”/O,:L'IHl,:L‘”/Q,.%'HB) . (2.67)

Then the new coordinate system is also Pseudo-Lorentzian if and only if the transformation in (2.67)

is of class PL ((wo,w;,ws, ws)).

Proposition 2.3. Given a constant vector (wo, w1, ws, w3) € R* satisfying (2.57) assume that that
the change of coordinate system (20, x', 22, 23) — (20,2’ 2%, 2") is of class PL(wq,wy,ws,w3)

and considering another constant vector (wf, wi,wh, wh) € R*, defined by

3
L=y ({B*l}jm (0)) Vm=01,23  VseR, (2.68)
7=0

where B(s) :={Bm;(s)},, j—01.23 R — RY*4 be as in (2.58). Then, we have
3 3
ZZ M™! wl =1. (2.69)

23:“’3’ ({B7,.0)) = iwj ({B},,0) =w, V¥m=01,23  VseR. (270)
Jj=0 =0

Moreover, at every point in R* we have

3 ox
> w, g =Wn  Yn=0,123, (2.71)

and as a direct consequence of (2.71) there exists a constant C € R such that at every point in R*

we have s s
(Zw;x'k) =C+ (Zwkﬂck> . (2.72)
k=0 k=0

Definition 2.14. Given two fixed constant vectors (wo, w1, we, w3) € R* and (w}, w, wh, wh) € R,

satisfying
3 3
SN MM wjw,, =1, (2.73)
=0 m=0
and
3 3
SN MW, =1, (2.74)
7=0m=0

2 /1 12 /3)

we say that the change of coordinate system (20, 2! 22 23) — (2/0,2'1,22,2'3) is of the class

PL((wo, wy, wa, w3); (wh, wh, wh, w3)) if it belongs to PL(wg, w1, ws,ws) and

w, =3 w; ({B7},,(0)  ¥m=0123  VscR, (2.75)

where B(s) := {Bm;(5)},, j—0123 R — R**4 be as in (2.58).
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Furthermore, for given two fixed constant vectors (wq, w1, wa, w3) € R* and (w}, w}, wh, wh) € R4,

satisfying (2.73) and (2.74) we define the subspace

L((’LU(),’LUl,wg,’lUg); (wé)awllvwé7wé)) -,C«- PL((w07w17w23w3); (w(/)awllvw/%wé))

0 .1 .2

of transformations (2°,2', 22, 2%) — (2, 2",2%,2"), where B := {By,;},, o e R*** and

0,1,2,3

(20,21, 2%,2%) € R* in (2.58) are independent on the argument s (Obviously such a coordinate

change is necessarily a Lorentz’s transformation).
As a direct consequence of Proposition 2.3 we deduce two following Corollaries:

Corollary 2.6. e Given fived vector (wo,wy, we,w3) € RY | satisfying (2.73), assume that the
change of coordinate system (20, x', 22, 23) — (2/0, 2", 2"%,23) is of the class PL(wo, w1, wa, w3).
Then the constant vector (wl, w}, wh, ws) € R*, given by (2.75) satisfies (2.74) and the above
coordinate change (2°,x', 22 23) — (2/0, 2’ 2"2,2"%) is of the class

PL((wo,wl,wz7w3); (wg, wh, wéwé))-

e Given a Lorentz’s transformation (20, 2%, 22, 23) — (20,21, 2%, 2'3), there exist two fived

constant vectors (wo, wy, wae, w3) € R and (w), w, wh, wh) € R*, satisfying (2.73) and (2.74),
such that the above of change coordinates (x°,x', 22 23) — (20,21, 2%, 2'3) is of the class

L( (o, wn, wa, wg)s (why wh whwh) ).

Corollary 2.7. Consider a standard kinematical Lorentz’s structure with global time ¢ on R* to-
gether with the corresponding tensor of three-dimensional Geometry {A™" },, n=0,1,2,3. Next consider
the first cartesian, with respect to {A™"}, n=01,2,3 and @, coordinate system in R* and the second
general coordinate system in R*. Then, the second coordinate system is also cartesian if and only if

the change of the first coordinate system to the second one is of class PL((l,0,0,0); (1,0,0, 0))

Proposition 2.4. Given two fized constant vectors (wg, w1, wq, w3) € R* and (wf, w}, wh, wh) € R4,

satisfying
3 3
SO MIMww,, =1, (2.76)
j=0m=0
and s s
Z Z MM whw,, =1, (2.77)

0

I
=
3
I

assume that the change of coordinate system (20, x' 2% %) — (20,2t 2%, 2'3) is of the class
PL((wo,wl,wg,wg);(w('),w'l,w’g,wg)). Then the inverse change of variables (z'°, 2"t 2% 2'3) —

(20, 21, 22, 23) is of the class PL((wé,w/l,w'z,wg); (U)(),U)l,wg,wg)).

As a direct consequence of Lemma 10.1 we deduce:
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Proposition 2.5. Given three fired constant vectors (wo,wy,ws, w3) € R*, (wh, w), wh,wh) € R*

and (wij, w} ,wh, wy) € R4, satisfying

Z?=0 anzo MM wjwy, =1

S0 o MIM Wi, =1 (2.78)

m
3 3 jrn, M 1
ijo Zm:O MY wj Wy, = 1 ’
assume that that the change of coordinate system (20, 2!, 22, 23) — (29, 2'Y, 2%, 2"3) belongs to the
class PL((wO7 w1, wa, w3); (W), wy, wh, wg)) and another change of coordinate system (x'°, "%, 22, 23) —
(2”0, 2" 2% 2""3), belonging to the class PL((w(’),w’l,w’Q,wg); (w{)’,w’l’,w’z’,wé’)). Then, the com-

position of the above two changes of coordinate systems:
(x07x1’m27x3) N (CC”O,.’L'HI,.’L'HQ,I'H?’) _ (xo,xl,:vQ,m?’) N ($I0,$l1,$/2,$/3) — (.%'//0,1'//171'”271‘”3)
belongs to the class PL((wo,wl,wmwS); (w()’,w’l’7w’2’,w§)).

As a direct consequence of the Corollary 10.1 and Proposition 2.5 we deduce:

Proposition 2.6. Given three fized constant vectors (wo, w1, ws, w3) € R, (wf, w}, wh, wh) € R*

and (o, 1, Wy, w3) € R*, satisfying

3 3 im
Zj:() Zm:O MY WjWm = 1
S Y M, =1 (2.79)

30 X MMt =1,

the change of coordinate system (z°, 2%, 2%, 2%) — (20, 2", 2", 2""3) belongs to the class

PL((wo,wl,wg,wg); (w67w’1,w’2,wé)> if and only if there exists three other changes of coordinate

system (20, 21, 22 23) — (20, 2%, 22, 2"3), belonging to the class L((wo, w1, wa, w3); (W, W1, Wa, ws)) ,

(20, 2", 22, 2"3) — (20, 2", 22, 2""3), belonging to the classPL((wo,wl,wQ,w3);(wo,wl,wz,w3))
x

and (1,1107 1,//1 1,//2, I,IIB) RN (1,1110’ z///l

1112
) 9

///3)

x'"?), belonging to the class

)

L(((wo,wl,wz,wg); (wh, wh, wé,wé)), so that the original transformation

(20,2t 22 %) — (270 2" 22 2"") is a composition of the above three changes of coordinate

systems:

(1_0’ 3:1, JC2, xS) N (x///O, 1‘/”1, 33”/2, 1_///3) —

($07x17x2, 1‘3) N (x/07x/1’x/2,x/3) N (x/lo’xlll’xNZ’xl/B) N (Z‘WO,l‘//ll,l‘///Q,l‘///S) . (2.80)
As a direct consequence of Proposition 2.6 we deduce the following;:

Corollary 2.8. Given two fized constant vectors (wo, w1, w2, w3) € R*, (wh,w), wh,wh) € R4,
satisfying
3 3 ;
> =0 2m=o MM wjwm =1

\ , 4 (2.81)
ijo > m=0 Mjmw;w;n =1,
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the change of coordinate system (x°,z%, 2% 23) — (20, 2%, 2", 2"""3) belongs to the class
PL((wo,wl,wg,wg); (w{),w’l,wé,wg)) if and only if there exists three other changes of coordinate
system (20,21, 22 2%) — (20,21, 22, 2'3), belonging to the class L((wo,wl,wg,wg);(1,0,0,0)),
(20, 2"t 22 2"3) — (20, 2", 2”2, 2""3), belonging to the class PL<(1,070,0); (1,070,0))

and (20, 2" 2", 2"3) — (20, 2", 2""2 2""3), belonging to the class

L(((I,0,0,0); (wé,w’l,wé,wé)), so that the original transformation

(20,21, 22

20,2t 22 2% — (20 2" 2" 2" is a composition of the above three changes of coordinate

systems:

(1’0, 1,1’ x27 SCS) — (x///()’ :17/'/1, x”’Q, :17/'/3) _

(x07x17x2, 3:3) N ($/07x/1’m/27x/3) N (Jj//O’xl/l’xl/Q’x//B) — (x”lo,1‘/”1,:6/”2,93”/3) . (2.82)

2.2 Kinematical Lorentz’s structure with global time

Definition 2.15. We say that a contravariant pseudo-metrics {K™"},;, n=0,1,2,3 o1 R? is flat if the

curvature-tensor of this pseudo-metrics vanishes. In other hand at every point in R* we have
J —
3

0 (fri D (1 oy - y -
oz™ ({F?“”}K) 9 ({Fim}K) + Z {Fk”}K {Fém}K B Z {ka}K {r:‘d}K =0
d=0 d=0
Vi kym,n=01,23, (2.83)
where the Christoffel Symbols {FZ;}K are defined by (2.25). It is well known that the equality in

(2.83) is independent on the chosen coordinate system.

Remark 2.4. Obviously, if given a pseudo-metrics {K"™"},;, n=01,2,3, there exists an inertial coor-
dinate system, with respect to {K™"},, n=01,2,3, then this pseudo-metrics is obviously flat. In

IREEt)

particular, if there exists some coordinate system where matrix {K™"},, n=0.1,2,3 has a form of
K% =1
KW =Ki%=0 Vj=123 (2.84)
Kim .= —0im Vim=123

then a contravariant pseudo-metrics {K"™"},;, n=0,1,2,3 on R? is flat.

Definition 2.16. Given a generalized-Lorentz’s structure with global time on R*, formed by
a strongly correlating contravariant pseudo-metrics {K™"},, n=0,1,2,3 and a global time ¢, we
say that this generalized-Lorentz’s structure with global time is kinematical, if pseudo-metrics
{K™"}1n=0,1,2,3 is flat and, at the same time, the tensor of the covariant derivatives of the covector

2] 2] 2] o :
(#7 #7 87;?27 Tﬁ) vanishes:

dy ,
{5J_ (W)}K:O Vk,j=0,1,2,3. (2.85)
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Remark 2.5. Consider a standard kinematical Lorentz’s structure with global time on R*, formed
by a pseudo-metrics {K™"},, n=0,1,2,3 and a global time ¢, so that there exists some coordinate

system where matrix {K™"},, ,—0,1,2,3 has a form of

K% =1
KY%=K%=0 Vvj=123 (2.86)
Kim.— —6,.  VYjim=123

and at the same time the covector of time direction for ¢ has a form

(850 8@ 34,0 890) (x0,$1,1’2,$3) _ (1,070’0) V(xo,xl,I'?,mg) € R%. (287)

0x0’ 9xt’ Hx2’ Ox®
Then, we obviously obtain that this standard kinematical Lorentz’s structure with global time is
kinematical in the sense of Definition 2.16. On the other hand, given an arbitrary kinematical

Lorentz’s structure with global time, one can prove that every point in R* has at least some neigh-

borhood, in which (2.86) and (2.87) hold in some coordinate system.

2.3 Kinematical and Dynamical generalized-Lorentz structures with time

direction

We postulate that all real physical processes appear in some valid contravariant pseudo-metrics
{K™ }n.n=0,1,2,3, describing the generalized gravity field, weakly correlated with some covector of
time direction (wg,ws,ws,ws). Furthermore, we distinguish two types of generalized gravity. First,
type is the fictitious gravity which we call inertia. This type of gravity depends only on the flat
geometry of empty space-time via the choice of specific coordinate system and it is independent
on the surrounding real matter consisting of gravitational masses or other real physical fields. The
second type of the gravity is the genuine (real) gravity, which depends essentially on the real physical
matter, especially on gravitational masses. We assume that this type of gravity vanishes away from
essential gravitational masses and strong real physical fields. Then we state the First Law of the

Newton as the following:

Proposition 2.7. [Aziom I] In the parts of the space-time where we observes the absence of genuine

gravity, and in particular away from essential real physical bodies and fields, we have
KM= gmn VYm,n=0,1,2,3, (2.88)

and

9z0” 9xl’ 9a2’ §a3 (2.89)

where the strongly-correlated covariant pseudo-metrics {J™" }p n=0,1,2,3 and the global time ¢ form

s La4s

dp dp Jp Oy
(’LU(),’U}1,IU2,U)3) = a3 1°9.97 .13 9

the standard kinematical Lorentz’s structure with global time on R*, as defined in Definition 2.7.
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Remark 2.6. We remind, that by Definition 2.7, there exists some coordinate system where matrix

{J™"} i n=0,1,2,3 has a form of

JO =1
JOi = Ji0 — Vi=1,23 (2.90)
JIm = Vjm=1,2,3

and at the same coordinate system the covector of time direction for the global time ¢ has a form

<&P o 8@) (2°, 2", 2%, 2%) = (1,0,0,0) V(2% 2t 2% 2%) e RY. (2.91)

0x0’ Oz’ 92’ O3
We remind that this particular system is called kinematically preferable and it is unique, up
to equivalence. Furthermore, we define the kinematical tensor of three-dimensional Geometry

{©™"} 1 n=0,1,2,3, given by

3 3
- O0p . Oy

mn .__ mj nj _ mn _

om” .= g J pei E J Fei J VYm,n=20,1,2,3, (2.92)
j=0 j=0
where

2 dp o dp o dp o e

JOI J J2 J3 2.93

is the contravariant vector of inertia. In particular, in the kinematically preferable coordinate system,

where (2.90) and (2.91) holds we have

Q% —
QbW =00=0 Vvj=123 (2.94)
M =6,  Vjim=12,3.

We also remind that, given arbitrary coordinate system, it is called cartesian if in this system we
have simultaneously (2.94) and (2.91) but, we do not necessary have (2.90). On the other hand,
given arbitrary coordinate system, it is called Lorentzian if in this system we have (2.90) but, we do
not necessary have (2.94) or (2.91). Finally, given arbitrary coordinate system, it is inertial, if we can
get it from kinematically preferable coordinate system by a linear transformation. We also remind,
that we obtain a coordinate system which is simultaneously cartesian and inertial from another such
system by Galilean transformations. On the other hand, we obtain a coordinate system which is
simultaneously Loretzian and inertial from another such system by Lorentz’s transformations. The
unique, up to equivalence, coordinate system which is simultaneously cartesian and Loretzian is a

kinematically preferable coordinate system.
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2.4 Lagrangian of the motion of a classical point particle in a given

pseudo-metrics with time direction

Definition 2.17. Consider a classical point particle with the inertial mass m and the charge o mov-
ing in the generalized-gravitational field, given by a contravariant pseudo-metrics { K™"},, n=0.1,2.3,
weakly correlated with a four-covector of the time direction (wq, ws, ws, w3), and influenced by the
electromagnetic field with the four-covector of the electromagnetic potential (Ag, A1, Aa, Az). Next
assume that x(s) == (x°(s), x*(s), X*(s), x*(s)) : [a,b] = R* € R* is a four-dimensional space-time
trajectory of the particle, parameterized by some general scalar parameter s € [a,b] (including the
cases where a = —oo and/or b = +00). Then we say that the parameter of the trajectory s is proper

with respect the time direction (wg, w1, ws,ws), if we have

3 j
3w (x(s)) %(s) >0 Vs € [a,b]. (2.95)
j=0

Next, given a proper parametrization s, we define the contravariant four-vector of the velocity of

the particle (u®, u!, u?, u?)(s), with respect to the time direction (wp, w1, ws,ws), by the following
j s i) ¥j=0,1,2,3 v b 2.96
u!(s) = kz:%wk (x(s)) E(S) g(s) J=0,1,2 s € [a,b], (2.96)
so that
3 .
ij (x(s) v/(s) =1 Vs € [a, b] (2.97)
§=0

(It is obvious that the definition of (u°, u!, u?, u3) in (2.96) is independent on the choice of the proper
parametrization s). Moreover, given an arbitrary contravariant four-vector field (f°, f1, f2, f3), we
say that this field is a speed-like four-vector field, with respect to the time direction (wq, w1, wa, w3),

if we have

w; (20, 2t 2%, 2?) (20, 2t 2? 2%) = 1 V(2% 2t 22 23) € RY. (2.98)

M-

7=0
Remark 2.7. Note here the difference in our notation with respect to the usual Special and General
Relativity: in the usual Theory of Relativity the notation of the four-velocity of the particle is

booked for the normalized contravariant four-vector (a°,a', a2, a%)(s), given by

3 3 m n _% J
i (s) = (Z 5 Koo (x(5) 2 <s>‘2f9<s>> O ()=

m=0n=0
3 3 -3
(Z Z Kon (x(8)) u™(s) u"(s)) u? (s) Vji=0,1,2,3 Vs € [a,b], (2.99)
m=0n=0

while, in the present paper by the name four-velocity we denote the contravariant four-vector

(u®, ut, u? u?)(s), given by (2.96).
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Furthermore, given a proper parametrization s, consider the Lagrangian of motion of this particle

given by the following (in the Gaussian unit system)
b 3 ) . 3 dX‘]
Lo(0) = [ 4 -mG [ 33" Ko ) w (o)) | b Do ws (xl) 25 | s
a ; 7=0
dXJ _
+ /a Z gA;( s ds =
b 3 3 ‘ 3 ) dXJ
[ 4-m6 [ 323" Ko o) (o) k(o) | = Yo ui(s) 4 (x() ij ) ) s,
a ; 3=0

(2.100)

where {Kynn }mon=01,2,3 is the inverse to { K"}, n=01,2,3 covariant pseudo-metrics and G(7) : R —
R is some fixed function. Obviously, the functional in (2.100) is independent on the choice of the

proper parametrization. We have the following two important particular cases:
e The case of relativistic particle where G(7) := /7 — 1 in (2.100).
e The case of non-relativistic particle where G(7) := 1(7 — 1) in (2.100).
In both cases G(1) = 0. Moreover, we have
VT—1= %(771)+0((r—1)2) ) (2.101)

In the first relativistic case we simplify (2.100) as

b 3 3 j
L0 = [ 4em |23 K tats)

b 3 dXJ dXJ
+ / - Z gA; (x(s) + Z maw; (x(s) 1 ds. (2.102)
a ]70

On the other hand, in the second, non-relativistic case we simplify (2.100) as:

J

. (z > K (x(s) 4 )
_m ds

> w; (x(5) )
b 3 dx’ S m dx’
+ / - ZUAj (x(s)) e + Z 5 Wi (x(s)) = pds. (2.103)

. ‘ ds
j=0 =0

Definition 2.18. Given two events on the trajectory of the motion of the particle x(s;) € R* and
x(s2) € R*, with parameters of the chosen proper parametrization s; and s, respectively, we define

the interval of time that passed from the event x(s1) to event x(sz), corresponding to the time
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direction (wq, w1, ws, ws), as:

So 3 d 7
X
rs )= [ 3w o) O | ds. (2104)
S1 j:O
Then obviously the interval of time is independent on the proper parametrization of the trajectory.

Moreover if we have

oYy oY o 0O
(wo, wy, ws, w3) = (8;%’8;#1’8;@’8‘;@’) V(mo,xl,xQ,x3) e R*, (2.105)

where 9 is some global time (which is obviously weakly correlated with {K™"},, n=0.1,2,3 ), then,

yLa4s

inserting (2.105) into (2.104) we obviously deduce

7 (x(51), x(52)) = ¥ (x(s2)) — ¢ (x(s1)) - (2.106)

So, in the later case the interval of time between two events is the difference in global time between
the second and the first event and therefore, this interval is independent on the trajectory itself,
but depends only on the two ending points of the trajectory. Note also that in the general case the
quantity

7(s) =7 (x(s), x(a)) Vs € la,b], (2.107)

can be chosen as a preferable parameter of the trajectory of the motion and we rewrite the relativistic

Lagrangian in (2.102) as:

3 3 de ka 3 dXJ
Li(x) = / m—m Z > K (x(7) el Z oA; (X(7) = pdr, (2.108)
0 7=0 k=0 7=0
and we rewrite the non-relativistic Lagrangian in (2.103) as
i3 m om [ dx? dx* 3 dx?
La(x) = 0/ 9 9 ;;Kjk (x(7)) dar ar |~ ;UAJ' (x(7)) dr dr. (2.109)

Moreover, in the case of general G, we rewrite the general Lagrangian in (2.100) as:

7(b)

3 3 dX] ka 3 dXJ
Lo00 = [ §-mG [ 33" Ko tar) G 5 | = oo (i) 95 far, (2110)
o =0 k=0 j=0
and the velocity satisfies
| dni
wi(r) = %(T) Vj=0,123 Vs € [0,7(b)]. (2.111)

Furthermore, we postulate the Second Law of Newton:

Proposition 2.8. [Aziom II] The motion of a classical point particle with inertial mass m and
charge o is described by the Lagrangian (2.100), where we consider either G(1) := /T — 1 (the

relativistic case) or G(7) := (7 — 1) (a non-relativistic approzimation).
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As a consequence of the first and the second laws of Newton we deduce the following.

Corollary 2.9. [The law of inertia] Assume that either G(1) := /T—1 or G(7) := 1(7—1) in (2.100).
Then, in the absence of genuine gravitational field, the electromagnetical or any other physical field,
giwen an arbitrary inertial coordinate system, the trajectory of the classical point particle in this
coordinate system is a direct-line in R*. Note that the coordinate system must be inertial, but not

necessary cartesian or Lorentzian.

2.5 Lagrangian of the electromagnetic field in a given pseudo-metrics

Definition 2.19. Consider a contravariant pseudo-metrics K := {K™"},, ,—01,.23 and let A =
(Ag, Ay, Az, A3) = (Ag, Ay, Ag, A3) (2%, 2%, 2%, 23) be the four-covector of the electromagnetic po-
tential and j = (5, 51,42, 5%) := (4°, 41, 5%, 5%) (2, 21, 22, 23) be the contravariant four-vector of the
four-current. As usual, we consider the Lagrangian-density of the electromagnetic field given by the

following (in the Gaussian unit system):

L ((Ao, A1, A2, Ag), {K™" } o n=0,1,2,3) =
3

33 E 1 0A, 0A,,\ [0A
( 222 2 K (o - %) (5 - 5) - Z‘W ) (2112)

=0

(we use the dynamical pseudo-metrics { K™"},,, n—0,1,2,3 in this definition since it is well known that
the electromagnetic field is dependent on the genuine gravity). Correspondingly, given a subregion

YV C R%, the Lagrangian of the electromagnetic field in this subregion is given, as usual, by

Lc(Ag, Ay, Az, Az) :=
//// < Ao,Al,A27A3) {K }Tnn 0123 ‘det ({Kmn}nm 0,1,2, 3)‘_2> dxodxl dl‘2 dl‘d
(2.113)
In particular, the critical points of L.(Ag, A1, A, A3) must satisfy
oL, .
(SA (AO;A17A2>A3) VJ :0713233a (2114)

and, thus by the Euler-Lagrange we deduce

3

3 3
P b i (DA, A,
jzz:o X (Z > |det {KP}, 4—0,1,03] % K*" K7 (amm ~ o ))

m=0n=0

= —dr |det {KP%}, 00125 % j¥  Vk=0,1,2,3. (2.115)

2.6 Correlated pseudo-metrics

Definition 2.20. Consider a two contravariant pseudo-metrics {J""},, n=01,2,3 and { K™}, n=0.1.2.3

on R* and let {Jmn fm.n=01,2,3 and {Kn tm,n=0,12,3 be the inverse covariant pseudo-metrics on R4,
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associated with {J""},, n=01,2,3 and {K™"},, ,=0,1,2,3, that satisfy

s a4y 144

3 3 1 if m=n
S T Sk =D K™ Ky = Vm,n=0,1,2,3. (2.116)

0 if m#n
Then, we say that {J™" },, n=0,1,2,3 and {K™" },, n=0,1,2,3 are two correlated pseudo-metrics, if there
exist a four-covector of the time direction, (wp, w1, we, ws), weakly correlating with {J™"},, n=0.1,2,3

and {K"™"},,, n=01,2,3 simultaneously, so that we have

3 3

Z Z JIMwiw,, >0 V(2% 2t 2% 2%) € R, (2.117)
7=0m=0

3 3 .
Z Z K7 wjwy, >0 V(20 2t 2? 23) € RY, (2.118)
§=0 m=0

and moreover, there exists a four-covector field (Sp, S1,S2,53), such that we have
Kjm = (Jjm +wjSm +wpsS;) Y0<jm<3 V(:co ot 22 x ) e RY. (2.119)

Theorem 2.5. Consider a contravariant pseudo-metrics {J™ }, n=0,1,2,3 0N R* and an arbitrary
covariant four-covector field (wo, w1, we, ws), served as a time direction, and such that {J™" }p n=0,1,2.3
and (wo, w1, wae,ws) are weakly correlated. Furthermore, let {Jmn}mn=01,23 be the inverse covari-

1

ant pseudo-metrics on R*, associated with {J™" };m n=01.23 and let (r°,r1,r% r3) be the potential of

the generalized gravity, corresponding to {J™"}m n=01,2,3 and (wo, w1, ws,ws) and satisfying

3.3 3 3 _
SO> Frwjwy > T, Vm=0,1,2,3. (2.120)
§=0

=0 k=0

Furthermore, as before, consider a contravariant tensor of three-dimensional Geometry {A™"},, n=0,1,2.3,

s L4y

given by
Ajm _,],,_] ij Vj,m207172737 (2121)

Next, given an arbitrary contravariant four-vector field (v°,vt,v? v3), satisfying

3

> vw; >0, (2.122)
§=0

define the contravariant symmetric tensor field { K™}, n=0.1,2,3 by the following relations:
KIm .= olyp™ — AV™  Yjim=0,1,2,3. (2.123)

Then, { K™}, n=0,1,2.3 is a valid contravariant pseudo-metrics. Moreover, the inverse to {K™" }y n=01,2,3

covariant pseudo-metrics { Kmn }m.n=0123 15 given at every point in R* by the following:

ij = (ij + ijm + ’mej) Vo< jm<3, (2124)
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where the covariant four-covector (Sg, S1,S2,S3) is defined by the following covariant relation:

1 _
2 3

1

3 3 3

1 , . 1 . .

Sp, 1= 3 g g ijijk E Ky’ | — 5 g v w; E Imj v’ Vo<m<3.
§=0 k=0 j=0 =0 3=0

(2.125)

Finally, the following covariant relations are valid

3 3
YN Kjmvlv™ =1, (2.126)

§=0 m=0
3 3
ZKmej = Zv]wj o™ Ym=20,1,2,3, (2.127)
Jj=0 j=0

and

2

3 3
3 3 (—det ({Jmn tm,n=0,1,2,3)) < >0 Jm"wmwn> 3
KI™w v, = m=0n=0 = vw; | . (2,128
Z Z / (* det ({Kmn}m,nzo,l,Q,B)) _7:20 ’ ( )

m=0 j=0

So, {J™ b n=01,2,3 and {K™"},, n=0.1,2,3 are two correlated pseudo-metrics (see Definition 2.20).
Moreover, K™ and (wo, w1, ws,ws) are weakly correlated and (v°, v, v?,v?) is a potential of gen-

eralized gravity, corresponding to the couple K™" and (wg, w1, ws, w3).

Theorem 2.6. Consider a contravariant pseudo-metrics {J"™"}m n=01,2,3 0N R* and an arbi-
trary covariant four-covector field (wo, w1, w2, ws), served as a time direction, {J™" }m n=01,23
and (wg, w1, we,ws) are weakly correlated. Furthermore, let {Jmn}tmn=0123 be the inverse co-
variant pseudo-metrics on R*, associated with {J™"},, n=01.23 and let (r r' r?,r3) be the po-
tential of the generalized gravity, corresponding to {J™"}ym n=01,23 and (wo, w1, ws,w3) and sat-
isfying (2.120). Furthermore, as before, consider a contravariant tensor of three-dimensional Ge-
ometry {A™" }mn=0123, given by (2.121). Next consider, an arbitrary covariant four-covector

(S0, 51,82, S3) such that a two-times covariant tensor field {K™"},, n=0.1,2,3, defined by

ij = (ij + ”U.)jSm + ’mej) Vo<jm<3, (2129)

satisfies the following at every point in R*:

det ({Kmn}nco.,23) <0 (2.130)

Then, the inverse to { Kimn tm,n=0,1,2,3 two-times contravariant symmetric tensor field { K™}, n=01,2,3
is given by

K™ =0™0"™ — A VYm,n=20,1,23. (2.131)

where the contravariant vector field (v°,vt,v2, v3) is defined by the following covariant relation.:

—det ({Jkn}k,nzo,l,z,?))

—det ({Kkn}k,n:0,1,2,3) =0 k=0 j=0

Ym=0,1,2,3. (2.132)
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Furthermore, we also have
> v | >0, (2.133)

and {K™"}pn=01,2,3 is a valid contravariant pseudo-metrics. Moreover, the covariant relations
n (2.125), (2.126), (2.127) and (2.128) are also valid. So, {J"™"}mn=01,2,3 and {K™"}m n=01,2.3
are two correlated pseudo-metrics. Moreover, K™ and (wg,wy,ws, ws) are weakly correlated and

(09, v, 0v2%,0v3) is a potential of generalized gravity, corresponding to K™" and (wo, w1, wa, ws3).

Corollary 2.10. Consider a contravariant pseudo-metrics {J™"}m n=01,2,3 0N R* and an arbitrary

s a4y

scalar field ¢ : R* — R, served as a global time, such that
3 3
Op 0
ZZ gime 9P _ V(20 2t 2% 23) € R, (2.134)

Furthermore, let {Jmn}mn=01,23 be the inverse covariant pseudo-metrics on R*, associated with
{J™Y 0 n—01.2,3 and let (1%t r?,1r3) be the contravariant four-vector field, defined by

3Ly

3

ri= " oS Ym=0123. (2.135)

j=0
Furthermore, as before, consider a contravariant tensor of three-dimensional Geometry {A™" } n=0,1.2,3,
given by
AN = pdp™ — JIM Y im =0,1,2,3. (2.136)

Next, given an arbitrary contravariant four-vector field (v°,vt,v? v3), satisfying

3
z_: a—‘p , (2.137)

define the contravariant symmetric tensor field {K™"}m n=0.1,2,3 by the following relations:
KIm .= lyp™ — AV™  Yjim=0,1,2,3. (2.138)

Then, {K™"}p n=0,1,2,3 s a valid contravariant pseudo-metrics and we have

3 3 a 8
SN KM IE Y (2.139)

Moreover, the inverse to {K™"}p, n=01,23 covariant pseudo-metrics {Kmn}m.mn=01,23 s given at
every point in R* by the following:

8 &p

where the covariant four-covector (Sp, S1,S2,S53) is defined by the following covariant relation:

3
1 , 1 ,
Sm = D0 5 Kongt? =30 5 Imgt? VO <m <3, (2.141)



Finally, the following covariant relations are valid

3 3
Y3 Kjmvlo™ =1, (2.142)

j=0m=0
.0
SKMIE o™ ¥m=0,1,2,3, (2.143)
_ oxJ
Jj=0
det ({Jmn}m,n=071,2,3) = det ({Kmn}m,n=0,1,2,3) . (2144)

So, {J™ b n=0,1,2,3 and {K™"},, n=0.1,2,3 are two correlated pseudo-metrics, that both correlated
with the same global time ¢ and (v°,v*,v2, v3) is a potential of generalized gravity, corresponding to

K™ and ¢.

Corollary 2.11. Consider a contravariant pseudo-metrics {J™" }m n=01,2,3 0N R* and an arbitrary

scalar field ¢ : R* — R, served as a global time, such that we have (2.134). Next, let {Jomn }mmn=0.12.3
be the inverse covariant pseudo-metrics on R*, associated with {J™" }, n—o.1.2.3 and let (r°,rt r? r3)
be the contravariant four-vector field, defined by (2.135). Furthermore, as before, consider a con-
travariant tensor of three-dimensional Geometry {A™"},, n=0.1,2,3, given by (2.136). Next consider,
an arbitrary covariant four-covector (Sg,S1,S2,53) such that a two-times covariant tensor field
{K™}on=0,1,2,3, defined by

_ Iy d¢ .
ij— (J]m+sm8xJ+SJ8mm> VOS],mS3, (2145)

satisfies the following covariant relation at every point in R*:

det ({Kmn}m,n:()’wﬁ) = det ({Jyn bmneo.12.3) - (2.146)

Then, the inverse to {K™"},, n=0.1,2,3 two-times contravariant symmetric tensor field { Kmn fm.n=0,1,2,3

is given by
K™ =0™0"™ — A, VYm,n=20,1,23. (2.147)
where the contravariant vector field (v°,v',v? v3) is defined by the following covariant relation:
3
V= | Y ATIS 4 Vm=0,1,2,3. (2.148)
j=0

Moreover, we also have
3

)
Z”]aTi' -1, (2.149)

j=0

{K™ }inn=0,1,2,3 1 @ valid contravariant pseudo-metrics, and

3 3 a 8
SN KmIE P (2.150)

Oxd dxm
m=0 j=0

Moreover, the covariant relations in (2.141), (2.142) and (2.143) are also valid. So, {J™" } 1 n=0,1,2,3
and {K™"}p n=01,2,3 are two correlated pseudo-metrics, that both correlated with the same global

time ¢ and (v°,v1,v% v3) is a potential of generalized gravity, corresponding to K™" and .
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2.7 Kinematically correlated models of the genuine gravity

Definition 2.21. Consider the strongly-correlated kinematical covariant pseudo-metrics

{J™"}n.n=01,2,3 and the kinematical global time ¢, forming a standard kinematical Lorentz’s struc-
ture with global time on R*, as in Proposition 2.7 and Remark 2.6. Furthermore, let { Imn Fm,n=0,1,2.3
be the inverse covariant pseudo-metric on R*, associated with {.J " n=0,1,2,3- Given, an arbitrary
dynamical four-covector of the time direction, (wg, w1, we, ws) (formally unrelated to the kinematical
global time ¢), which is weakly correlated with {J™"},, n=0,1,2.3 and an arbitrary four-covector field
(So, 51,52, S3), which we call the four-covector of genuine gravity, consider the two-times covariant

tensor { Ky fm.n=0.1,2,3 defined by:

Kjm = (Jjm +w;Sm + wnS;) Y0 <j,m<3 V(2% 2t 2? 2) € RY, (2.151)
and assume that (So, S1,S2,53) is such that {K,,, m n=0,123 in (2.151) satisfies

det ({Kpmn tmon=0,1,2,3) = det ({Jmn tm.n=01,2,3) V(20 2t 2% 2%) e R? (2.152)

( the last equality is obviously independent on the choice of coordinate system). Then, by Theo-
rem 2.6 the inverse to {Kpn}m.n=0.1,2,3 two-times contravariant tensor {K™"},, n=0.1,2,3 is a valid
contravariant pseudometrics, weakly correlated with the time-direction (wg,w;, w2, ws). Moreover,
we call such a pseudometrics {K™"},, n=0.1,2,3, With time-direction (wg, w1, w2, ws), kinematically

correlated pseudometrics with time-direction (wq, w1, we,ws), corresponding to the covector of gen-

uine gravity (So, S1, Sa, S3).

Remark 2.8. If {K™"}y, n=01,2,3, with time-direction (wo, wy,wsz,w3), is a kinematically correlated
pseudometrics with time-direction (wg, wy, ws, ws), corresponding to the covector of genuine gravity

(So, 81,85, 83), then by Theorem 2.6 {J™"},, n=0.1.2

s L4y

3 and {K™"},, n=0,1,2,3 are two correlated
pseudo-metrics (see Definition 2.20). Moreover, denoting by (r%, r!, 72 r?) the contravariant four-
vector of the generalized gravity, corresponding to {J™"},, n=01,23 and (wo, w1, wa,ws), which

satisfies

1
2

3 3
= ZZ JFwjwy, ijjwj vm=0,1,2,3, (2.153)
=0

=0 k=0

and considering a contravariant tensor of three-dimensional Geometry {A™"},, ,—0.1,2.3, given by
AT = Ty g VYm,n=20,1,2,3, (2.154)
using Theorem 2.6, we have
K™ =0™" — Ay = J7 00" — ™" vm,n=0,1,2,3. (2.155)

where the contravariant vector of generalized gravity (v°,v!,v2,v3) is defined by the following co-

variant relation:

S Jikwsu | | YO AMIS; | 0™ Vm=0,1,2,3, (2.156)
=0 k=0 =0
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and both couples {J™"},, n=0,1,2,3, (wo, w1, w2, ws), and {K™"},, n—01,2,3, (Wo, w1, ws,ws) are

weakly correlated. Moreover, we also have

3
> v | >0, (2.157)

and the following covariant relations are valid

1
2

3 3 3 3 3
= % ZZ ijijk ZOijrj — % Z;)ijj E:Oijvj Y0<m<3,
J= J= =

§=0 k=0
(2.158)
3 3
SN Kjmvlvm =1, (2.159)
7j=0m=0
3 3
ZKme = Zv o™ vYm=20,1,2,3, (2.160)
Jj=0 Jj=

and
2

3 3 3 3 3
Z Zijijm = Z Z J" MW, w, = Z'ijj >0. (2.161)
=0

m=0 j=0 m=0n=0
Note, however, that the dynamical time-direction (wp, w1, ws,ws) can differ from kinematical time-
direction (%, %, %, %) and the dynamical tensor of three-dimensional Geometry {A™"},, n=0,1,2,3

can differ from the kinematical tensor of three-dimensional Geometry {©™"},, ,—0.1,2.3, given by

144y

3

3
O O
g J i E J 90 |~ J Vvm,n=20,1,2,3. (2.162)

Finally, note that if the covector of genuine gravity (Sp, S1,.52,53) vanishes at some point, then by
(2.151) at this point we have
ij:ij VOS],’H’LSZ&, (2163)

correspondingly to the First Law of Newton (Axiom I).

Definition 2.22. Consider the strongly-correlated kinematical covariant pseudo-metrics

{J™"}m.n=01,2,3 and the kinematical global time ¢, forming a standard kinematical Lorentz’s struc-
ture with global time on R*, as in Proposition 2.7 and Remark 2.6. Furthermore, let {Tmn}tm,n=01,2,3
be the inverse covariant pseudo-metric on R*, associated with {J™}mm=01,23. Then given a
four-covector field (Sy, S1,S2,S3), which we call the four-covector of genuine gravity, consider the

two-times covariant tensor {K . m n=0,1,2,3 defined by:

&p dy

o= (4 0284 2

S) Vo<jim<3 V(22! 2% 2% eR?, (2.164)
and assume that (S, S1, Sa, S3) is such that {Kmn}m’n:()’l,g’g in (2.164) satisfies
det ({f('rrm}'rn,n=0,1,2,3) = det ({Jmn}m,n=0,1,2,3) v (xO’ xlv 332, 1,3) € R4 . (2165)
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Then, as before, the inverse t0 { Ky }m,n=0,1,2,3 two-times contravariant tensor { K"}, n=0.1,2,3 is a

valid contravariant pseudometrics, strongly correlated with the kinematical global time ¢. Moreover,

we call such a pseudometrics {K mn o n=01,2,3, with global time ¢, kinematically semi-scalar super-

correlated pseudometrics with kinematical global time ¢, corresponding to the covector of genuine

gravity (So, S1, 99, Sg)

Remark 2.9. If {K™"},,n=0,1,2,3, With kinematical global time ¢, is a kinematically semi-scalar

super-correlated pseudometrics with kinematical global time ¢, corresponding to the covector of
genuine gravity (So, S, S2,53), then, denoting by (r°, 71,72, 73) the contravariant four-vector of the
inertia, corresponding to {J™"},;, n=0.1,2,3 and ¢, which satisfies

3

Dy
m o.__ mj —
r’m = ]E:O J Fei vYm=0,1,2,3, (2.166)

and considering a contravariant tensor of three-dimensional Geometry {A™"},, ,—0.1,2.3, given by

3 3
; Op ; Op
AT = g — § Jmi Z 2 § JrZ2 | — gmn =0,1,2,3 2.167

o = ) \= o =0 LS, (2A0T)

we have
K™ =0™" — Ay = JJT + 00" — M VYm,n=20,1,2,3. (2.168)
where the contravariant vector of generalized gravity (v°,v!,v?,v3) is defined by the following co-

variant relation:

3
™= ZAmJSJ +7'm Vm = 03132737 (2169)
3=0

and both couples {J™"},, n=0,1,2,3, ¢, and {K™"},, n—0,1,2.3, ¢ are strongly correlated. Moreover,
the following covariant relations are valid

3. 5
ZUJ% =1, (2.170)

=0

(2.171)

3 3
1 ) 1 )
Sm ::5 EOijT] 75 EOijU] V0§m§3
J= J=

3 3
SN Kjmvlv™ =1, (2.172)

7j=0m=0
2 d
Zij% =™ Vm = 07 1, 2737 (2.173)
X
7=0

3 3 ) )
NN KmIE S (2.174)

I O™
=0 m=0 927 9

and

3 3
3 gimde 00 _ (2.175)



Finally, note that the dynamical global time equals to kinematical time ¢ and the dynamical tensor of

three-dimensional Geometry {A™"},, ,—0,1,2,3 equals to the kinematical tensor of three-dimensional

Geometry {0™"},, n=01,2,3, SO that

3 3
O O
AT = @7 = Jmi X Ji X | gmny =0,1,2,3. 2.176
jzz;) 8(p] jzzg) 8(£] m7n 9 9 b ( )

2.8 Lagrangian for dynamical time-direction and its limiting case

Consider the strongly-correlated kinematical covariant pseudo-metrics {J™"},, n=0,1,2,3 and the
kinematical global time ¢, forming a standard kinematical Lorentz’s structure with global time on
R*. Furthermore, consider an arbitrary four-covector of the time-direction (wq,wy,ws,w3). Next,

consider a Lagrangian density Lr := L ((wo, w1, w2, ws), (2%, 2, 22, %)), defined by
'CR ((w03w17w27w3)7 ($0,$1,$2, xB)) =

=1, B Owm \ (0 dwy,
(L33 e (G- G (G- 0

n=0 k=0 m=0 p=0

3 3

2
— % (Z Z J" W0 Wy, — 1) -G ((wo,wl,wg,wg), (xo,xl,m2,x3)) , (2.177)

m=0n=0

where o # 0, A # 0 are real dimensionless constants, such that
la| > 1 and [Al>1. (2.178)

and p # 0, v # 0 are real constants. Here G is some given functions and, for simplicity of the
notation, we omit the dependence of the function G by the additional physical fields (like dependence
on dynamical metrics {K m”}m7n207172,3, mass densities, electromagnetic fields et.al) and express it
throughout explicit dependence on (2°,z!, 2% 2%). Next, given a subregion ¥V C R*, we define the

Lagrangian on the region V as:

L ((wo, w1, ws,ws)) :=

//// (ER ((wo,wl,wg,wg), (mo,xl,xz,x?’)) ‘det ({Jm”}n,mz()’l,%,’) ‘_2> da® dz' dz? dz®.
v

(2.179)

Note that det ({Jm”}n me0.1.2 3) is independent on (wq, w1, w2, ws3). In particular, the critical points

of Ly must satisfy
0Lp

7((100,’(1)1,11)2,11}3)) =0 Vj=0,1,2,3, (2180)
5wj
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and, since det ({Jmn}n,m:0,1,2,3) is independent on (wg, w1, ws,w3), by the Euler-Lagrange we

deduce
3 3 3
0 mn ik [ OWg  Own
o (353237 2 o (G- )}
n=0 k=0 m=0
3 3 3 PYe
—av (Z Z JT W Wy, — 1) (Z Jﬂnwn> _ % ((wo,wl,wg,wg), (xo,zl,mQ,xS)) -0
m=0n=0 n=0 J
Vi =0,1,2,3. (2.181)
So we have
3 3 3
0 ow ow
mn 7ik kE n
(D3 o e (- )
n=0 k=0 m=0
3 3
v mn in 1 G 0.1.2 .3
A <mz_:m;)‘] Win Wn, _1> (%Jﬂ wn> T ardw; ((wo, w1, w2, w3), (2%, 2", 2%,2%)) =0

Vji=0,1,2,3. (2.182)
In particular, in the case of (2.178), taking
af = +o0, (2.183)

we approximate (2.182) as:

3 3 3
_ % (Z J"nnwmwn - 1) (Z Jj"wn) =0 Vj =0,1,2,3. (2.184)

3 3 3 3

)\7’” 9 9 mn 7jk awk - 8wn o
S0 (535 0 (B2} ) <o s
Moreover, taking

Al = +o0, (2.186)

we approximate (2.184) as:

3 3 3
0 o [ Ow ow
mn 75k kE n S
<ZZ ) pr {J J (mn aﬂ«)}) -0  Vj=0,1,2,3. (2.187)

3 3 3
0 L (Owp  Ow .
mn yjk [ YK n _ _



is the same as the classical Maxwell equations in vacuum with vanishing charges and currents, where
the four-covector of the electromagnetic potential (Ag, A1, Aa, A3) is replaced by the four-covector
(wg, w1, we, ws). Thus, ignoring wave-type solutions of (2.188), that assumed to be negligible, we

deduce by (2.188) that there exist a proper scalar ¢, such that we have

oy o O O
(U}O,wl,’wg,wg) - < _— )

0.1 1
929" 921’ 922’ D3 V(2% xt 2?23 e R (2.189)

Thus, inserting (2.189) into (2.185),

3 3 3
0 gmn oY oY in OY B
ZWKZZ 5o B 1) (ZJ gor ) [ =0 (2190
7=0 m=0n=0 n=0
Therefore, using (2.190), with the help of Lemma 11.1 from the Appendix, we deduce the following
eikonal-type equation
oY 0
Z ZJ’”" v oY _ =1 V(2% 2t 2? 2%) e R, (2.191)

ox™ Ox™
m=0n=0 a

So the global time % is correlated with pseudo-metrics {J™"},, n=0.1,2,3. On the other hand, for the
kinematical global time ¢ we also have
3 3
3 grn 00 00y V (20, 2!, 22,2%) € R*. (2.192)

ox™ Ox™
m=0n=0

Therefore, in the case, where ¢ and ¢ coincide in some initial surface, by (2.191) and (2.192) we

deduce that, in the limiting case (2.183) we have for the dynamical time direction, that

dp O Op 6@)

(wo, w1, w2, w3) = ( T A5 A3 V(2% 2t 2? 2%) e R, (2.193)

020’ 9z’ 92’ Ox®
where ¢ is a kinematical global time. In particular, in the later case we have for the dynamical

pseudometrics {K™"},, n=01,2,3:

ij:<ij+s g‘pj+aams> Yo<jim<3 V(2% 2! 2% 2%) e R, (2.194)

Moreover, in the latter case we have
3 3 3 3

m=0n=0 m=0n=0
both triples {J™"}1, n=0,1,2,3, {A™" }m,n=0,1,2,3, ¢, and {K"™"}, n—01,2,3, {A"™" }m,n=0,1,2,3, ¢ are
super-correlated, the dynamical global time equals to kinematical global time ¢ and the dynamical
tensor of three-dimensional Geometry {A™"},,; n—0,1,2,3 equals to the kinematical tensor of three-
dimensional Geometry {©™"},, ,—01,2,3, so that

3 3

9 9

A== |y Jmfa—“‘; ) J"Ja—“‘; —J" Vmon=0,1,2,3. (2.196)
— e — e
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2.9 Lagrangian of the genuine gravity

The model of genuine gravity, we present here, is described by kinematically correlated pseudometrics
with time-direction (wg, w1, ws, w3), corresponding to the covector of genuine gravity (So, S1,.52,.53)
(see Definition 2.21). In order to describe it, consider the strongly-correlated kinematical covariant
pseudo-metrics {J™" },, n=0,1,2,3 and the kinematical global time ¢, forming a standard kinematical

Lorentz’s structure with global time on R*, as in Proposition 2.7 and Remark 2.6. Furthermore, let

{Jmn}mn=01,2,3 be the inverse covariant pseudo-metric on R*, associated with {J™"} n=01,2,3-
Given, an arbitrary dynamical four-covector of the time direction, (wq,ws,ws,ws) (formally unre-

lated to the kinematical global time ), which is weakly correlated with {J™"},, n=0.1,2,3, satisfying
3 3 '
Z Z JIMwjwy, >0 V(20 2t 2% 23) e R, (2.197)

and a four-covector field (Sy, S1, S2, S3), which we called the four-covector of genuine gravity, consider
the two-times covariant tensor { K, }m,n=0,1,2,3 defined by:

Kjm = (Jjm +w;Sm + wnS;) Y0 <j,m<3 V(2% 2t 2? 23) € RY, (2.198)
and assume that (So, S1, Sz, S3) is such that { K, }mon=0,123 in (2.198) satisfies

det ({Kpmn tmon=0,1,2.3) = det ({Jmn tm.n=01,2,3) V(IO o' 22 x ) e R*, (2.199)

so that (Sp, S1,52,953) has only three independent components. Then, as before, the inverse to
{Kmn}mn=0,1,23 two-times contravariant tensor {K™"},, n=0.12,3 is a kinematically correlated
pseudometrics with time-direction (wg, w1, wa, ws), corresponding to the covector of genuine gravity

(So, S1,S2,S3). Next, consider a Lagrangian density of the genuine gravitational field as:
Lg ((So, 517 527 53)7 {Kmn}m,n=0,1,2,3) =

3 3 3 3
1 1 oS S oS oS
- = gomn 1opk P m k. OUon
471G (Z Z Z Z 4K K <axm oxP ) (8.%‘” Oxk >> (2'200)

n=0 k=0 m=0 p=0

where G is the gravitational constant. Correspondingly, given a subregion V C R*, the Lagrangian

of the genuine gravitational field in this subregion, as usual, is given by

¢(S0,51,852,83) ==

////( (S0, 51, 82, 85) AK ™ Y mnmo1.2.8) det ({K™ Y, o125 | > dz® do! da? da®.

(2.201)
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Moreover, we combine this gravitational Lagrangian with the Lagrangian for the time direction,

given by

L ((wo, w1, w2, ws))

_1
////(ER (wo, w1, we, w3) ‘det ({Jm"}nm 0123)‘ 2) da® dzt da? dx®,  (2.202)

where, the Lagrangian density Lg is given, similarly to (2.177), by

2 = L e ok awp Owp \ (Owy  Ow,
Lr ((wo, w1, w2, w3)) := —Aap 2224‘] J T 9P oz Ok

=0 k=0m=0p=0
) 3 3 2
— (Z > T W, — 1) . (2.203)
m=0n=0
where u # 0, v # 0 are two real constants, and « # 0, A # 0 are two real dimensionless constants,
such that
la| > 1 and [A]l>1. (2.204)

Furthermore, we combine these Lagrangians with the Lagrangian of the Electromagnetical field,

given by
Le(Ao, A1, Az, As) =
////( Ao,Al,A27A3) {K }Tnn 0123 ‘det( Kmn}nm 0,1,2, 3>‘_2> dCCOdI‘l dl‘2 dIS,

(2.205)

where, similarly to (2.112) we consider
Le ((AOa Al; A27 A3)a {Kmn}m,n=0,1,2,3) =

3 3 3 3
1 1 0A 0A 0A 0A
_ = gomn 1opk P m ko n

n=0 k=0 m=0 p=0

Finally, we combine all these Lagrangians with the Lagrangian of the real matter, given by

@tz == [[ff (S0 o (Do) st
+////(ﬁM (({Kmn}Ymmn=o0123), (% a',2*, 27)) ‘det ({Km”}n7m=071,273)‘ ;>dx0d:c1dac2dx3,
%

(2.207)

where, in the presence of a matter, consisting of NV classical point particlesVj = 1,2,..., N, with the
inertial mass m; and the charge o for the j-th particle and having the four-dimensional space-time

trajectory x;(s;) 1= (X?(sj), le-(sj), x?(sj), Xf(s])) : [aj,b;] — R* of the j-th particle, parameterized
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by some proper parametrization s; € [a;,b;] Vi = 1,2,..., N, and given for all instances of time
from —oo to +o00 so that

lim i: ((Xi(sk)f) — lim i: ((X{;(sk)f) = 400 Vk=1,2,....,N,  (2.208)

Skp—ra,, =0 sk%bk =0

we consider the total density of the Lagrangian of the given matter £y by

N bk
(({Kmn}mn 01,2,3) (1‘) ZE LL’ ZE Z/{

|det { K7 (xk(s1))}]? Wig k(sk) Zg:wj (xx(sk)) Cl);%(Sk) 5 (2% = xR(sk), - 2 — xR (k) }dSk
=0
V(20 2t 2% %) e R, (2.209)
where W, k(sk) is given by
3
Wirgk(sk) == —mp G Z > Kjm Oar(si))ul(se) ug'(sk) | Vi € [ag,bi] VE=1,2,...,N,
j=0m=0

(2.210)

where (ul,u},u?, u})(sk) : [ak,br] — R? is the contravariant four-vector of the four-dimensional

velocity of the k-th particle, given by
de - ka
(Z Wiy, (Xk (k) T(S )) dsk( Sk)
V7;=0,1,2,3 Vsy € [ag, bk Vk=1,2,...,N, (2.211)

§(-) is the delta of Dirac in R*, and

jm(xoaxlaanxg) =

N b
3 / { et (K79 (i (s2))} |2
k:lak

d m
dii (sg) (sk)0 (xo — X%(Sk), L g Xz(sk)) }dsk
V(22! 2?23 e R VE=1,2,...,N. (2.212)

As before, here we consider two cases:
e The case of relativistic particles, where G(7) := /7 — 1.

e The case of non-relativistic approximation, where G(7) := %(7’ -1).
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Therefore, taking into account (2.199), the total Lagrangian of the interaction of the Gravitational

and Electromagnetical fields with the matter is given by the following:

Liotar ((wo, w1, wa, w3), (So, S1, 52, 53), (Ag, A1, Ag, A3)) 1= ////{

Liotat (W, w5), (S0, S5), (Ao, - Ag), (2. ,a™) [det ({I7"}, 1 103)

P

Liota ((wo, - - w3), (So, ..., S3), (Ao, As), (2°,...,2%)) ‘det ({Km”}n,m:07l)273)‘

M

[N

} da® dzt da® dz®,  (2.213)

where the total Lagrangian density Lioa: ((wo, ooy ws), (So, ..., 83), (Ao, ..., Az), (2%, ..., x?’)) is
given by:

Etotal ((’wo, e ,'U)g), (S(),. . .,Sg), (Ao, .. .,Ag), (IO,. . .,{EB)) =
,CR ((U)(),wl, 'wg,’wg)) + ,Cg ((S(], Sl7 SQ, Sg) {Kmn}m n=0,1,2, 3 (Z]kAk>

+ Le ((Ao, A1, Az, A3), {Kmn}m,n:(),l,Z,S) + Ly (({Kmn}m,nzo,l,Q,s) ) (HUO, 5U17 5527 553)) , (2.214)

so that, we have:
Etotal ((wo, o, W3 ) (S(), ey Sg) (Ao, ey Ag), (ZL’O, ey Z?’)) =

(0w,  Ownm) [Ow  Ow,
(S5 3 S (e ) (02 )

n=0 k=0 m=0 p=0

3

3 2
- % (Z Z Jmnwmwn - 1) + ACJW (({Kmn}m,n:O,l,Z,L’:) 9 (xoaxlvxzvx?)))

m=0n=0

I (S 1, dS,  0Sn\ [0S, 05,
+47TG(ZZZZ4K ka(axfz‘axpﬂamﬂaxk))

n=0 k=0 m=0 p=0

1 3 3 3 3 . a4 A, A
(S E e e () (24 0o e

n=0 k=0 m=0 p=0

Furthermore, in the case where:
|a| = 400 and [A] = 400, (2.216)

we greatly simplify the total Lagrangian, since, then, by (2.193) we have

Op Op Op Oy 0 1 :
(wo, w1, w2, w3) = <8x0 Pl BaZ 5l V(2% 2t 2%, 2%) e R (2.217)
where ¢ is a kinematical global time, satisfying
Ip 9y 0.1 4
m =1 R 2.21
>y o™ Ban V(al,at 2%, ) € (2.218)

m=0n=0
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Thus, (wo, w1, ws,ws) is fixed and it does not varies in the Lagrangian, and we can write:

Liotar ((So,S1,52,53), (Ao, A1, Az, Ag)) =

-

/// Etotul 507...,53)7(140,...,A3)7($0,...,$3)) ‘det ({Jmn}n,m20,1,2,3)’ ’ dl’odl' dl‘2d.’L‘ =

/// Liotar (S0, 83), (Ao, - Ag), (a0, a%)) |det (1K™}, 1uZg105)|  dolda’da?da,
%

(2.219)

where the total Lagrangian density Lgosq; ((SO, ., 83), (Ao, ..., Az), (2%, ... ,ICS)) is given by:

Ltotal ((507 RS 53)7 (A07 .. A3)7 (xov .. 77:3)) = EM (({Kmn}7rn,n=0,1,2,3) ) (xO’ xlv IQ: Z'S))

1 3 3 3 3 1 mn oS aS,, A, S,
+477G<ZZZZ4K KPF (ax:z aﬂ)) <axn8$k)>
L (S5 5o S5 L pmn 0A, 0A,,\ [OA
A <n§_:z 2 Z:ZK K (8:6"1; - 6a:p> (ax: axk)> (ZJ’“M) . (2.220)

with

&p dy
a 7 8 m

Kim <ij+S S> Vo<jm<3 V (20, 2!, 2% 23) e R, (2.221)

and a four-covector field of genuine gravity (So, S1, Sz, S3) satisfies the restriction:
det ({Kmn}m,n:0,1,2,3) = det ({Jmn}m,n:O,l,Z,B) V(.’I?O $1 a: , T ) S R4 (2.222)

so that (Sp, S1,52,53) has only three independent components.
Note that, since the full Lagrangian in (2.213), (2.215) is independent on the kinematical global
time ¢ (it depends only on the dynamical time direction (wq, w1, ws,ws)), then a Lorentzian coor-

dinate systems, where we have

J% =1

Joi — Ji0 — Vi=1,2,3 (2.223)

JIM = —8m, Vim=123,
are the most convenient coordinate systems, to operate with the full Lagrangian. On the other
hand, in the limiting case (2.216), where we consider the simplified Lagrangian in (2.219) (2.220),
cartesian coordinate systems are often more convenient, than Lorentzian, since in the limiting case
we have (wg, w1, ws, w3) = (%, %, %, %), and at the same time in the cartesian coordinate
systems we always have ¢ = 2% + Const, so that we obtain (wg,wy,ws,w3) = (1,0,0,0). Note also

that by Lemma 11.5 from the Appendix in an arbitrary cartesian coordinate system we still have
det ({Kpmn tmon=0,1,2,3) = det ({Jmn tmn=01,23) = —1 V(20 2t 2%, 23) e R, (2.224)
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In the following sections we prove, in particular, that the Gravitational field, ruled by the
simplified Lagrangian in (2.219) (2.220), generated by some massive body, resting and spheri-
cally symmetric in some cartesian and inertial coordinate system, is given by the pseudo-metrics
{Kymn}mn=0123, such that there exists some curvilinear (non-cartesian) coordinate system in R?,
where { K, }mon=0,1,2,3 coincides with the well known Schwarzschild metric from the General Rela-
tivity! In particular, all the optical effects that we find in the frames of our model coincide with the
effects considered in the frames of General Relativity for the Schwarzschild metric. In particular, the
Michelson-Morely experiment and all Sagnac-type effects will lead to the same result in the frame of
our model like in the case of the General relativity. Moreover, since the Maxwell equations in both
models have the same tensor form, all the electromagnetic effects, where the time does not appear
explicitly will be the same. Similarly, the curvature of the light path in the Sun’s gravitational field
will be the same in both models. Finally, in the particular case of G(7) = /7, i.e. in the case of the
relativistic Lagrangian of the motion in (2.102) all the mechanical effects will be the same in the
frame of our model like in the case of the General relativity for the Schwarzschild metric, provided
that the time does not appear explicitly in this effects. In particular, the movement of the Mercury
planet in the Sun’s gravitational field will be the same in both models.

Furthermore, we also prove that Gravitational field, ruled by the simplified Lagrangian in (2.219)
(2.220), generated by a general slowly (non-relativistically) moving massive matter in some cartesian
coordinate system, can be well approximated, by the classical model of the Newtonian Gravity.

Note here about the following advantage of the presented here model of gravity with respect to
the usual Theory of General Relativity. The simplified Lagrangian in (2.219) (2.220) for the gravity
depends only on four-component field (Sp, S1, 52, S3), which is by (2.199) has only three independent
components. Even the full Lagrangian in (2.213), (2.215), dependent only on (Sp, S1, S2,.S3) and

(wo, w1, we,ws), that is by (2.199) has only seven independent components. On the other hand, in

the General Relativity the symmetric tensor { K, }m.n=0,1,2,3 has all ten independent components
that makes the corresponding system of partial differential equations to be much more complicated.

Finally, in section 9 we give the covariant formulation of the Electrodynamics of the moving
dielectric and para/dia-magnetic continuum mediums in arbitrary dynamical pseudo-metrics. The
Lorentz’s covariant theory of the moving para/dia-magnetic continuum mediums in the flat Lorentz’s
pseudo-metrics was first introduced in [8] by H. Minkowski (1908). Here we formulate the generally
covariant theory in the different alternative way, that suite to formulate it in a general pseudo-metrics

including the presence of the genuine gravity.
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3 Mass, charge and Lagrangian densities and currents of the
system of classical point particles

Definition 3.1. Consider a classical point particle with the inertial mass m and the charge o moving
in the generalized-gravitational field, given by a contravariant pseudo-metrics {K™"}p, n=01,2,3,
which is correlated with a four-covector of the time direction (wg, w1, we, ws), and influenced by the
electromagnetic field with the four-covector of the electromagnetic potential (Ag, A1, Aa, As). Next,
assume that x(s) := (X°(s), x*(s), x*(s), x*(s)) : [a,b] = R* € R* is a four-dimensional space-time
trajectory of the particle, parameterized by some proper parametrization s € [a,b] (including the
cases where a = —oo and/or b = +00). Moreover, assume that the infinite trajectory of the motion
is considered for all instances of time from —oo to +00 so that
3 3

Jim 32 (006)%) = Jim 3 ((00()%) = +oe. .1
Next, given an arbitrary covariant (contravariant) scalar quantity W(s) : [a,b] — R, defined across
the trajectory of motion with the chosen proper parametrization, consider a four-current density

(IBV,I‘%V,I‘%V,I‘?}V) of the quantity W and a scalar density pyw of the quantity W as generalized
functions (distributions), defined by

Iév(xo,zl,m2,x3) =

b

[ faet (16 (oY)

a

[N

= ‘det ({K’""(:ro,xl, x2,x3)}

n,m=0,1,2,3)

and

pw (20, 2t 22, 23) .=

/b et (17 (M rmnas)|F W) [ 32 05 ) 6| 8100 = 6 = x3(5)) s =
a §=0

b
23: (‘det ({Kmn}n,m:o,l,z,s) ’ wj) (2%, 2t 2 7$3) / W(S)%(S) 5 ( O —x"(s),...,2% - Xg(s)) ds
j=0

so that

pw (20, 21, 2% 23) .= ij(xo,xl,;UQ,x?’) Iiv(xo,xl,mQ,xB) V(20 2t 2% 23) e R, (3.4)
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Here, given a point (a’,a',a? a®) € R, § (2" —a®,...,2% — a®) is a four-dimensional scalar delta-

function of the point (a”,a',a?, a3) (the discrete unit measure of the point (a°,a',a?,a®) € R*).
Note that obviously, (ISVJ&V, I%V,I%,) in (3.2) is a valid contravariant four-vector field and py in
(3.3) is a valid covariant (contravariant) scalar. Note also that, (3.2) and (3.3) are independent
on the choice of the proper parametrization. Finally, note that by theory of distributions the

definition (3.2) and (3.3) mean that for every smooth scalar classical function with compact support

£(20, 21,22, 2%) € C° (R*) we have

////I{;V(xoml,m{x?’) €% 2t 2?, 23) da® da' da? da® =
R4

1
2

b
/’det({Km"(x(s))}mzoms) W(s) ZE()€(x(s) ds Vj=0,1,23, (35)

and

////pw(mo,xl,xz,xg) (20, 2t 22, 2%) da® dat da? da® =
]R4

b

/ [det (K™ (5D o) | W

a

ij 9D X)) es) ds. (30

Definition 3.2. Given an arbitrary contravariant four-vector field (f°, f!, f2, f3)(2°, 2!, 22, 23),
define the covariant divergence of it with respect to the contravariant pseudo-metrics

K = {Kmn}m,n:0,1,2,3, by the following
{le (f07 f17 f27 fd)}K (x07$17x2,173) =

afj 1.2 .3 ’ jr.0 .1 .2 .3 dx] (‘det({K }nm 0’1’2’3)‘ >
8x3(x T, x)+Zf (%, ", 2%, x°)

=0 =0 ‘dCt ({Kmn}n,m:0,1,2,3>’

i % {’det ({Kmn}n,mzo,l,z,:a) ’_% fj} (2%, xt, 22, o)
j=0

‘det <{Kmn}n,m:O,1,2,3) ‘

V(20 2t 2 2%) e R (3.7)

It is well known from Tensor Analysys that if (f0, 1, f2, f2) is a contravariant four-vector, then

{div (f, ', 12, f3)}K is a valid covariant (contravariant) scalar.

Proposition 3.1. Consider a classical point particle with the inertial mass m and the charge o
moving in the generalized-gravitational field, given by a contravariant pseudo-metrics

{K™ }in=0,1,2,3, which is correlated with a four-covector of the time direction (wg,w1,ws,ws),
and influenced by the electromagnetic field with the four-covector of the electromagnetic potential

(Ao, A1, Az, A3). Next, assume that x(s) := (X°(s), x'(s),x*(s),x3(s)) : [a,0] = R* € R* is a
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four-dimensional space-time trajectory of the particle, parameterized by some proper parametrization
s € [a,b] (including the cases where a = —o0 and/or b = +00). Moreover, assume that the infinite
trajectory of the motion is considered for all instances of time from —oo to +o0o so that
3 3
3 (w01) =t 35 () = o

Next, consider an arbitrary quantity W(s) : [a,b] — R, defined across the trajectory of motion
with the chosen proper parametrization, and consider a four-current density (IBV,I‘%V,I%V,I‘%V) of
the quantity W, given by (3.2). Then, in the case when W(s) is a constant across the trajectory
of the motion, independent on the parameter s € [a,b], we have the following conservation of the
current:

{div (ISV,I‘}V,II%V,I‘%V)}K(mo,xl,x2,x3) =0 V (20, 2t 22, 23) e R?, (3.9)
where the covariant divergence {div (-)}, is defined by (3.7).

Definition 3.3. Consider a system of N classical point particles Vj = 1,2,..., N, with iner-
tial the mass m; and the charge o; for the j-th particle, moving in the generalized-gravitational
field given by a contravariant pseudo-metrics {K™"},, n=0,1,2,3, Which is correlated with a four-
covector of the time direction (wq, w1, ws,ws3), and influenced by the electromagnetic field with
the four-covector of the electromagnetic potential (Ag, A1, A2, A3). Next, assume that x;(s;) :=
(xX9(s5), x5 (s5),X3(55), x3(s5)) : laj,b;] — R* is a four-dimensional space-time trajectory of the
j-th particle, parameterized by some proper parametrization s; € [a;,b;] for the j-th particle
Vj=1,2,...,N (including the cases where a; = —oo and/or b; = 4+00). Moreover, assume that
the infinite trajectory of the motion is considered for all instances of time from —oo to 400 so that

lim 23: <(Xi(sk)>2> = lim 23:0 <(Xi(sk))2) = too Vk=1,2,...,N.  (3.10)

Sk—ra, j=0 sk—>b;r =
Next, for every k = 1,2,...,N consider covariant (contravariant) scalar quantities W, (sg) :
[ak,bg] — R and W, (s) : [ak,bk] — R, defined across the trajectories of motion with the cho-
sen proper parametrization si by the following:

Wy, (si) =0 Vsk € |ag, b Wk=1,2,....N
. (58) k k € lag, by] (3.11)

ka(s):mk VSkE[ak,bk] Wk=1,2,...,N,
where o}, is the charge of the given k-th point particle and my is the mass of the given k-th point
particle. Then, obviously, both quantities Wy, (sx) : [ak,br] = R and Wy, (s) : [ak,bx] — R are
constant across every trajectory of motion of the k-th particle, with the chosen proper parametriza-
tion sk. Moreover, for every k = 1,2,..., N consider covariant (contravariant) scalar quantity

Wigk(s) : [ax, bi] — R, related to the general Lagrangian Lg j of the k-th particle in (2.100), and
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defined across the trajectory of motion with the chosen proper parametrization by the following:

3 3
Wigk(sk) :=—mp§G Z Z Kjm Xk(Sk)>Uk(5k up (sg) Zak uk 5 (xe(sk))

7=0m=0

Vs € [a;“bk] Vk=1,2,...,N, (312)

where (u,ul,u?, u})(sk) : [ak,br] — R? is the contravariant four-vector of the four-dimensional

velocity of the k-th particle, given as in (2.96), by

5 .
- dxp dxi
- (nlzjowm (xx(sk)) dsr (S/c)> s (s1)

Vji=01,23 Vs € [am,bi]  Vhk=1,2,...,N. (3.13)

Finally, for every & = 1,2,..., N consider covariant (contravariant) scalar quantity WLg,k(s) :
[ak, br] — R, related to the general Lagrangian Lgj of the k-th particle in (2.100), and defined

across the trajectory of motion with the chosen proper parametrization by the following:

3 3
WL@ (sk) == —muiG Z Z Kjm (xk(sk)) up, (sk) ui (sk)

j=0m=0

VSkE[ak,bk] Vk=1,2,...,N. (3.14)

Then, define the contravariant four-vector of the total charge four-current density
(52,71, 3%,5%) == (5°, 41,42, 7%) (20, 21, 22, 23) and the total scalar charge density p := p(2, 2!, 22, 23)

of the system of the charges by:
N
(20 2t 2?23 = ZI{}V% (29, 21, 22, 23) Yn=0,1,2,3 V (20, 2!, 2%, 23) e RY,
k=1
0 3 0.1 4
p(a® 2t 2?23 prdkx xt, x?, 2®) V(20 2t 2% 23) e R, (3.15)

where the contravariant four-vector of the four-current density (I3, 1, I3, I;) is given by (3.2)

and a scalar density py is given by (3.3), so that

N b
Z/ ‘det ({qu (Xk(sk))}pﬂ:o,l’z’g)
k:1ak

d n
%( k)0 (aco —X2(sk), .2t — Xi(sk)) dsy,

Vn=0,1,2,3 V(22" 2% 2% cR*, (3.16)
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and

p(‘r07x17x27$3) =

N b (3 dd
S o / et (K7 (s DI | D2 w0y Gelon)) G5 () | 8 (@ = x50, 00 = xis0)) d
k=1 j

Qg

V(2 2t 2% 2% e R, (3.17)
Then, by Proposition 3.1 we deduce the following conservation of the total charge current:
{div (°,5',5%,5%) } o (a°,2",2%,2%) =0 V(2° 2" 2% 2%) e R*, (3.18)

where the covariant divergence {div (-)}, is defined by (3.7). Similarly define the contravariant
four-vector of the total mass four-current density

(39,38, 320, 950) = (3%, dars 3, G5 ) (29, 2t 22 23) and the total scalar mass density

M := M(2°, 21, 2%, 2®) of the system of the masses by:
g (20, zt, 2?23 ZI xo xtx? 23) Vn=0,1,2,3 V(2% 2t 22 23) € RY,

N
M(2°, 2!, 2% 23) = Zmek (29, 2!, 22 2®) V(20 2t 2% 23) e RY,  (3.19)
k=1

where the contravariant four-vector of the four-current density (I%,, I&V,I‘%V7 I‘?V) is given by (3.2)

and a scalar density pw is given by (3.3), so that

g (@0 2t 2? 2?) =

3 d
my dX: (s1) 0 (2 = xR (s8), - > 2% = X3t (sk)) dsi

Z / et ({7 (au(51)} 4m012)

Vn=0,1,2,3 V(22" 2% 2% R, (3.20)
and
M (2, 2t 2% 23) =
N o 3 dx
S [ et (571 (a3 s Ounlon) G5 sw) | 82 < x2su).o 0 = k) s
k=1 2 =0 k
V(2% 2t 2?23 e RT. (3.21)
Then, as before, by Proposition 3.1 we deduce the following conservation of the total mass current:
{div (5%, dhr: G3r dar) b e (20,2t 2%, 2%y =0 V(2% 2t 2%, 2%) e RY, (3.22)

where the covariant divergence {div (-)}, is defined by (3.7). Furthermore, define the total scalar

density Ly := Ly (({Kmn}m7n:0)172)3) , (mo,xl,xz,x?’)) of the given Lagrangian of the system of
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particles by:
N

EM (({Kmn}m,n:O,l,Zi?‘) 9 (‘Toa xl,x2,x3)) = ZPWLg,k(xO’x17x23x3) V(Z'O,l'l,QCQ, $3) € R4 )
k=1
(3.23)
where W, 1 (sk) is given by (3.12), so that
N bk
Ly ({Kmntmn=0,1,23), (2% 2", 2%, 2%)) = Z/{
k=1
1 3 de
|det {KP9 (x(sk)) 2 Wigr(sk) | D wj (xw(sk) g:(&c) 5 (2% = xR(sk), -+ 2° = X (s1)) }dé’k
§=0

V(20 2t 2% 23) e R (3.24)

In particular, by (3.24) and (3.12) we have

/// L (({Kmn}m’n:()’lg’g) , (x07x1,332,:v3)) ’det {qu ((aco,x17x2,x3))}r% dx’dxtda?da®
R4

= Z/WLg,k(sk) (Z wj (X (sk)) %(8@) dsy, =

k=14, j=0 m=0 j=0
N bk 3 _ 3 dx?
+ Z/ {_ Z"k uy(s) Aj (xk(sk)) — Uk (Xk(sk))} (Z wj (xxk(sk)) dsk(sk)) dsy, (3.25)
k=17, §=0 §=0 k
so that

/// Lo (({Kmn}mynqu,g’g) , (xo,xl,x2,a:3)) ’det {qu ((xo,xl,xz,mg))}r% dzdatda?da®
]RAL

N
= Lgxr(xx), (3.26)
k=1

where, as before in (2.100) we denote the Lagrangian of the k-th particle as

~
I
o
3
I
<

=0

o 5 3 J
+/ { Zak Ui(sk) Aj (Xk(sk))} (Z w; (xk(sw)) 5:) dsk
b 3 3 ) 3
= / {’ITLkg (Z Z Kjm (xk(sk)) up,(s) uy, (sk)) } (Z w; (xk(sr)) dk) ds
ag 7=0m=0 =0
+/b {ZO’kAj (Xk(sk)) zxk}d Vk=12,...N (327)
ay j=0
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Moreover, define the total scalar residual density £y = Ly (({Kmn}mmn=01,23) (2, xt, 22, 2%))
of the given Lagrangian of the system of particles by:

N

M (({Kmn}m,n:0,1,2,3) ’ ($Oa$17$23x3>) = ZPWLQ k(x07:131,:132,a:3) v(xo xl ‘T y ) € R4
k=1
(3.28)

where WLg’k(sk) is given by (3.14), so that

N by
(({Kmn}mn 01,2,3) (IU ‘Tl $ I Z/{

w

et {7 (xi (1)} Wrgese) | D ws (xulsi) %(Sk) 8 (2% = xR(sk), -, 2 = xR (sn)) }dSk
7=0

V(20 2t 2% 23) e R, (3.29)

Then, by (3.16), (3.24), (3.29), (3.12) and (3.14) together we deduce:

(({Kmn}mn 01,2,3) (1') Il 1:2 X )) EI\/I (({Kmn}m,nzo,l,Q,B)7(x07$17x27173))

- (ZAk(mO,xl,xQ,xS)jk(xO,xl,xQ,x?’)) V(2% xt 2?23 e R*. (3.30)
k=0

4 The total simplified Lagrangian in (2.219), (2.220), for the
limiting case of (2.216) in a cartesian coordinate system

Again consider the strongly-correlated kinematical covariant pseudo-metrics {J™"},;, n=01,2,3 and

the kinematical global time ¢, forming a standard kinematical Lorentz’s structure with global time

on R%, as in Proposition 2.7 and Remark 2.6. Furthermore, let {Jmntm.n=01.23 be the inverse
covariant pseudo-metric on R*, associated with {J™} 1 n=0.1,2,3, which satisfies
3 . 1 if m=n
> T Sy = Vm,n=0,1,2,3. (4.1)
k=0 0 if m#n
We consider the Lagrangian in (2.219), (2.220), corresponding to the limiting case of (2.216), where

as before we have

dp Op Oy O¢ 1
(WO,U)l,’IUQ,w3) = (axoa 61'1,81'27 axg v(moamlax27x3) ER [ (42)
mn 690 690 o 0 1 2 4
E E J xmaxn—l V(2% xt 22 23) e R, (4.3)

m=0n=0

the dynamical global time equals to global kinematical time ¢ and the dynamical tensor of three-

dimensional Geometry {A™"},, n=01,2,3 equals to the kinematical tensor of three-dimensional Ge-
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ometry {©""},, n—0,1,2,3, so that
3 a(p 3 a@
mn _ qmn ._ ,m,n _ ymn __ mj nj _gmn _
AT = @M = T — T = E_ J Bl E J Bl J Vm,n=0,1,2,3, (4.4)

0

where (%, r!,72,r3) is the contravariant four-vector of the inertia, corresponding to {J™"},,, 0123

and ¢, defined by
3
. 890
— mj —
= E_ J D vYm=0,1,2,3. (4.5)

Note here that by (4.5) and (4.3) we have

3

er i V(20 2t 2? 23) € RY. (4.6)
=0

Next, as before, given, a four-covector field of genuine gravity (So, S, S2,.53) we define the dynamical

pseudometrics {K™"},, n=0.1,2,3 by the formula

IR

3 1 if m=n
> K™Ky = Vm,n=0,1,2,3, (4.7)
0 if m#n
with
B )
Kjm = <ij+s a‘pj+8fns) VO<jim<3 V(' a%ad) eRY,  (4.8)

where we assume that the four-covector field of genuine gravity (Sp, S1, Se,S3) satisfies the calibra-
tion:

det ({Kmn tmon=01,23) = det ({Jmn}mn=o1,23) V(2% 2" 2% 2%) e RY, (4.9)
so that (Sg, S1, S2,53) has only three independent components. Moreover, in the latter case we have

ks I v dp By
mn o mn oy _ 0 1 4
DD KM e =2 D I =1 Vet a? ) eR (4.10)

m=0n=0 m=0n=0

and both couples {J™"}., n=0,1,2,3, ¥, and {K™"},;, n=0.1,2,3, ¢ are strongly correlated, so that,

{K™"},n=0,1,2,3, with global time ¢, is a kinematically semi-scalar super-correlated pseudometrics

with with global time ¢, corresponding to the covector of genuine gravity (Sg, S1, S2,.53). Moreover,

as before, we have
K™ =My — AT = J7T 4 My — M Vm,n=20,1,2,3. (4.11)

where the contravariant vector of generalized gravity (v°,v',v2,v?) is defined by the following co-

variant relation:
3

v o= [ ST ATIS; | 4 vm=0,1,2,3, (4.12)
j=0

and (r%, 71,72 r?) is given by (4.5). Moreover, the following covariant relations are valid

3

> o M =1, (4.13)

7=0
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3
S Kpgr? | =S [ D Tt Y0 <m<3, (4.14)

3 3
Y3 Kjmvv™ =1, (4.15)

7=0m=0

and

3
. 350
jm _.m .
E, Kim o = VYm=0,1,2,3. (4.16)

Finally, as before, given arbitrary contravariant vector (v%,v!,v? v3), satisfying

Z ]8373 =1, (4.17)

as in (4.13) (we call such a four-vector speed-like four-vector), if we define { K™"},,, n=0.1,2,3, as in

(4.11), by
K™ =v0"™" — Ay = J™" + 00" — ™" Ym,n=0,1,2,3, (4.18)

then the inverse tensor, { Ky }m,n=01,2,3, given by

3 1 if m=n
> K™ Ky = Vm,n=0,1,2,3, (4.19)
k=0 0 if m#n
necessary satisfies
Oy Op . 0.1 4
Kjm Jjm + Sm B 8'”5 Y0<jm<3 V(20 2t 2% 23) € R, (4.20)
and
det ({Kmn}m,n20,1,2,3) = det ({Jmn}m,n:O,1,2,3) V($O CL’l ZL’ , T ) S R4 (421)

as in (4.8) and (4.9), where (Sp, S1, Se, S3) satisfies
3 ‘ W .
Zijrj -3 ; Ty jv? YO <m<3, (4.22)

and

3
S OAMS | Vm=0,1,2,3, (4.23)

as in (4.14), and (4.12). So we have a one-to-one and onto mappings between contravariant four-

vectors, (v0, vl v?,v?), satisfying the restriction (4.17), and four covectors (S, S1, Se, S3), satisfying

the restriction (4.21), where {K,n tm,n=0,1,2,3 is given by (4.20). So the speed-like contravariant

yLa4s

four-vectors of generalized gravity (v°,v!,v?,v3), satisfying the restriction (4.17), can be considered

as an independent argument in the simplified Lagrangian in (2.219), (2.220), instead of the four-
covector of genuine gravity (So, S1, Se, S3), satisfying the restriction (4.21).
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Next, assume that we fix some cartesian coordinate system, so that in this system we have:

dp dp Oy ¢
(’UJQ,’UJ]_,’IUQ,W?,) = (81'0,8131781'278%3 = (1707()’0) V(.Z'O,Il,l‘Z,.T:s) ER47 (424)

and
A00 — @00 —

AT = A0 =@M =@i0=0 Vj=1,2,3 (4.25)
A = @IM =5, Vjm=123.
In particular, (4.17) reeds:
W0 =1, (4.26)
so that

(@0, v, 02 0%) = (1,01, 0%, 0%) = (1,v) where v = (v 0%, 0%) € R3. (4.27)

Therefore, the independent argument of the Lagrangian is actually a three-dimensional vector field
v. We call v the three-dimensional gravitational vector potential, however, note that it defined only

in cartesian coordinate systems. Similarly, by (4.6) we have
(et r? r?) = (1,773 r?) = (1,r) where r:=(r',r% r®) e R3. (4.28)

We call r the three-dimensional vector potential of inertia, and as before, note that it defined only

in cartesian coordinate systems. Furthermore, by (4.18), (4.25) and (4.27) we deduce:
K =1
Kim = —0jm +olv™ V1<jm<3 (4.29)
K% =Ki%=vl V1<j<3,
and therefore, as before, we have
Koo =1—|v[?
Kjm = —0jm V1<jm<3 (4.30)

Koj=Kjo=1v1 V1<j<3,

and
det ({Kmn tmon=01.2:3) = det ({Jontmmneo123) =1  V(2°, 2! 2% 2%) e R*. (4.31)
Similarly,
J =1
JIM =~ +rIr™ V1< jm<3 (4.32)

JO = Ji0 =i V1<j<3,
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and therefore, by Lemma 11.5 from the Appendix we have
Joo =1 —[r?
Jjm = =0jm V1< jm<3 (4.33)
Joj: j():’l“j V1§j§3
On the other hand, by (4.33), (4.24) identity (4.20) reads as
KOO =1- |I‘|2 + 250
Kjm = —0jm V1 <jm<3 (4.34)
Koj=Kjo=8;+r V1<j<3,

and thus, comparing (4.30) with (4.34) we deduce:

L—|v?=1—[r2+2S
(4.35)
vszj—i-rj V1<j<3,

so that,
So = Llef2 = Lvi?
2 2 (4.36)
Sj =0l —ri V1<j<3.

Furthermore, since ¢ = x° + Const, the first coordinate can be chosen as the proper parameter s,

on the Lagrangian of every particle, so that we rewrite (2.207) as

LM ({Kmn}m,n:o,l,Q,B) = //// (EM (({Kmn}m,n:O,l,Z,Zi) ) (xo’x17x27x3)) ) dxodwldedxsﬂ
1%

(4.37)

and (2.209) as

N T
LM (({Kmn}7n,n:0,1,2,3) ) (1‘0,1‘1,.732,.133)) = Z / {
k

=1_"

Wik (X)) ZwJ (xr(x%) Zﬁj(xo) § (2% = x% 2" = k(). 2* = X2 (X)), 2* = xi (%)) }dxo
N
= Wiga(@®)8 (@' = xk(x*), 2% = 2 (x"), 2 = i (x")) V(% 2t 2 a%) e RY. (4.38)
k=1

where the é-function in the last expression is three-dimensional, W, »(z°) is given, as in (3.12), by

3 3
d d d
WLg,k( = —myg g Z Z K d;fg (xo) d);% :L.O Zak Xk ] (Xk(l'o))

7=0m=0

Vs € (—o0, +00) Vk=1,2,...,N, (4.39)
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and the four-dimensional trajectory of the k-th particle, parameterized by the firs coordinate z°

given by

Xi(2%) = (xR (%), X3 (@), X2 (@), X (2%)) := (2% x,(2°), X2 (2°). X2 (@) VEk=1,2,...N

(455 (0, 9% (2°), 9% (2°), 26 (29)) = (1L 5% (2°), 5 (2°), %5 () YE=1,2,...N.

dx® > dz0

Similarly, the four-current and the charge densities satisfy:

0 .1 .2 .3 al ka 0 dXi 0 dxi 0 1 1/.0\ .2 2.0\ .3 3/.0
(.] I AW AR ):ZU 1 d 0(1: )7@(1: ),@(LB ) 6(1: _Xk(X )7'T' _Xk(X ),1‘ _Xk(x ))
k=1

V(2% 2t 2%, %) e R*,  (4.41)
and

N
p=> ord(x" = xk(xX"), 2* =3 ("), 2* = i (X)) V(0 2,27 2%) e R (4.42)
k=1

In particular, we have

(1°,5%5%3%) = (p.3)  where  ji=(',5% %) eR®  V(a°,2',2%2%) eRY,  (4.43)
where
al ka dXiodXzo 1 100y 2 270\ .3  .3/.0
i (01759 = Lon (a0, D), T 0) 6 (01 = 3 — xE 2~ )
k=1

V(2% xt 22 23) e R, (4.44)

In the same way, the mass four-current and the mass densities satisfy:

(3% 330 Taga Gag) =

d dx? dx;
ka ( G (1), Dk (20), d’;’gu%) 5 (" = xh()2? = () e® =X ()

V(2% xt 22 23) e R (4.45)

and

N
M= kaé (z' = xx (X", 2* = X7 (xX°), 2* — X3 (x")) V(2% 2t 22 23) e RY. (4.46)
k=1

In particular, we have

(38 g3 9o %) = (M,jar)  where  jar == (jig, dasday) €R® V(2% 2t 2%, 2%) € RY,
(4.47)
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where
ine = (g, dar dag) =
N
dxkodxi ka 1 170y .2 2,0\ 3 _ 3.0
> e (), GG TN )6 —xxa? —xE )" )

V(2% xt 2?23 e R*. (4.48)

Note that by (3.18), (3.22), using (4.31), (4.43) and (4.47) we have the conservation of the charge

and the mass current:

)

5‘7[)0 +divej=0 V(22! 2% 2%) e R?, (4.49)
oM
550+ divxda =0 V(2% xt 22 23) e RY. (4.50)

Moreover, by (4.39), (4.30) and (4.40) we have:

3 3 ¥
WLg’k(xo):_mkgG‘Z(ka @)~/ (i )) 3o 2 (29) 4, (10(2))

7=0

Vs € (—o0, +00) Vk=1,2,...,N, (4.51)

so that, by (4.51) and (4.41) we rewrite (4.38) as:

3

M (({Kmn}m7n:071’2,3) (1’0 zt, 22, 2%)) = Z " x Lzt 2 x3)j"(ac07x1,m2,x3)
N 3 de

=y meG 1= (dm’g(xo) — v’ ( 8 (z" = (), 2 = xE (), 2° = xi(X°))
k=1 j=1

V(2% 2t 2?23 e RY. (4.52)

Then, by (4.52) and (4.37), in the case V = R* we deduce

N +o00 3 d j 2
M ({Kmntm,n=0,1,2,3) Zm / ( Z <d§§($0) -l (Xk(l“o))> ) da®
k=1

e j=1
3
- //// (Z An(xo,xl,x27:r3)j”(xo,xl,x27x3)> dz’dztde?da®.  (4.53)
R4 n=0
Next we denote
(A(), Al, AQ, A3) = (\If, 7A) where Ao ¥ and (Al, AQ, Ag) = 7A, (454)
and
(So, Sl, SQ, Sg) = - (CI), 7h) where So = -9 and (Sl, SQ, Sg) = h. (455)
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In particular, by (4.36) we have:
b =1L(v|]?2=r|?
5 (V12 = [xf?) (456)
h =

V—r.

Moreover, by (4.43) and (4.54) we have:

3
> Anit=p¥—Aj V(2% 2t 22 2%) e RY. (4.57)

n=0
Lemma 4.1. Let {K™"},, m=0,1,2,3 be given by (4.29) and { K.un }n,m=0,1,2,3 be given by (4.30) Next,
let {Fpntn,m=0,1,23 be an anti-symmetric two-times covariant tensor, defined by

04, 04,

F,, = — . 1 =0,1,2,3. 4.
mj 833'"7‘ 833'-7 vmv.] 07 9 53 ( 58)
Then, denoting
(2% 2t 22, 2°%) = (29, %) where x = (¢!, 2% 2%) e R?, (4.59)
(A(),AhAg, Ag) = (\I’, 7A) where AO =V and (Al, AQ,Ag) = 7A7 (460)
B = (Bl, .BQ7 Bg) = CUTZXA,
E = (B, By, B3) = —Vx¥ — 55,
( ) ot (4.61)
D := (D17D2,D3) =E+vXx B,
H:= (Hl,HQ,Hg) =B+vx D7
and
3 3 _
Frme=3 "N K™Ky ¥m,n=0,1,2,3, (4.62)
k=0 =0
we have
Foj=-Fjo=E; Vj=123
Fi=0 VYj=1,23
Y (4.63)
Fig = —Fn =—Bs
Fi3=—F3 = Bs
Fy3 = —F3, = —By,
F% =9
FY% = _—Fi%®=_D; Vj=1,2.3,
Fii=0 Vj=1,2,3,
(4.64)

F12 :7F21 :7H3

F13 — _F31 — H2

F23=—F32:—H1,
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and

> L 04, 0An\ (0Ar 0A, 23
L (DT e (G- ) (20 ) L (S5,

2

1 (1 0A
471_(2‘VX\I/ a0+V><cu7’lA

- = |cu1"l ) (4.65)

Here, for a = (a1,az,a3) € R? and b = (b1, b, b3) € R® we denote by
axb:= (a2b3 — agbg, azby — a1bs, a1by — bgbl) S RS s (466)

their vector product and, given a vector valued function f(x) = (f1(x), f2(x), f3(x)) : R?* — R3 we

denote by
Ofs O0fs 0ft  0fs 0fs 0fi
curbe f(x) := (axa T o8 0 oot ont aa2) - (4.67)

Similarly to (4.65), by (4.55) we have

SR A . 89S, 0Sn\ [0Sk 0S,
g (ZZZZ 1K K”’“(axi—axp)<w‘axk>)

n=0 k=0 m=0 p=0

1
el

< lcurly S| ‘ Vx® — %Jrvxcurls

)

471G (1 lcurly (v —1)|> — % ‘_38330(‘,_1.) - Vx (;|V|2 - ;|r|2> + v xcurly (v —r)

2) . (4.68)

where we use (4.56) in the last equality. Consequently, by (2.219) and (4.31) we write the simplified

total Lagrangian in (2.219) and (2.220) in the given cartesian coordinate system, as
Liotar (v, (¥, —A)) = /// Liotal (V, (P, —A), (x 2l 22 x )) dz’dat da?da®, (4.69)
v

where, using (4.68), (4.65), (4.57) and (4.52) we can rewrite the total Lagrangian density
Liotal (v, (¥, —A), (20,21, 22,2%)) in (2.220) as

Liotar (v, (¥, =A), (2°,2",22,2%)) =

1 (2 ’ V 0 +v X CU’)"l

1
-5 |cu7“le2> — (\I' p(a®,zt, 2%, %) — A -j(xo,arl,x2,x3))

1 (1 2
2
+47rG (20urlx(v—r) 5 ‘— )

i v—r)—-V
N 3 de 2 :
=y g (13 (dx’g(xo)v] (e (z ))) 8 (2! = (%) 2 = X2 (x"), 2° = i (X)) -

1 1
W( r) x (2|v|2 — 2|r|2> + v X curlx (v—r)

o7



Then, by (4.70) we rewrite (4.69) in the case V = R* as:

Liotal (v,(\I/,—A))—////;TG‘—vx SAO—I—VXCUTZ A
R
////\I/pxxx:r) A_](xmxx))dxodxdxzdx +////47TG{

curl —rQ—E—iv—r — Vi« V2—*I‘2 +vxcurly(v—r
2| 0x20

21
~3 |curle|2> dz? ... dz3

} da’dxtdada®

N Too 3 d)dc . ' . 2 .
+Z/ —my G (1= —0 @) = (xu(@?) dz®. (4.71)
k=1_", j=1

In particular, if we assume that our coordinate system is inertial, in addition to being cartesian

then since r, given as in (4.28) and (4.5) by

(7’0,7"1,7"2,7’3) = (177’177'277’3) = (].,I‘) where r:= (Tl 7’ T ) € RS with

:Zijai_ Vm=0,1,23, (4.72)
— oxJ

is constant in every inertial coordinate system, which is independent on the point (2, z!, 22 23) €

R*, we simplify the total Lagrangian density Ly (v, (¥, —A), (2%, 2,22, 2%)) in (4.70) as

Etotal (V (

(2°,2', 2%, 2%)) =

A),
1 (1 oA 2
o (2 ’—VX\I/ 87 v X curly A

1
-5 |curle2> - (‘I’ p(x®, 2t 2% 2% — A -j(xo,xl,xQ,x3))
1 d 1 2
—G ( |lcurlyv]? — ’8:;; + Vi (2|V|2) —V X curlyv )
3

. 2
*kag 12( vj(Xk(xo))> § (x" = xi (N, 2 = xE ("), 2* = i (XY))

= j=1

(4.73)
and the total Lagrangian in (4.71) as:

1 1 0A 1
Liotar (v, (¥, —A)) = //// o <2 ‘—Vx 920 +v x curlyA| — 3 |curle|2> dz®dz dodz’
R4
— //// (\I/ p(mo,xl,xQ,x3) — A 'j(l‘o,l’l,l‘Q,a}‘g)) deOdaxtdr?de
R4
+///11'l|2 0 Vi (V) — v x curl
) X a0 — CUTlxV
1\ 32 curlyv v v
]R4

oo

N d 2
—|—Z / -mpG | 1— Z (d):;g ) — (Xk(xo))> dz®. (4.74)

2

2
) dzVdztdz?dx?

k=1_ Jj=1
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So, in the coordinate system which is simultaneously inertial and cartesian (we can obtain such
systems by the Galilean Transformations from the kinematically preferable coordinate system) nei-
ther the total Lagrangian density in (4.73) nor the total Lagrangian in (4.74) are dependent on

the kinematical pseudometrics {J™" }o<m,n<s and/or on the contravariant four-vector of inertia

(r0 rt r2,r3).

5 The Euler-Lagrange for the Lagrangian of the motion of a
classical point particle in a cartesian coordinate system

Consider a cartesian coordinate system and a classical point particle with the inertial mass m and
the charge o moving in the generalized-gravitational field given by a contravariant pseudo-metrics

{K™"},m=0,1,2,3, satisfying (4.29), so that

K% =1

Kim = —0jm +olv™ V1<jm<3 (5.1)

K% = Ki% =) V1<j<3,
and the electromagnetic field with the four-covector of the electromagnetic potential (Ag, A1, Aa, A3).
Next assume that x(z°) := (2% x'(z°),x*(@%), x*(z°)) : [a,b] — R* € R* is a four-dimensional
space-time trajectory of the particle, parameterized by the first coordinate z° in the interval 20 €

[a,b] (including the cases where a = —oo and/or b = +o0). Then, since ¢ = 2° + Const, we rewrite

the Lagrangian of motion of this particle in (2.100) as:

b 3 3 " 3 ;
dx’ dx dx’
_ 0 0 0
Lg(x) */a —mG [ D> Kk (x(=°)) 10 10 =Y oA (x(z") T (4 (5.2)

J=0k=0 J=0
where { Ky tn,m=0.1,2,3 is given as in (4.30) by
KOO =1- |V|2
Kim = —6jm V1< jm<3 (5.3)
KOj:Kj():’Uj V1§]§3,

with
(@0, v, 02 0%) = (1,01, 0%, 0%) = (1,v) where v = (v!,v?%,03) e R3. (5.4)

Then, since x°(2°) = 2, by (5.3) we rewrite (5.2) as:

b
Lg(Z) = / {mg (1 — ‘dd;O(IO) — Vv (1}07Z(x0))




where we denote

z(z%) = (x! (xo),xz(xo),xs(azo)) e R3 vzl € [a,b], (5.6)
and
(Ao,Al,AQ,Ag) = (\I’, —A) where AO =V and (A17A2,A3) =—A. (57)
Next, we investigate the critical points z(z°) of (5.5). Then, by the Euler Lagrange we have:
dLg
5, @) =0. (5.8)

Therefore,

d , dz
0= —mﬂ {QQ (1 - ‘dxo(xo) -V (xo,z(xo))

) () —v (mo,z@c%))}

){va(xo,z(xo))}T (szo( 0y — v(xo,z(:no))>

T dz

g (ddxo {A (2°,2(2°)) } + ViV (2°,2(2°)) — {dxA (2°,2(2"))} " - dzo(xo)> (5.9

and, by the following well known identity from the Vector Analysis:

—2mgG’ (1 - ‘szo(xo) —v (2°,2(2"))

£ x (curlyg) = (dug)” - £ — (dxg) - f  Vf(x),g(x):R> = R3, (5.10)

) } <sz0(x0) -V (;UO, z(mo))>
2 d?z
) TER

2) ({av+v <| | ) _dz curlxv} (xo,z(xo))>

jzo( % x curl A} (x z(mo))> . (5.11)

{E ~Vy U - 24

we rewrite (5.9) as:

d , d
0= fm@ {2(] (1 - ‘dxzo(xo) -V (xo,z(:no))

—2mG’ <1 - ‘C;j;(xo) —v (2°,2(2"))

So, denoting

(5.12)
= curly A,

we rewrite (5.11) as

2mg’ < ’jzo( N —v (:E07Z($0))

2 d?z
) d(z29)? (%) =

ddo {2g’ ( ‘;;O(xo) —v (2°,2(2"))

)

However, as before, here we consider two cases:

)} ( & @) - v(w07z<x0>))
ai < v| > - — X curlxv} (:co,z(xo))>
( %(xo) x B (mo,z(xo))) . (5.13)

+2mg/< ‘jzo( ) — v (2°,2(z"))
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e The case of non-relativistic approximation, where G(7) := (7 — 1).
e The case of relativistic particles, where G(7) := /7 — 1.

In the first case we have 2G/(7) = 1. In the second case we have 2G/(7) = 772 = 1+ O(r — 1) and
s0 2G'(1) =~ 1 in the non-relativistic approximation where

2

d
’d;o—v < 1. (5.14)
Thus, in the latter case we rewrite (5.13) as
d*z 0 1 2 dz
mm(xo) =m (89:0V (wo,z(xo)) + Vi (2 ‘v (xo,z(xo))‘ ) — @(1‘0) X curlyv (xo,z(xo)))
+o (E (2°,2(2")) + %(xo) x B (mo,z(xo))) . (5.15)
x

6 The Euler-Lagrange for the Lagrangian of the gravitational
and Electromagnetic fields in (4.71) in a cartesian coordi-

nate system

Lemma 6.1. Consider the strongly correlated kinematical covariant pseudo-metrics {J ™"}, n=0.1,2,3
and the kinematical global time @, forming a standard kinematical Lorentz’s structure with global time
on R* as in Proposition 2.7 and Remark 2.6. Neat, let (r°,r1 72 13) be the contravariant four-vector
of the inertia, corresponding to {J™" }m n=0,1,2,3 and p, defined by

3

. a(p
mo.__ mj Y _
r ._ZJ o Vm=0,1,2,3. (6.1)
7=0
and denote
(et 2 r3) o= (r0)r) where r:=(r',r% %) e RS, (6.2)

Then, in a cartesian coordinate system we have:

r9=1

(dxr + {dyr}7T) := <{%ﬁ§ + aa.li}mjzl 23> =0

(6.3)
9%rm -
ST = 0 Vi,m,n=123
divyr =20,
where we denote
(2%, 2, 2%, %) == (2, %) with — x:= (', 2%, 2%) € R3. (6.4)
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We investigate critical points of the functional in (4.71). As before, we denote
(Ao, A1, As, A3) = (I, —A) where Ao =T and (Aj, Ay, A3) = —A, (6.5)
and
(So, S1,52,5;5) = —(®,—h) where Sy = —-® and (51,52,53) = h. (6.6)

In particular, by (4.36) we have:

@=L (V]2 Jef?
2 ( ) 67
h=v-r
Furthermore, we denote
B = curixA
D=-V,U - % + v X curlyA
(6.8)
E=-V,U - 24 =D-vxB
H=curlyA +v x (—Vx\I/— %—f—v X curle) =B+vxD.
Moreover, we define
R=-V,0- % + v X curlyh
(6.9)
Q = curlih,
and by (6.7) we rewrite (6.9) as:
R=—-2%(v—r)—Vy(iv]? = Lr]?) + v x curlx (v — 1)
(v =) = D (v = 30 610

Q = curlx(v —r).

We also can rewrite (6.10) as:

Q = curlyx(v —r) and R=

1
<§; + Vi <;|r|2> —rX curlxr) - (;;; + Vx <2|v2> —V X curlxv) — (v —r1) X curlgr
= (88;0 + dyr - r) - (g:;; + dyxv - v) — (v —r) X curlyr, (6.11)
where in the last equality we use the following well known identity from the Vector Analysis:
£ x (curlyg) = (dxg)” - f — (dyg) - f Vf(x),g(x): R* = R3. (6.12)

Moreover, in inertial coordinate system where dxr = 0 and % = 0 we simplify (6.11) as:

R:_&_vx Lvi2) + v x curlyv = — v +dxv-v
920 (2‘ | ) (Bzo ) (613)
Q = curlyv.
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Furthermore, by (6.8) and (6.9) we have:

curlyE + gx = curlyD + L5 — curlxy (vxB) =0
divy, B=0
(6.14)
curlyR + % —curly (vxQ)=0
divy, Q =0.
Next, taking the divergence by x of (6.11) we deduce
3 3 -
) ar™ or?
divy R = (8 5 {divxr} +r - Vi {divyr} —|—;mz::1 &Ejaxm)
3 EL v Gl
| 5,0 {dlvx v} + vV {divy v} + Z Z 90 9 | divy {(v — 1) X curlyr}
j=1m=1
3 3 S\ 2 3 S 2
1/0rm™  Or 1 /o0r™  Ord
(a B NSNS 3 ot (AR B 0 o] )
3 3 2 3 3 2
1 /0v™ o 1 /ov™ o
i ( o fdtvev} v Valdivev) £ 5 (o * PP (5~ v )

— (curlx {(v —1)}) - (curlgr) + (v — 1) - (curlx {curlcr}), (6.15)

where in the last equality we use the following well known identity from the Vector Analysis

divk(f x g) = g curlxf — £ - curilkg Vf(x),g(x): R®* = R3. (6.16)

However, we can rewrite (6.15) as

8 3 3 1 87’j 2
divy R = W{dlvxr}+r'vX{d1er}+ZZ4(ax] : )

ox™
j=1m=1

(2 et v Vet 030 (2 20
axo 1V V v x IVx V i 4 axj 81‘771

- = |curl r|® 4 = \curlxv| — (curlx {(v —1)}) - (curlxr) + (v — r) - (curly {curlir})

3 3 9 \ 2
(8 5 {diver} + divy {(diver) - r} + Z Z <8x3 + ) — (divy r)2>

e 1 8$m
j=1mn

amnb
j=1m= 1

0 . . . 5'Uj ? : 2
_ (8300 {divx v} + divy {(divx v) - v} + Z Z < 5 ) — (divg v) )

+ % leurly (v —1)]* 4+ (v — 1) - (curly {curlyr}) . (6.17)
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Then, since by (6.11) we have curlx(v —r) = Q, we rewrite (6.17) as

9 A ) ovi \*
30 {divx v} + divy {(divx V) - v} + Z Z (83:3 + axm) — (divev)* | =

a’l"j 2 . 2
(8 5 tdivxr} + divy {(diver) -1} + ;7; (8301 + 8xm) — (divyr) )
+ (v —r) - (curly {curlyr}) + % lcurl, Q> — dive R, (6.18)

Next, by Lemma 6.1 we have

Ty . (Jorm | or =
(dxr + {dxr}T) := ({ 927 T 2z }m7j=17273) =0

curly(curlyr) =0 (6.19)

divyr =0.

Then, inserting (6.19) into (6.18) and using the identity Q = curlx(v —r) in (6.11) with (6.19) we

obtain:

0 1 v \?
. . . . 2
@ {lex V} + lex {(dlvx V) . V} + E E Z <8Jj] 81‘"7) - (lex V)

j=1m=1

1
=3 lcurlQ|* — divk R and curly(curlyv) = curleQ. (6.20)

Next we investigate the Euler-Lagrange of (4.71). We denote

Ly (V7 ((I)a _h)7 (\I/7 _A)) =

1 1 A
////47_‘_<2‘_Vx §0+VXCUTZA
R4
_ //// (\I/p(xo,xl,x2,m3) — A 'j(mo,wl,x2,x3)) dxodxldede
//// | Leh|* — . — Vi® + v x curlyh
e cur 21" 32 v X cur

2
1
~5 |curle|2> da’dat dz?da®

2
) daldxtda?da?

8
N . dX% 0 0 i 0
+Z/ -my G l—z @(x) v’ (Xk(x )) dx”, (6.21)
k=1_7_ j=1

where
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so that we have:

L (v, (1 (V2 =[]}, = (v — r)) (0, —A)) = Liotar (v, (¥, —A)) =

2

1 (1 0A
I 3= (3w 5 v
R4

2

1
3 |curle|2> dadxt da?da®

o st [ |
™
R4 )/

1 , 1| 8
3 leurly (v —1)|" — 3 ’_3;1:0
N Tt 3
+Z/ *mkg 172
k=1_" j=1

Next by the Euler-Lagrange of (4.71) we have

6L§3ml (v, (U, —A)) =

gt (v, (T, -A))

6L5t&/tal (Vv (\I/a 7A)) =

On the other hand, by Chain rule we have

5Ltotal

Moreover,

et (v, (U, -A)) = 53 (v, (5 (VI —

and

(v (S k) ) )

o
S (v (1 -A) = 53 (v (5 (V1 -

o

et v, (0,-A)) = 52 (v (G (P = )= (v =) ) v

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)



Moreover, by (6.21), (6.9), (6.10) and (6.16) we have

L 1 1
% = Rcurle el (SRO curly {v x R}) (6.29)
™
oL 1 ,
and
0L,
5v——< —Ev+D><B—4GR><Q> (6.31)
where
(e el e? e?) := (E,e) with e = (e',e? e’) € R, (6.32)

and the contravariant four-vector field (e, e!, e?,e?) and the scalar field E are given by

(60’6 ,€,€ )(-TO,J? , X ,Ig) =
2 2 | 1-3, <dx§(mo) - WWO))) 5@ (@ =0 -2® = X))
k=1 j=1
V(20 2t 2% %) e RY,  (6.33)
and
E(xo,xl,l‘Q x ) =
N 5 ayd )
2 2G| 1= (dg;g(mo) = (e ))> 5 (2" = xh (), 2 = A ("), 2 — X (X))
k=1 j=1

V(2% xt 22 %) e R (6.34)

where G’ is the derivative of the function G. Therefore, using (6.29), (6.30) (6.31) in (6.28) we

deduce:
<e_EV+DXB—wRXQ>
1 1 R
47Tchrle e <§x0 curly {v x R} + (divxR) V> . (6.35)
Moreover, by (6.27) we have
1
—diveD —p =0, (6.36)
and
1 oD 1 1 1 0D 1
i B - — D) =j - — <H = 0. .
j+ Ir 920 47Tcu7‘l 47Tcu7"l (vxD)=j+ — 1r 520 47Tcurl 0 (6.37)
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So, totally we have

curlyH = 47j + axo

divy D = 4mp

curlyE + % =

divy B=0

curlyR + % —curly (vxQ)=0

divy, Q =0

2
(820 (divx v) + v - Vx (dive v) + i dxVv + {dxv}T’ ) = % |Q|2 —divk R

curly(curlyv) = curlxQ

4G (e — Ev+ £D x B — 2-R x Q) = curlyQ — ( — curly {v x R} + (divx R) v)
(6.38)
where D, B, E, H are given by (6.8), so that:

B = curixA
D=-V,VU - % + v X curlyA
(6.39)
E=-V,U - 24 =D-vxB
H=curlyA +v x (—VX\I/— %—f—v X curle) =B+ vxD,
and moreover, by (6.13) in the inertial frame we have:
curlyH = 4mj + %
dive D = 47mp
curlyE + 2 o 9B _
divy, B=10
R = 7(8900 + dyv - v)
Q = curlyv
47G (e — Ev+ 2D x B — 2R x Q) = curlxQ — (88 — curlx {v x R} + (divx R) v)..
(6.40)

Furthermore, taking divy of the both sides of the last equality in (6.38) and using continuum equation

(4.50):

M
o o T divkjm =0 V(2% 2t 22 23) € RY, (6.41)
we deduce
oM : . 1
520 + divk (Mv) | + divg (e—‘]M)—(E—M)v—i—ED x B — RRX Q=
] 1 o .. . .
divx ( —Ev+ —D x B — ER X Q) ~iC <ax0 (divx R) + divx {(div<R) v}) . (6.42)
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Therefore, considering the proper scalar quantity (g, that we call the field mass, which satisfies

I
QO = —M + m lex ].:{,7 (643)
by (6.42) we deduce
990 | Gy (Qov) = —diva d (e —jnt) — (E— M)v+ D xB— —LRxQ (6.44)
Oz xR0 x I 47 An@G ' ’

Thus, we rewrite (6.38) as:

curlyH = 47j + %

divy D = 4mp

curlyE + % =0

divy B=0

curlyR + 37(% —curly (vxQ)=0

divy, Q=0

4G (e — Ev+ 2D x B — 2ZoR x Q) = curlyQ — (85 — curly {v x R} + (divx R) v)
divx R = 47G(M + Qo)

(azﬂ (divi v) 4+ v - Vi (divx v) + 1

2
dyv + {dxv}T‘ ) =1|Qf - divxR

curly (curlyv) = curlyQ

990 1 divy (Qov) = —divy {(e —ju) — (E— M)v + =D x B — 2-R x Q},

(6.45)
where D, B, E, H are given by (6.8), so that:
B = curiA
D=-V,U - % + v X curlyA
(6.46)

E=-V,U - 24 =D-vxB

H=curlyA +v x (—Vx\I/—%—f—vxcurle) =B+ vxD,
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and moreover, we rewrite (6.40) in the inertial frame as:

curlyH = 4mj + %

divy D = 4mp

curlyE + % =0

divy B=0

R:—(%—i-dxv-v)

Q = curlyv

4G (e — Ev+ £D x B— 2oR x Q) = curlyQ — (88 — curly {v x R} + (divx R) v) .

divy R = 4rG(M + Qo)

998 + divx (Qov) = —divx {(e —ju) — (E -~ M)v+ D xB - 1-R x Q}.

(6.47)

However, as before, here we consider two cases:
e The case of non-relativistic approximation, where G(7) := (7 — 1).
e The case of relativistic particles, where G(7) := /7 — 1.

In the first case we have 2G'(7) = 1. In the second case we have 2G'(7) =772 =1+ O(r —1). In
the first non-relativistic case by (6.33) and (6.34) we deduce

e=jm and E=M V (20, 2!, 2%, 23) e RY, (6.48)

In the second relativistic case (6.48) is satisfied approximately, provided we have

. 2
dxj, ;
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Thus, by (6.48) we rewrite (6.45) as

curlyH = 47j + g%

divey D = 47p

curlyE + % =0

divy B=0

curlyR + % —curlx (vxQ)=0

divy, Q=0

A7G (jir — Mv + 2D x B — 2-R x Q) = curlyQ — (85 — curly {v x R} + (divx R) v)
divy R = 4rG(M + Qo),

(6‘20 (divye v) + v - Vi (divy v) +

2
xV}T| ) = 11Q? - divy R

curly(curlyv) = curlyQ

998 + divy (Qov) = —divx { £D x B — 2R x Q},

(6.50)
where D, B, E, H are given by (6.8), so that:
B = curiA
= ViU — 95 + v x curl A
(6.51)
E=-V,U - 24 =D-vxB
H=curlyA +v x (fo\I/f %Jrv X curle) =B+ vxD,
and moreover, we rewrite (6.47) in the inertial frame as:
curlyH = 4mj + %
divey D = 47p
curlyE + % =0
divy, B=10
R = 7(%+dxv~v)
Q = curlyv
47@G (JM Mv + 3 L ~-D x B — 47TGR X Q) = curlyQ — ( — curly {v x R} + (divy R) ) .
divy R = 47G(M + Qo)
990 + divy (Qov) = —divyx { 2D x B — IR x Q}.
(6.52)
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7 Gravity field of spherically symmetric massive resting body
in a coordinate system which is cartesian and inertial si-
multaneously

Consider some coordinate system which is cartesian and inertial simultaneously. Next consider some

resting massive spherically symmetric body of Radius 79 with center at the point (2!, 22, 23) =

(0,0,0) for all 2° € R. Assume that the electromagnetical fields are negligible with respect to the
inertial mass of the body. Then, we rewrite (6.47) as

R = (8.L0 + dxv - V)
Q = curlyv
47G (e — Bv — 2R x Q) = curlxQ — (8% — curly {v x R} + (divx R) v) . (7.1)

divy R = 47G(M + Qo)

%88 + divy (QOV):_diVX{(e_jM)_(E_M) 47TGRXQ}
Moreover, we obviously have
M2 x) = M; (]x|) and u(z’,x)=0  V(2°x) € R, (7.2)

where we denote (2°,x) := (2%, 21, 2%, 23) € R* with x := (2!, 22,2%) € R3, u is a three-dimensional
velocity field of every point of the given massive body and M; := M; (|x|) is the inertial mass density

of the body which is assumed to be a radial function such that
My () =0 if |x| > 7o, (7.3)
where 7 is the radius of the body. In particular we have
E(2°,%) = M, (|x|) 26’ (1 - |V(x0,x)|2) V (20, x) = (a%,2),2%,2%) e RY. (74)
Thus we simplify the equations for the Gravity in (7.1) as

R=— (25 +dxv-v)

Q = curlyv

AnG (_M1 (Ix]) 26" (1 - |v|2) v— =R x Q) = curlyQ — (& — curly {v x R} + (divyx R) V).
dive R = 47G(M + Q)

598 -+ divi (Qov) = — diva {3 ((Ix]) 26" (1 Iv1*) = 1) v - 2R x Q}.
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We look for stationary (i.e. z%-independent) solutions of (7.5). Thus (7.5) implies:
R=—-dyv-v
Q = curlyv

AnG (—M1 (Ix|) 26" (1 - |v|2> v - =R x Q) = curlyQ — (—curly {v x R} + (divx R) V).
divy R = 47G(M + Qo)

divy (Qov) = — divy {_M1 ((\x|) 20/ (1 - \v|2) - 1) v — LR x Q} .

(7.6)
On the other hand, by the symmetry considerations of the problem we look for the solution of (7.6)

that satisfies v(x) = VxZy (|x|) where, again by the symmetry of the problem, the scalar function
Zo (Jx|) should be radial. In particular, by (7.6) we obtain

Q=curlyv=0 (7.7)
and thus we simplify (7.6) as:
R=—dyv-v=—-Vy (% |v|2> ,
Q = curlyv =0,

AnG (—M1 (Ix|) 26" (1 - |v|2) v) = — (—curly {v x R} + (divx R) V). (7.8)
divx R = 47G(M + Qo)

divx (Qov) = — div {_M1 ((\x|) 20! (1 - \v|2) - 1) v} .

In particular, since v = VxZp (|x|) and R = — Vy (% \v|2) are both gradients of radial functions,

we have v x R = 0 and thus, we further simplify (7.8) as:

Q =curlyv =0,
dive R = 47G My (x]) 26 (1~ [v[*), (7.9)
curlyR =0,

Qo= My (x]) (26" (1= ) — 1)

However, (7.9) is equivalent to the following:

A (=5 Iv1*) = 4mG My (x) 26" (1= |v*)

curlyv = 0,

R = —Vy (% |v|2) : (7.10)
Q=0

Qo= M (Ix)) (20" (1 - Iv*) - 1).
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Therefore, denoting

1
Oy = —5 |v[* (7.11)
2
we rewrite (7.10) as:
AX(I)l = 47TGM1 (|XD QQ/ (]. =+ 2(1)1) s
o = v,
curlyv =0,
(7.12)
R = VX (% |V|2> ’
Q=0,
Qo = My (jx[) (2¢" (1 +291) - 1),

where the scalar field ®; = @ (]x|) is radial, and thus, outside of the Massive body surface, where

|x| > 7o it coincides with the following Newtonian potential of the massive body:

, (7.13)

where M is the total effective gravitational mass of the massive body, defined as

Mo ///XM My (Ix]) 26" (1 + 20, (|x])) dx = ///XM My (1)) 26" (1 V2o (X)) ;'17’.‘1'4)

Note that, for the inertial mass of the Earth mg we have mg = fffl M; (|x|) dx and thus, in

x|<ro

the non-relativistic case, where 2G’(7) = 1 we have My = mg. On the other hand in the relativistic
_1 . : .

case, where 2G'(7) = (1) 2 > 1 with 7 < 1 we have My > mg. Next, since there exists a scalar

radial field Zj (|x|) such that v(x) = VxZ (|x|), by (7.12) we obtain

s x| = v (7.15)

that implies either

—29
v(x) = 71(|xl)x, (7.16)
x|
or
—29
v(x) = —ﬂx. (7.17)
|
In particular, on the Earth surface we have:
2G M,
lv| = 0 (7.18)
o

where ¢ is the massive body radius and M is the total effective gravitational mass of the massive
body, i.e. the absolute value of the three-dimensional vectorial gravitational potential on a planet
surface equals to the escape velocity and its direction is normal to the planet, either downward or

upward.
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7.1 Certain curvilinear coordinate system in the case of stationary radi-
ally symmetric gravitational field and relation to the Schwarzschild
metric

Assume that for a given part of the space-time ¥V C R?* in some inertial or non-inertial cartesian

coordinate system (x) the gravitational field is stationary and radially symmetric that means that,

{K™}m=0,1,2,3 is given by (4.29) and {K,n }n,m=0,1,2,3 be given by (4.30), so that

K% =1
Kim = —§m, +vI0o™ V1 <jm<3 (7.19)
K% = Ki% =97 V1<j<3,
and
Koo =1—|v|?
Kjm = —0jm Y1<jm<3 (7.20)
Koj=Kjo=v1 V1<j<3,

where we denote
(W%, vt 0?03 = (1,v) with v = (v', 0% 0%) € R3, (7.21)

and the three-dimensional vectorial gravitational potential v = (v, vg, v3) is independent on variable
2% and having the form

v(x) = g (x]) ‘—; v, (7.22)

for some scalar function g(7) : R — R with
(2%, 2, 2%, 2%) = (20, x) e V where x = (z', 22 23) € R3. (7.23)

Next, given some differentiable function F(x) : R® — R, consider the change of variables in the
four-dimensional space-time R*:
20 =20+ F (wl,xQ,x?’)
(7.24)
=l Vj=1,2,3.
that transforms the cartesian coordinate system (x) to the curvilinear coordinate system (xx) in the

four-dimensional space-time R*. Then in the terms of the three-dimensional space we rewrite (7.24)

as:
2’0 =20+ F(x)
(7.25)
x' =x.
Next if we define a matrix
) am/i
A={a'} ;{ ,} € R4, (7.26)
{ J }OSZJSB oxJ 0<ij<3
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then

a) =1
apt =0my V1<m,n <3

(7.27)

oF .

al=0 V1<j<3.
Next, remind that the contravariant pseudo-metric tensor { K" }o<, n<3 due to (7.19) has the form

of
K% =1

K™ = 8 +viv™ V1< j,m <3 (7.28)
K% = Ki% =9/ V1<j<3,
in the cartesian coordinate system (*). We would like to find the form { K" }o< n<3 of this tensor

in the curvilinear coordinate system (xx). Then by (10.6) and (7.26) we have:
3 3 ' 3 3 _
K™ =3 "N "(apEMa}) = ap | > KMal Y0 < m,n < 3. (7.29)
k=0 j=0 k=0 §=0

In other words

K™ =af | K%+ K% | +> apt | K*ap +> K*a? YO <m,n<3. (7.30)
j=1 k=1 j=1

In particular, by (7.27) and (7.30) together with (7.28) we obtain:

3 3 3
K" =af [ K% + E Kojag + E a) Kk0a8+ E Kkja?
J=1 k=1 j=1

3 3 3 3 3
_ 0 0 0\2 _ 0 0 0\2
=ag a0+z2vjaj + Za]vj fZ(aj) = a0+21ﬂa] fZ(aj) , (7.31)
Jj=1 Jj=1 Jj=1 Jj=1 Jj=1
3 3 3
K'0n — gm0 _ a8 gooag + ZKOja? + Zag Kkoag + ZKkja;;
j=1 k=1 j=1
3
:agv"—ag—}—Zagvkv" V1<n<3, (7.32)
k=1
and
3 3 3
Kmn — agL KOOQSL + Z KO] a;t + Z a']g@ Kkoag + Z Kk] a;t = ™" — Som
j=1 k=1 j=1

V1<m,n<3. (7.33)
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Thus by the last three equations together with (7.27) we deduce:

2
3 . 3 2
K% = (14 X5, 85) - 20, (85)
K/On — K/nO =" (1 4 Z?:l ’Uj (')F) oF V1 <n< 37

Oz

Klmn:’l)mvn_(smn v1§m,n§3

Next if v satisfies (7.22) then choosing the function F' to be defined as:

F(x)=¢(x]) Vx, where %(7) = 195;-2)(7_) v,

we find that:

in other words

Then we rewrite (7.34) as:

4 2
K = (1= vP) (14+ S5 v 85)
K™= K™ =0 Vi<n<3,

K/mn:’l)mvn*(smn V1 §m7n§3

On the other hand by (7.37) we have

3
OF
2= (1—|v]? P2
V= () [ v ok
We rewrite (7.39) as:
L OF
= (1= |v|? g
1=(1-1v]) 1+Evazﬂ
Therefore, by (7.38) and (7.40) we deduce:

K100 (1 - |v|2)_1,
KO = Km0 — V1l<n<3,

K/mn:vmvn_émn V1 §m7n§3

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

Next we find that the covariant pseudo-metric tensor {K7,, }o<m,n<3 in the curvilinear coordinate

system (%) has the following form:

KéOZ (1—|V|2),
Kl =K,=0 V¥l<n<3,

ann:—((l—|v\2)_l Umv”—|—5mn) vl <m,n <3.
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Indeed, if {K],, }o<m n<3 is defined by (7.42), then by (7.41) we have:

mn

3 3
ZK(I)kK/kO — KéOK/OO + ZKékKlkO — 17
k=0 k=1

3 3 3
> K K™ = K K"+ > K, K™ =" ((1 — )tk 5mk) (61 — vF07)
k=0 k=1 k=1
=6m; — (1— |v|2)_1 v o™ o) — ™! 4+ (1— |V|2)_1 V™) =8, V1 <m,j <3,
and

3 3
S K K* = KoK+ K K™ =0 v1<m<3,

k=0 k=1
3 3 )
S K K™ = KiK' + Y K KM =0 vi<j<3.
k=0 k=1

So
3 .
> K K™ =65, Y0<m,j<3,
k=0

and thus equalities (7.42) indeed define the inverse to {K™"},, n=0,1,2,3 matrix. So by (7.42) we
have:
Ko = (1= 1|v[*),

K}, = K, = V1<n<3, (7.43)

n
1 "1 m . n
Kmn:7<(1—|v\) V™o +5mn) V1<m,n<3.
In particular, the quadratic form, induced by the covariant pseudo-metric tensor {K7,,, }o<m.n<3 in

the curvilinear coordinate system (+x), that defined on the tangent vectors (dz’,dz"*, dx"?, dz") €

R* where dx’ := (d2'*, dx'?,dx"®) has the following form:

3 3
SN K damda™ = (1 v]?) (dap)’ (|dx'|2 (A=) v dx’|2) -
m=0n=0
v 2 1 v 2 ?
_vl2 N2 _ n2 _ |V Col2) T 2|V g v ’
(1= |v]?) (dzp) <<|dx| ‘|v| dx >+(1 v]?) vl v dx +'|v dx )

©  —

v
— . dx’

vl

Thus taking into account (7.25) and (7.22) we rewrite (7.44) as:

= (1 |vP?) (dup)? - ((1 ~ ) ¥ <dx’2 - ’|:| dx’

) oo

3 3
Z Z K/  dx'™dz'™ =
m=0n=0
2 2\ 1| %/ 2 x/ ?
(1_|v(x')| )(dxg)h (1_ v(x))| ) FRGII: ldx'|? — ‘|X/|~dx’ . (7.45)

Next, up to the end of this subsection, assume that our cartesian coordinate system () is inertial

and cartesian simultaneously and our gravitational field is formed by the resting spherical symmetric
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massive body of the effective gravitational mass My and radius 7 like the Earth, the Sun et.al. with

the center at the point (2!, 22, 23) = 0. Then, as we get before, we have either (7.16):

—29,(|x[)

v(x) = X, (7.46)
]|
or (7.17):
—29
v(x) = —71(|X|)x, (7.47)
x|
where outside of the massive body surface we have
G M,
o () =~ (7.15)

with the total effective gravitational mass of the massive body My, defined as in (7.14) by

Mo///lx<m M, (%) 26 (1 + 285 ([x[)) dx///lx<m My (x1) 20" (1= V2o (Ix])F) dx.

(7.49)
Thus in particular,
v(x)|* = —2@1(|x]), (7.50)
and outside of the massive body surface we have:
2G M,
v(x)[* = o 2. (7.51)

Both (7.46) and (7.47) are particular cases of (7.22), with

g(7) = £/ =291 (1), (7.52)

and in particular, outside of the massive body surface we have:

2G M,
x|

g(|z)) =+ (7.53)

Thus defining the function F(x) as in (7.35), that always can be done in the case % < 1, we can
define the change of variables from coordinate system (%) to the curvilinear coordinate system (xx)

in the four-dimensional space-time R* as in (7.25):

2/0 — 2.0 x
+F) (7.54)

X = X.

Then by inserting (7.46) or (7.47) into (7.43) we deduce the form of the covariant pseudo-metric

tensor in the curvilinear coordinate system (s:):

Koo = (14 28:1(x])) ,
K), =K, ,=0 V1<n<3, (7.55)

K, = ((1 + 20, (|x'])) 7 20 (x|) 2 1y — 5mn) V1< m,n<3.
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Moreover, by (7.45) we have:

3 3
Z Z K/  dx'™dz'™ =
m=0n=0
/ 2 / 2
(14204 (|x'])) do — <(1 +28, (X)) " ;—/‘ ~dx'| + <dx’2 - ‘;/I -dx' >> . (7.56)

In particular, outside of the massive body surface, i.e. when |z'| > ro we rewrite (7.55) and (7.56)

as:
Ko = (1-28).
Ko, =Ko = V1<n<3, (7.57)
71 7 !
K., =- <(1 - 2|c;*(1}|40) 2@\40 e 5,,m) Vli<m,n <3,
and
3 3
Z Z K]  dx'™dz'™ =
m=0n=0
2G M, 2GMy\ | % 2 x/ 2
1— de? — [ (1 - = . dx’ dx'|? — | = . ax’ . (7.58
(1= 25 << o) (] (1o e (58)

Therefore, we get that in coordinate system (xx), outside of the massive body, the covariant pseudo-

metric tensor in (7.57) and (7.58) exactly the same as the well known Schwarzschild metric from the

General Relativity (see [9], pages 180-181). Indeed in the spherical coordinates in R3 we rewrite
(7.58) as:

3 3
Z Z K]  dx'™dz'™ =
m=0n=0
<1 - QGM) daf? — ((1 - QGM) (dr')” + (1")* ((d8')? + sin® (9’)(65@0’)2)) , (759)

and this is exactly the classical Schwarzschild metric! (]7],[9])

In particular, all the optical effects that we find in the frames of our model coincide with the
effects considered in the frames of General Relativity for the Schwarzschild metric. In particular, the
Michelson-Morely experiment and all Sagnac-type effects will lead to the same result in the frame of
our model like in the case of the General relativity. Moreover, since the Maxwell equations in both
models have the same tensor form, all the electromagnetic effects, where the time does not appear
explicitly, will be the same. Similarly, the curvature of the light path in the Sun’s gravitational field
will be the same in both models. Finally, in the particular case of G(7) = /7, i.e. in the case of the
relativistic Lagrangian of the motion in (2.102) all the mechanical effects will be the same in the
frame of our model like in the case of the General relativity for the Schwarzschild metric, provided
that the time does not appear explicitly in this effects. In particular, the movement of the Mercury

planet in the Sun’s gravitational field will be the same in both models.
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8 Newtonian gravity as an approximation of (6.52).

We now approximate the Euler-Lagrange in (6.52). First of all, in the usual circumstances we

obviously have for the electromagnetic field:

1
DxB’<<M.
47

Thus, by (8.1), we approximate (6.50) as:

curlyH = 47j + %

dive D = 47p

curlyE + % =0

divy, B=0

curlyR + % —curly (vxQ)=0

divy, Q=0

4G (Mu— Mv — 2R x Q) = curlxQ — (88 — curly {v x R} + (divk R) v)
divx R = 4nG(M + Qo),

((920 (divk v) + v - Vi (dive v) + 1

T|? L2
dev + {dyv} ’ ~ 1|QP - divk R

curly(curlyv) = curlxQ

92 + divy (Qov) = divx { 2R x Q},
where u := u(2°, x1, 22, 2%) is the field of the velocities of the matter so that

and where D, B, E, H are given by (6.8), so that:
B = curl A
D= -V, ¥ — 2% + v x curlyA

E=-V,0—-24 _D_vxB

020 —

H = curlyA + v x (—VX\I/— OA —|—V><cu7’le) =B+vxD.

0z0
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Furthermore, we approximate (6.52) in the inertial frame as:

curlyH = 47j + %

divy D = 4mp

curlyE + % =0

divy B=0

R=- (8930 +dxv - V) (8.5)
Q = curlyv

4nG (Mu—Mv — 2R x Q) = curlyQ — (amo curly {v x R} + (divy R) v) .
divx R = 47G(M + Qo)

92 + divg (Qov) = divx { ;2R x Q} .

On the other hand, we can rewrite (8.5) in the inertial frame as:

curlyH = 47j + amo

divy D = 47p
curlyE + 2 610 =
divy, B=0
(8.6)
— (divx {% 4+ dyv - v}) u, + (% + dyVv - v) X (curlyv) = curly (curlev)
+6;c0 {510 +de V} - Cu""l {V X (610 + de V)} +47TGQO (uv — V) .
divee { 2% + dxv - v} = —47G(M + Qo)
898 + divy (Qov) = — divy { 25 (2% + duv - v) X (curlyv)},
where we denote
u if M#O0
uy = (8.7)
v if M=0.

Furthermore, we assume the non-relativistic approximation and quasistationery nature of the field

v, so that
v 2 ov [° 2 ov ) |2 0 |2
‘8(3:0)2 < |dvl, ’8950 < dxv|™, dx a0 (| < |dav|”,

lu?<1 and |[v[*<1. (8.8)
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Thus, by (8.8) and (8.3) we approximate (8.6) in the inertial frame as as:

curlyH = 47j + %

divx D = 47p

curlyE + % =

divy B=0 (8.9)
divg {25 + dxv - v} = —47G(M + Qo)

curly (curlyv) + 41GQo (uy —v) + V(=0

9% + divk (Qov) = 0.
where ( is some unspecified approximately negligible scalar field. However, the obvious solution of
the last two equations in (8.9) are

curlyv =20

Qo =0.

(8.10)

So, by (8.10) we rewrite (8.9) as:

curlyyH = 47j + 28

Ox0
dive D = 47mp
curlyE + % =0
(8.11)
divy, B=0

curlyv =10

divy {% + dyv - v} = —47rGM.

We obviously can rewrite (8.11) as:

curlyH = 47j + 282

0
dive D = 47p
curlyEE + 37130 =0
(8.12)
divy, B=0

curlyv =10

divy {% + Vi (3v[*)} = —47GM,
where D, B, E, H are given by (6.8), so that:

B = curlxA

D= -V ¥ — 2% + v x curlyA

(8.13)
E=-V,U - 24 =D-vxB

H = curly A + v x (—VX\IJ—%—I—VXCUTZXA) =B +v xD,
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and furthermore, we rewrite two last equations in (8.12) as:

v =VxZ
divy {Vy®} = 47GM  where (8.14)
55+ IVaIP = 5+ v = o,

where Z is some scalar field. So, finally

curlyv =0 and

&+ Vi (3|v[?) = —Vx®  where (8.15)

divy {Vx®} = 47GM .

On the other hand, we remind that the motion of the particle with the mass m and the charge o in
the gravitational and electromagnetical fields is governed, in the non-relativistic case by equations

(5.15) so that

dzz 0 0 0 0 0 0 9 dz 0 0 o
mm(x y=m <axov (2%,2(2°)) + Vx (; v (2%, 2(2"))| > - @(z ) x curlyv (2%, z(x )))
+o (E (2°,2(2°)) + %(xo) x B (aso,z(xo))) . (8.16)

Thus, inserting (8.15) into (8.16) gives that in the coordinate system, which is cartesian and inertial

simultaneously, we have

d*z 0 0 0 0 0 dz  , 0 0
mm(x )= -—mVyx® (m ,z(x )) +0o (E (x ,z(z )) + w(m )x B (m ,z(w ))) , (8.17)
where @ is given by
divy {Vx®} = 47GM . (8.18)

However, (8.17) with (8.18) is obviously exactly the case of the classical Newtonian Gravity! Thus, in
the non-relativistic approximation and in the case of quasistationery gravitational field, the Newto-
nian gravity is indeed a valid approximation of (6.52), provided we deal with the coordinate system,
which is cartesian and inertial simultaneously.

Similarly, if we do not assume anymore that our cartesian coordinate system is inertial, then in
the non-relativistic approximation and in the case of quasistationery gravitational field, by (8.8) we
approximate (8.2) as:
curlyH = 47j + %
divy D = 47p
curlyE + % =0

(8.19)
divy, B=0
2
<;> (dive v) + v - Vi (divye v) + L |dyv + {dxv}T‘ ) = —4nrG M

curly(curlyv) = 0,
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where D, B, E, H are given by (6.8), so that:

B = curiA

D:—VX\IJ—%—&—VXCUHXA
(8.20)
E=-V,V¥ - BIO =D-vxB

H=curlyA +v x (—Vx\I/—%—f—vxcurle) =B+vxD.

9 Polarization and magnetization

It is well known from Tensor Analysis that if {Y™"},, ,=0,1,2.3 is the antisymmetric two-times con-
travariant tensor and if { K™"},,, ,—0,1,2,3 is a contravariant pseudo-metrics, then the four-component

field (70,71,72,73) defined by

1
3 mi axJ (|det ({KP9} ) g=0,1,2,3)] 2)

- 1
=0 =0 |det ({qu}p’q:071,2,3)| 2

3
:Z |d t {K }1 )| 1 aa {|det ({qu}pq 071,273)| %Smj} Vm:05172737 (91)
7=0 € pa p,q=0,1,2,3 2

is a valid contravariant four-vector.

Lemma 9.1. Consider an arbitrary moving point with four dimensional trajectory
2(s) = (2°(s), 21 (s), 2%(s), 2%(s)) : [a,b] — R*. Moreover, assume that the infinite trajectory of the
motion z(s) is considered for all instances of time from —oo to +00 so that

3

lim z_: ((zj(s))2) = lim zi: ((zj(s))z) =+00. (9.2)

s—a

Neat consider a point charge o with four dimensional trajectory x(s) = (x°(s), x*(s), x%(s), x*(s)) :
[a,b] — R*, parameterized by the some proper parameter s € [a,b]. Moreover, assume that the
infinite trajectory of the motion x(s) is considered for all instances of time from —oo to +00 so that
for every T € [0,1] we have

3 3

lim Z ((ij(s) +(1- T)zj(s))2) = lim Z ((ij(s) +(1- T)zj(s))2> =+00. (9.3)
sS—a— &
i=o =0
If we define the antisymmetric two-times contravariant tensor { Y7}, n=0.1,2.3 by:
b1
[/
0

a

N

T (20, 2t 2%, 2%) = ‘det ({qu (xo’xl’an’xg) p,q=0,1,2 3

() = 26 (P9 + (1= 1% 9)) = (000 = o) (0 + (1= 1))

}(5 (2% = (7X°(s) + (1 = 71)2°(s)) ..., 2° — (Tx°(s) + (1 = 7)2%(s))) ) drds. (9.4)
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Then, we have

3 1

=0 ‘det ({qu}p,q=o¢1y2v3>’

_ ({;% {‘det ({qu}(p,q)g) ’7% Tgm} -

1
2
b

: /O‘ d;(: ()0 (2° = X°(s),...,2° = x*(s)) ds

‘det ({qu}p,q:ogg,g)

a
b

E/Ud;—:(s)é(mofzo(s),...,x:;7,23(5)) ds, (9.5)

a

- ‘det <{qu}p,q=0,l,2,3>

in the sense of distributions.

Definition 9.1. Consider an arbitrary moving point with four dimensional trajectory z(s) =
(2°(s), 2% (s), 2%(s), 2%(s)) : [a, b] — R*. Moreover, assume that the infinite trajectory of the motion
z(s) is considered for all instances of time from —oo to +00 so that

3 3
lim Z ((zj(s))2) = lim Z ((zj(s))z) =400. (9.6)

s—a~ £

Next consider a totally neutral system of N point charges 01,09, ...,0nN satisfying

N
> on =0, (9.7)
k=1

with four dimensional trajectory of the k-th particle xx(s) = (X2(s), x4 (5), X2(s), x3(s)) : [a,b] — R*
Vk=1,2,... N, parameterized by the same proper parameter s € [a,b]. Moreover, assume that the
infinite trajectory of the motion xx(s) is considered for all instances of time from —oo to 400 so

that for every 7 € [0, 1] we have

s—a~ £ s—bt
Jj=0

lim 23: ((Txi(s)—i-(l—r)zj(s))Q) = lim 2 ((Txi(s)—i—(l—r)zj(s))Q) = 400
§=0
Vk=1,2,...,N. (9.8)

Then define the antisymmetric two-times contravariant tensor {Y™"},, ,—01,2,3 by:

N
T (20 2t 22, 2®) = Z ‘det ({qu (wo,xl,xQ, :CS)}p’q:O’LQ’B)
k=1

() = (6 (k) + (1= % 9) = () - o) (7 RE ) + (-0 0)

}6 (2° = (rxp(s) + (L = 1)2°(s)) ..., 2% — (Txi(s) + (1 — 7)2°(s))) ) drds, (9.9)

so that
T (20, 2t 22, 2?) = Z T (20, 2t 2, 7). (9.10)



Then by Lemma 9.1 we have

3 1

n=0 ‘det ({qu}p,q:0=172’3)’
N 3

>3 e o (7 )| T =

k=1n=0"|det ({qu}p,q:0,1,2,3>

g {0 (1)) 1) -

b
3 dym
/cr;C ;Z“ (s)d (xo — X%(s), R Xz(s)) ds

a

. b N m
— |det ({K"}, —01.23 : ng dz—(s) § (2% —20s),...,2° — 2%(s)) ds. (9.11)
ds

k=1

N
Z ‘det ({qu}p,q:O,l72,3>
k=1

Therefore, by inserting (9.7) into (9.11) we deduce

3

S

n=0 ’det ({qu}p,q:() 1,2,3

N
3 ‘det ({qu}pyq:ovlyzyg)
k=1

b

3 dy™ o
/Uk c)li: (8)5(:100—)(2(3)7...@3 —Xi(s)) ds = j™, (9.12)

a

in the sense of distributions, where the contravariant four-vector of the charge current (5°, 1, 52, 53)

is given as in (3.16).

Definition 9.2. Consider a totally neutral system of N point charges 01,09, ...,0xN satisfying

N
> ow =0, (9.13)
k=1

with four dimensional trajectory of the k-th particle xx(s) = (x2(s), x%(s), x2(s), x3(s)) : [a,b] — R*
Vk =1,2,... N, parameterized by the same proper parameter s € [a,b]. We define the multipole
momentum D(s) = (D°(s), D*(s), D*(s), D*(s)) : [a,b] — R* of this system by:

N N
DI(s):= > onxi(s) = on (Xi(s) - zj(s)) Vi=0,1,2,3 Vs€[a,bl, (9.14)

k=1 k=1
where z(s) = (2°(s), 2'(s), 2%(s), 23(s)) : [a,b] — R* is a four-dimensional trajectory of an arbitrary

moving point.

Definition 9.3. Consider an arbitrary moving point with four dimensional trajectory z(s) =
(2°(s), 2% (s), 2%(s),2%(s)) : [a,b] — R*. Moreover, consider a totally neutral system of N point

charges 01,09, ...,0n (possibly with infinitesimally large absolute values) satisfying

N
> ok =0, (9.15)
k=1
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with four dimensional trajectory of the k-th particle,
xi(s) = (2°(s) + 10(s), 2" (s) + Ui(s), 2°(s) + 15(s),2°(s) + [}(s)) : [a, 0] = R*  Vk=1,2,...N,

parameterized by the same proper parameter s € [a, b], and such that yj(s) is infinitesimally close
to z(s) for every s € [a,b] and every k = 1,2,...,N, so that [](s) is infinitesimally small for all
7 =0,1,2,3 and all £k = 1,2,... N. In particular this system of charges could be a dipole or the
limiting cases of the totally neutral polarized molecule. Then we define the infinitesimal multipole
momentum D (z(s)) = (D (z(s)), D* (2(s)) , D? (2(s)) , D? (2(s))) : [a,b] — R* of this system, with

respect to the center z(s), as follows:
. N . . . N .
DI (2(s)) := Zak ({zﬂ + ch} (s) — 2 (3)) = Zakli(s) Vji=0,1,2,3  Vs€][a,b]. (9.16)
k=1 k=1
Although in this definition li(s) is assumed to be infinitesimally small and oy is allowed to be

infinitesimally large, the quantity D7(s) in (9.16) is always assumed to be finite.

Remark 9.1. Obviously, the infinitesimal multipole momentum, defined by (9.16) is a valid con-
travariant four-vector at the point z(s). Indeed since, l{c(s) is infinitesimally small, then under the
change of the coordinate system given by a smooth non-degenerate invertible transformation from

R* onto R*, having the form

(9.17)

we obviously have

N

DY () = EN:gk ({z7 +1i) =27) = o (5O (Lt 2+ 8) = 19 ()

k=1 k=1

N 3 . 3 .
— Z Ok < of9 (2) lZ) = Z o1 () D" (2) Vi =0,1,2,3. (9.18)

oz" oz
n=0

n=0

Definition 9.4. Consider an arbitrary moving point with four dimensional trajectory z(s) =
(2°(s), 21 (s), 2%(s), 2%(s)) : [a,b] — R*. Moreover, assume that the infinite trajectory of the motion
z(s) is considered for all instances of time from —oo to 400 so that

lim i ((zj(s))Q) = lim y ((z](s))Q) = +00. (9.19)

s—a— 4 s—bt 4
Jj=0

Next, given an infinitesimal multipole at the point z(s) with the infinitesimal multipole momen-
tum D (2(s)) = (P (2(s)), D (2(s)) , D? (2(s)) , D3 (2(s))) : [a,b] — R?*, define the two-times con-

travariant antisymmetric tensor field of polarization-magnetization of this infinitesimal multipole
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{Pmn}n,m:071,2,3 by:

b
=" "

Pttt o) = [ {Dm (=(5) T () = D" (2()) T ()

a

} ‘det ({qu (Zk(s))}p,q:0,1,2,3)

Nl

§ (2% = 2°%s),...,2° — 2%(s)) ds
VYm,n=20,1,2,3 V(2 2t 2% %) e RY. (9.20)

Remark 9.2. Consider an arbitrary moving point with four dimensional trajectory
2(s) = (2%(s), 2'(s),2%(s), 2%(s)) : [a,b] — R*. Moreover, consider a totally neutral system of N

point charges o1, 09,...,0n (possibly with infinitesimally large absolute values) satisfying

N
> ok =0, (9.21)
k=1
with four dimensional trajectory of the k-th particle,
Xk(s) = (zo(s) +19(s), 21 (s) + 11 (s), 22(s) + 12(s), 23(s) + lz(s)) :la,b] — R? Vk=1,2,...N,

parameterized by the same proper parameter s € [a, b], and such that xx(s) is infinitesimally close
to z(s) for every s € [a,b] and every k = 1,2,..., N, so that li(s) is infinitesimally small for all
j=0,1,2,3 and all kK = 1,2,...N. Then, since l{c(s) is infinitesimally small, by (9.9), (9.16) and
(9.20) we deduce

T (20 2t 22 2®) — P™(a0, 2t 2%, 2%) Vm,n=20,1,2,3 V(20 2t 2% 2%) e R, (9.22)

Therefore, by (9.22) we can rewrite (9.12) as:

3

1 0 -3 '
Z ~3 Oan {‘det ({qu}p,QZO,LZ,S)‘ P L} =", (9.23)
=0 ‘det ({ qu}p,q:(),l,g,g)’

where (5°, 51, j2, 73) is the contravariant four-vector of the charge current, created by the infinitesimal

multipole.

Definition 9.5. Given a union of finite number of infinitesimal multipoles, we define the two-times
contravariant antisymmetric tensor field of polarization-magnetization {P™"} ., . of this union

as a sum of polarizations of every infinitesimal multipole in the union. Then, by (9.23) we have

2 1

! 8 2 mn -m
Z ~% 9 {‘det ({qu}p7q:0,1,273)‘ P } =Jp > (9.24)
e ‘det ({qu}p»qzo,l,zs)‘

where (57, j5, 2, j5) is the contravariant four-vector of the charge current of polarization, created by

the union of infinitesimal multipoles.
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Next, given a moving dielectric and para/dia-magnetic continuum medium, by (2.115) we have

the following Maxwell Equations:

3 3 3
jz:% B (Z Z |det {KP9}, g—0,1,2,3] 2 K"K’ (83@’" _ W))

m=0n=0

_1 . .
= —47 |det {qu}p7q:071,273| 2 (]k —|—j§) Vk=0,1,2,3, (9.25)

where ( jg, j; , jg, j;f ) is the contravariant four-vector of the charge current of polarization-magnetization,
created by the dielectric and para/dia-magnetic medium (this medium can be represented as the
union of infinitesimal multipoles) and (5°, 51, 52, %) is the contravariant four-vector of the free (real)
charge current. Therefore, by (9.24) and (9.25) we deduce the following Maxwell Equations in the

dielectric medium:

LA
Zam{
7=0

3 3
1 . . (O0A 0A
2 kj km g-jn n m
i <4ﬂ'P + E E K"K (836’" Bm )) }

m=0n=0

= —dr |det {KP%}, 00105 % ¥ VEk=0,1,2,3. (9.26)

Next in the case of the simplest isotropic dielectric and para/dia-magnetic continuum medium we

have
2 A, OA;
mn __ mj gonk Yy
P =SSk (G - )
7=0 5=0
3 3 3 3 -1
+ZZ(7— K) (ZZdeuk ud> (K™u™ub 4 um™u? KF) (gAjk — ZA;> =
k=0 j=0 k=0 d=0 T z
2 9A,  OA;
m, nk J
>3 nmik (G- 2 )
7=035=0
b~ ' ; - 0A 0A;
—i—ZZ (ZZdeu u) (unKm]_umKnj)Uk<8;_8’z> VYm,n=0,1,2,3.
T T
k=0 j=0 k=0 d=0

(9.27)

where v and k are scalar fields and (u',u?,u®,u?) is the contravariant four-vector field of velocities

of the moving dielectric continuum medium. In other words,

3 3 3 3
_ , 0A 0A 0A
kj _ jm r-kn n km~j ~ m pin n m
P ;;HK K (833’” axn) mzz_: (KFmaan + abam K )(axm 837")
3 3 3 3
_ gm r-kn no_ Jjckm _ ~kpogmy ~n n m
_;;HK K <8xm ‘9$">+mZo,;) (W K a*KI™) @ <8xm 890")

Vk,j7=0,1,2,3. (9.28)
where we denote

w; Vj=0,1,2,3. (9.29)

<g}
<
Il
-~
(]
M-
=
=
Q.
N
N
~
e

k=0 d=0



Thus, inserting (9.28) into (9.26) implies

3.9 3 3 1
Z ay{ Z Z |det { K9}, g=0,1,2,3] 2 <

7=0 m=0n=0

Ar(y — K) _p - ) ( b ATy —K) ) (aAn (9Am)
1 4 Kkm TN Y sk ~m Kin FANT T V) ~j~n Yan  Uam
(1+ m)( Vi At dzm  Dan
= —dr |det {KP T}, gm0128] 2 j¥  VE=0,1,2,3. (9.30)

s a4y

(Note here that the normalized quantity (g, @1, U2, @3) is the same as the four-speed on the usual

Theory of Relativity).

9.1 Polarization and magnetization in a cartesian coordinate system

Consider the simplified model of the gravity, ruled by the Lagrangian in (2.219), (2.220) and con-
sider we deal with a cartesian coordinate system. Then, {K"™"},, m=01,23 is given by (4.29) and

{Kmn}n,m=01,23 is given by (4.30), so that
K% =1
Kim — —Ojm + viu™ V1< j,m<3 (9.31)

KY =K% =93 V1<j<3,

KOQ =1- |V|2
Kjm = =8jm V1< jm<3 (9-32)
K()j:Kj():Uj Vlé]ég,
where we denote
(W, v, 02 03) == (1,v) with v= (v 0% 0%) e R®. (9.33)
Furthermore, consider {A™"},, 1,=0.1,2.3 as
A =" — KM Vm,n=20,1,2,3. (9.34)
Then, by (9.31) {A™"},, m=01,2,3 is given by
A% =0
N = 8 V1< ym <3 (0.35)
AY =A0=0 VI<j<3.

Next, let {Finn }n,m=01,2,3 be an anti-symmetric two-times covariant tensor, defined by

By, o 04 04w

dxm OxJ

¥Ym,j=0,1,2,3. (9.36)
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Then, denoting
(20, 21 22, 2%) = (29, %) where x = (', 2%, 2%) € R?, (9.37)
(Ag, A1, Az, A3) = (¥, —A) where Ay =V and (A;, As, A3) = —A, (9.38)
B := (B, Ba, B3) := curliA,

E = (E17E27E3) = _Vx\p _ OA

Ox9

(9.39)
DO .= (D! D DY) :=E + v x B,
HO .= (H? HY H") =B+vxD® =B+vx (E+vxB),
and
3 3 3 3
, . 0A 0A;
mn ,__ m nk . _ m, nk k _ J _
F ._ZZK iK ij_ZZK I (aﬂ, axk> Vm,n=0,1,2,3, (9.40)
k=0 j=0 k=0 j=0
by Lemma 4.1 we have
Foo =0
Foj=-Fjo=E; Vj=123
F;=0 Vj=1,23
7 (9.41)
Fip = —F5 = —Bs
Fi3=—F35 = B>
Fy3 = —F30 = —By,
and
FO =0
F% = -Fi'= DO vj=123,
Fil—0 Vj=1,2,3,
(9.42)

) ) 0

Fl - 7F 1 - 7Hr(3 )
0

E'13 — l;31 — H( )

F23 — _F32 — _Hl(O) .

Next, given a moving dielectric and para/dia-magnetic medium, represented by a system of Ny

infinitesimal multipoles at the points
2,(2%) =1 (21(2%), z1(2%), 22(2%), 23 (2%)) = (2°,2,(2")) where
2 (2°) == (2(2°), 22 (2°), 20 (2°)) € R? Vk=1,2,...,No, (9.43)

parameterized by the first coordinate zg(zo) := 20 with the infinitesimal multipole momentum

Dy, (2(2%)) : (—00, +00) = R*, given by

Dy, (Zk(ZO)) = (Dg (Zk(zo)) Dy, (Zk(zo)) ,Dj; (Zk(ZO)) , D} (Zk(zo))) = (07d(20))
where  d(z°) := (D} (2(2")) . D} (2k(2%)) , D, (21(2°))) € R? Vk=1,2,...,No, (9.44)
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where obviously we have D (zk(zo)) = 0, consider the two-times contravariant antisymmetric tensor

{P™"}, m=0,1,2,3, given by Definition 9.5 together with (9.20), so that we have

Ny T n .
Pttt =3 [ {DZ’ (4(22)) T (20) — D ((2")) 2 (20)

}5 (aco — zg(zo),xl — z,i(zo), z? — zi(zo),m‘n’ — z,%(zo)) dz°

No n Lm
=3 {D:ﬁ (%) B (20) D (1 (a)) S <x°>} 5 (ot — 2h%), 07 — R(a%),2° — 2Ha?))
k=1

VYm,n=0,1,2,3 V(20 2t 2% 23) e R, (9.45)

Thus, by (9.24) we have

Ly 2 (9.46)
n=0
In particular, by (9.45) we have
PO (20 2t 22 2B ZDk 2,(2%)) 6 (2! — z4(20), 2% — 27 (2°),2° — 2}(a?))

VYn=0,1,2,3 V(20 2t 2?23 e RY. (9.47)
Thus, considering P := (P, P2, P3) € R® and M := (M, My, M3) € R?, defined by

P =0
POj:_PJO:_Pj Vj:1,2,37
Pii = Vi=1,2,3,
(9.48)
P2 = _p2 = )

P13 — 7P31 — ]\/[2

P2 — _p32 —
by (9.47) and (9.45) we have
Pz 2!, 2% 2? de 21(2%)) 6 (z' = 25(20), 2% — 27 (2”),2° — 2} (a?))
VYm,n=0,1,2,3 V(22,2 2% %) e RY,  (9.49)
and
M(azo,xl,xz,x?’) = —(zo) x dp, (zk(zo)) ) (1’1 - z,i(xo),xQ - zﬁ(xo),IS - zi(xo))

VYm,n=0,1,2,3 V(2% xt 2?23 e R*. (9.50)
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On the other hand by (9.48) and (9.46) we have

opPon

divia P==>  —— =—j) = —p,, (9.51)
— Ox p
and
opP, OM3 5‘P10 6‘P1” 1
820 <8332 - oa® > — ax" ~ e (9.52)
0P, oM, 8M3 P20 8P2” 9
w — 81,3 — = 76‘%77, = ]p7 (9.53)
=1
OP; <5‘M2 5‘M1> 5‘P30 3P3” 3
Ofy (2% oM - e (9.54)
0x0 — ax P
so that
divy P =—p
g (9.55)

gP curlyM = j, .

where as before, we denote (2%, 2%, 22, %) 1= (2, x) with x := (2!, 2%, 2%) € R? and (jp,]p,jp,jp)
(pp»dp) With j, := (4.2, 75) € R3. However, by (9.40) and (9.31) we rewrite (9.25) as

3 aF’w

M

=—dm (j*+4F)  Vk=0,1,2,3, (9.56)
7=0

where F™" is given by (9.42) and (5°, 51,42, 43) := (p,j) is the contravariant four vector of the free
(real) charge current with j := (j!,52,5%) € R3. Therefore, similarly to that we get in (9.55) we
rewrite (9.56) as

div, DO =47 (p+ pp)

. (9.57)
curl, H®) = 47 (j +j,) + 8Dz(0> )
where by (9.39) we have
DO = E +v x B,
(9.58)
HY =B+vxD®=B+vx(E+vxB).
Thus, by (9.55) we rewrite (9.57) as
divx (DO 4 47P) = 47 p
(9.59)
curly (HO) +47M) = 4rj + 525 (D + 47P) .
Therefore, denoting;:
D: =D +47P =E + v x B + 47P
(9.60)

H:=HO? +4tM =B +v x (E+v x B) +47M,
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we rewrite (9.59) or equivalently (9.26) in the cartesian coordinate system as:

divy D = 4mp

curlyH = 47j + g%

(9.61)
curlyE + % =0

divy, B=0,

where D is the electric displacement field and H is an auxiliary magnetic field in the dielectric

medium, given by

D:=E-+vxB-+47P
(9.62)

H=B+vx((E+vxB)+4rM.

Next consider two-times contravariant tensor {G™"},, n=0,1,2,3 defined by:

s L4y

3 3 3
G™" = Z Z (iju"uk + umqu”k) Fj, = Z (u"Km’j — umK"j) uijk
k=0;=0 k=0 j=0

Ym,n=0,1,2,3, (9.63)

where (u',u?, u® u*) is the contravariant four-vector field of velocities of the moving dielectric con-

tinuum medium and we have
(u?, ut, u? u?) == (1,u) with u:= (uh,u? u?) € RE. (9.64)

In particular, since the tensor {G™"}y, n=01,23 Is antisymmetric, i.e. G™ = -G Vm,n =

0,1,2,3, then we have

G =0
G =0 Ym=1,23,
(9.65)
GOm — _GmO
G =-G" Vm#*n=123.
Next by (9.34), since {Fjx};k=01,2,3 Is an antisymmetric matrix, we rewrite (9.63) as:
3 3 3 3
67 = 33 (T — )~ — ) i = — 33 (A A
k=0 j=0 k=0 j=0
3 3 3
+ Z (u"vva — umv"vj) uijk =— Z Z (u"AmJ — umA"]) uijk
k=0 j=0 k=0 j=0
3.3 3 3 ' _

+ (un,um - umvn) Z ZUJUijk — (unAm] o umAnJ) Uijk

§=0 k=0 k=0 j=0

3 3 3 3
JrZZ(u"(vm—um)—um(v”fu”)) ZZ(vjfuj)uijk VYm,n=0,1,2,3. (9.66)



So,

3 3
G™" = — Z Z (u”Amj — umA”j) uijk
k=0 j=0
3 3
+ (W (u™ —0™) —u" (" — ")) Z Z(UJ — o)) uP Fyy, Vm,n=0,1,2,3. (9.67)

Next consider two-times contravariant tensor {G™"},, n—0.1.2,3 defined by:

3 3 3 3
_ Gnm — Z Z (AnLjunuk + unLujAnk) ij — Z Z (unAmj _ u?rLAnj) Uijk
k=0 j=0 k=0 j=0
VYm,n=0,1,2,3. (9.68)
In particular, since the tensor {G‘m"}m,n:o,mﬁ is antisymmetric, i.e. Gmn = —Gnm Vm,n =

0,1,2,3, then we have

G =0
Gmm =0 Ym=1,2,3,
(9.69)
éOm — _GmO
G = —G" Ym#£n=1,2,3.
On the other hand, by (9.67) and (9.68) together we deduce:
G™ =G™ 4+ (W (u™ —v™) —u"(u" — ™)) ZZ(UJ — o)) uF Fyy, VYm,n =0,1,2,3.
§=0 k=0
(9.70)
In particular, in the case we have
w-v*<1, (9.71)

by (9.70), using (9.33) and (9.64), we rewrite (9.63) as

3 3 -1 3 3 3 3 -1
<Z Z Kig uk ud) Qmn — Z Z (Z Z Kpqu" ud) (unij _ umKnj) uijk
k=0 d=0 k=0j=0 \r=0d=0
3 3
~ G = — Z Z (u”Amj - umA"j) uijk
k=0 j=0

Vm,n=0,1,2,3. (9.72)
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Next we rewrite (9.68) as

—Gm =N (WA = u A ) uF Fy =Y (ut A — w™ A (FJO + Zuij’“>

k=0 j=0 3=0 k=1

3 3 3
= (u"A™O — M AT0) (Foo +y ’U,kFok> + 37 (A — A (FjO +y uijk>
k=1 j=1 k=1
3 3
_ (unAmO _ umAnO) (Z ukFOk> + Z nAm] mAnj) FjO

k=1 j=1

3 3
+ ) (utA™ —u A (Z uFF ) Vm,n=0,1,2,3. (9.73)
j=1

k=1

So, by (9.35) and (9.73) we deduce

GmO _ _éOn —

3 3 3 3
(um AP — A™0) <Z ukF0k> + Z (u"A% — A™) Fjo + Z (u™A% — A™) <Z uijk> =
k=1 j=1 j=1 k=1
3 3 3 3 3
- Z5nijo - Z(Snj <Z uijk) =—Fu — Z uF oy = (En - Z“ank> Vn=1,23.
i=1 j=1 k=1 k=1 k=1

(9.74)
Therefore, by (9.41) and (9.74) we have
G = -G = (B! — u?Fy5 — u’Fi3) = (B* + (u?B; — uBy))
G2 = (E? — u3Fy3 — u' Fyy) = (B2 + (u®By — u'Bs)) (9.75)
G = —G% = (E° —u'Fy —u’F3) = (E° + (u' By — u?By)) .

On the other hand, by (9.35) and (9.73) we obtain
3 3 3
Gm" = Z (u”ém] — umcSnj) Fjo + Z (u"&mj — umén]’) <Z uijk>
j=1 j=1 k=1
3 3
=u"F0—u"F,0+u" (Z ukak> —u™ (Z uank>
k=1 k=1
3 3
S <u" (Em - Zukak> — ™ (E” - Zuank>> Vm,n=1,2,3. (9.76)
k=1

k=1
Thus, considering G := (G1,G2,G3) € R and V := (V1, Va, V3) € R3, defined by
G =0
GY =_GiI°=—-G; Vj=1,2,3,
Gil=0 VYj=1,2,3,
(9.77)
G12 — *GQI — 7‘/3

G13 = G311 = Vs

G23 — _G32 — —Vl ,
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by (9.74), (9.76), (9.75) and (9.72), together with (9.70), we deduce:

3 3 -1
(Z Zdeukud) Gr~E+uxB

k=0d=0

3 3 -1 3 3 -1 (9.78)
(Z Zdeukud> V:(Z Zdeukud> uxG%ux(E—&—uxB),

k=0d=0 k=0d=0
provided, we have (9.71). Next in the case of the simplest isotropic continuum medium we rewrite

(9.27) as

-1
ZZ KK™ K™ Fir + (v (ZZdeu ud> G™  ¥m,n=0,1,2,3, (9.79)

j=0j=0 k=0 d=0

where v ad k are scalar fields. Thus, by (9.48), (9.77) and (9.78), together with (9.79) and (9.42)

we have
Pr(y—k)(E+uxB)+k(E+vxB)
(9.80)
M~ (y—k)ux (E+uxB)+x(B+vx(E+vxB)).
We rewrite (9.81) as
~y7y(E4+uxB)-«& x B
( )= (u—v) s

M~ux(y(E+uxB-—x(u—v)xB))+xkB—-—r(u—v)x (E+vxB).

Thus, by (9.81) we rewrite (9.62) as

1 4y ATk
D~ (1+4 E — — B) =
(1+ ”7)( +<1+4mv+1+4m“ T+ & V>) % )

1+4nk 1+4nk
1+4 E —_ 1—— B .82
( * 7W)< +(1+47Wv+< 1—&-471'7) u)x > (98)

and

47y
1+47r’y 1+4

Hm(1+47r/$)B+(1+47r'y)( u)xE+v><(v><B)—|—47T'yu><(u><B)

—4drkux (u—v)xB)—drk(u—v)x (E+v xB) =
47y 4Tk
v+ u-—
1+ 4y 1+ 4y 1+ 4my

(1+47TK)B—|—(1+47r'y)( (u—v))xE—!—vx(va)

+4myux (uxB) —4drku x (u—v) x B) —4nk(u—v) x (vx B) = (1 4+ 47k)B
1+4nk 1+4mk 1+4mk 1+4nk
1+4 —_— 1—— E 1——— B
1+ 7T’Y)<1+47WV+< 1+47r'y> u)x( +<1+47WV+< 1+47T’}/> u>>< )

— (14 dny) 1+47mv+ 1_1+47m u) x 1+47‘mv+ 1_1+47TI£ ) xB
K 14+ 4ny 1+ 4my 1+ 4ny 144wy

+vXx(vxB)+4rmyux (ux B) —4drku x ((u—v) x B) —4nk(u—v) x (vxB). (9.83)
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Thus, by (9.82) we rewrite (9.83) as:

1+ 4nk 1+ 4nk
H=~ (1+4nk)B _— 1—— D
(1 dme) +<1+MWV+( 1+®w>u>x

1+ 47k 1+47k 1+47k 1+ 47k
— (1 +4m) v+ |l—— ) u] x v+|(l—— ) u| xB
14+ 4ny 1+ 4ny 1+ 4ny 144wy
+vXx(vxB)+4ryux (ux B) —4rkux (u—v) x B) —4dnk(u—v) x (vx B) =
1+ 4nk 1+ 4nk
1+ 47k)B T 1—— D
(b dme) +<1+MWV+( 1+®W>u>x
(14 4my) — (1 4 47k)
14 4wy

+ (14 4nk) (u—v)x (u—v)xB). (9.84)

Therefore, denoting

R 1
Yo = 1+4my

ko = (1 +47k) (9.85)

u:= (’Yolfov + (1 — ")/0/{0) u) = (}Ii:: v + (1 — }ii:z) 11) y
and using (9.71) we rewrite (9.82) and (9.84) as:

E=+D-dxB

H=#xoB+uaxD+#ro(l=10ko)(u—v)x((u-v)xB). (9.86)
In particular, if
ol orol v < 1 (9.57)
we have
E=7vD-uxB s

H=xB+uxD.

Thus, the case of (9.87), by (9.88) we rewrite (9.61), or equivalently we approximate (9.30) in the

cartesian coordinate system as:
dive D = 47p
curlyH = 47j + 37]30

curlyE + % =0

(9.89)
divy, B=0
E =D — (vkov + (1 — ko) u) x B
H = koB + (70k0v + (1 — ko) u) x D,
provided we have
kol |1 = ~orol [u —v|[* < 1. (9.90)
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Moreover, we can rewrite (9.89) as

dive D = 47mp

curly (koB) = 4mj + (%0 — curly (4 x D)

curly (v0D) = — (£5 — curly (i x B))

dive B =0 (9.91)
E=-D—ixB

H=#xB+axD

a:= (yokov + (1 — yoko) 1) .

We call 7 the dielectric permeability of the dielectric medium, we call k¢ the magnetic permeability
of the medium and we call the speed-like vector field 1 € R? the optical displacement of the moving
dielectric medium. Finally, note that the Maxwell Equations in the medium in the form (9.91) agree

with the Fizeau experiment.

10 Detailed proves of the stated Theorems, Propositions and
Lemmas

First of all we would like to remind the definitions of the vectors, covectors and covariant and

contravariant tensors of second order in R*:

Definition 10.1. Let R* be an open domain and let S := S(R*) be the group of all smooth

non-degenerate invertible transformations from R* onto R* having the form

FO) (20

(20, 2t 2%, 23),

= f(

= fO (2% 2t 22, 27),
(

Vs

20zt 2% 2?),

(10.1)

20, 2t 2% 23).

We say that a one-component field a := a(z°, 2t, 2%, 23), defined on R*, is a covariant (contravariant)

scalar field on the group S, if under the coordinate transformation in the group S of the form (10.1)
this field transforms as:
a =a. (10.2)

Next we say that a four-component field (a”, a',a?, a?), defined on R*, is a contravariant four-vector

field on the group S, if under the coordinate transformation in the group S of the form (10.1) every

of four components of this field transforms as:

3 )
Z 8f a*  Vj=0,1,23. (10.3)

k=0
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Next we say that a four-component field (ag, a1, as,as), defined on R*, is a four-covector field on
the group S, if under the coordinate transformation in the group S of the form (10.1) every of four

components of this field transforms as:

afk .
a; = > o a, Vj=0,1,23. (10.4)
=0

Furthermore, we say that a 16-component field {amn }m n=0123, defined on R4, is a two-times
covariant tensor field on the group &, if under the coordinate transformation in the group S of the
form (10.1) every of 16 components of this field transforms as:

3

(k) ()
Z ~of of . VYm,n=0,1,2,3. (10.5)

ox™ (%E"
j=0k

Next we say that a 16-component field {a™"},,, n—0.1,2.3, defined on R, is a two-times contravariant
tensor field on the group S, if under the coordinate transformation in the group S of the form (10.1)
every of 16 components of this field transforms as:
ofm) gfn)
a'mn = ZZ / OF™ ki Vm,n=0,1,2,3. (10.6)

“Ozk Bz
7=0 k=0

Then it is well known that for every two contravariant four-vectors (a’,a', a?,a®) and (b°, b, b2, b3)

on S, the 16-component field {¢™"},, n=0,1,2,3, defined in every coordinate system by
"= amh" VYm,n=0,1,2,3, (10.7)

is a two-times contravariant tensor on S. Moreover, for every two four-covectors (ao7 ai, az, ag) and

(bo, b1,b2,b3) on S, the 16-component field {¢n fm,n=01,2,3, defined in every coordinate system by

Cmn = Amby, VYm,n=0,1,2,3, (10.8)

is a two-times covariant tensor on S. It is also well known that if {a™"},, n=0.1,2,3 is a two times

sLady

contravariant tensor field on the group S and if a 16-component field {bp }m,n=01,2,3 satisfies

3 1 if m=n
> am by, = Vm,n=0,1,2,3, (10.9)

k=0 0 if m#n

then {byn }m,n=0,1,23 is a two-times covariant tensor on S. Next it is well known that, given a four-

covector (ag,ar,as,az) a four-vector (b°,b%, b2, b%), a two-times covariant tensor {Cmn}mn=01,23

and a two-times contravariant tensor {d™"},, n=0.1,2,3 on the group S, the quantities

Zakbk and Z Zcmndm" (10.10)

m=0n=0

are covariant (contravariant) scalars on S, the four-component fields defined by

3 3
amk } d { b’“} 10.11
{ Z @k m=0,1,2,3 an Z Cmk m=0,1,2,3 ( )

k=0 - k=0
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are covariant four-vector and contravariant four-covector on & and moreover, 16-component fields

{émn}m,n:O,l,Q,B’ and {‘inn}m,n:O,l,Q,B defined by

3 3 3 3
emni=3 "N "d™d ey, and  dpn =Y > cmjenrd®  Ym,n=0,1,2,3, (10.12)
k=0j=0 7j=0k=0

are two-times contravariant and two-times covariant tensors on S. Next, it is also well known

that given a two-times covariant tensor {cpn}tm.n=0,1,2,3 and a two-times contravariant tensor

{d™ }1n.n=0,1,2,3 on the group S the 16-component fields {cpm tm n=0,1,2,3 and {d"™ }.n.n=0,1,2,3 are

also two-times covariant and two-times contravariant tensors on S. Finally, it is well known that, if

a:=a(z", 2!, 2%, 23) is a scalar field on the group S, then the four-component field (wq, w1, ws, ws3)
defined by:

wj =5 vj=0,1,2,3, (10.13)
is a four-covector field on the group S.

Proof of Proposition 2.1. By (2.8) we obviously deduce that {A™"},, ,=0.1,2.3 Is a symmetric two-

3Ly

times contravariant tensor field. Next, as in (2.5), by (2.4) we have
3 3 _
Z Kjmv'v™ =1 V (20, 2t 2%, 23) e R%. (10.14)
§=0 m=0
Moreover, by (2.4) we deduce

2

3 3
Zvjwj = ZZ K% wwy | (10.15)

3
=0 j=0 k=0

and thus, by (2.8), (10.15) and (2.4) we have
3 .
> A™Mw; =0 Ym=0,1,2,3. (10.16)
§=0

Next, fix a constant point (z°, 2%, 22, 2%) € R*. Then, since K™"(2°, 2!, 2%, 2®) has one positive and

three negative eigenvalues, by the Sylvester’s law of inertia there exist a coordinate system, that we

now fix, such that at the fixed point (z°, 2!, 2%, 23) we have

K20, 31,22, 2%) = 1
KIm (a0, 2t 22, 2%) = =6 V1< j,m <3 (10.17)
K% (20, 21, 22, 2%) = K99(20, 21, 22,2%) =0 V1<j<3.
Then, we also have
Koo(z%, 2t 22, 23) = 1

Kjm(20 2t 2% 23) = =6;,, V1<jm<3 (10.18)



In particular, by (2.8) and (10.17) we have at the point (2%, 2, 22, 23):

AOO(IO,SCl,I’Z,IS) — (1}0(1’0,1’1,1'2,583))2 -1

AT (20 2t 2% 23) = 8 + 07 (20, 2t 22 23) o™ (20, 2t 2%, 2?) VI <j,m <3 (10.19)
A% (20 2t 2% 2?) = AIO(20, 21, 2% 2) = 00(20, 2t 22, 23)0d (20, 2t 2%, 23) .

Furthermore, by (10.19), (10.14) and (10.18), using Lemma 11.4 from the Appendix, we deduce that

the matrix A™" (2%, 2!, 22, 23) is degenerate and moreover, it has one vanishing and three positive

eigenvalues at the point (20, 2!, 22, 23). Thus, since (2°, 21, 2%, 2%) € R* was chosen arbitrary, this

completes the proof. O
Proof of Proposition 2.2. Consider {K™"},,, n=01,2,3,, given as in (2.17) by

K™ = plg™ — AJ™  Yjim=0,1,2,3. (10.20)

Next, fix a constant point (y°,y*,y?,4%) € R% Then, since A™"(y°, y', 4%, y3) has one vanishing
and three positive eigenvalues, by the Sylvester’s law of inertia there exist a coordinate system, that

we now fix, such that at the fixed point (y°, 3, y?,43) we have
A%yt 2 y%) =0
A0yt 02 %) = i V1< jm <3 (10.21)
AY (Y0t y2y°) = MOyt 2 y?) =0 V1< <3,
Moreover, by (2.15) and by (10.21) in the particular point (y°,4', 2, y*) we must have
wi (vt v% Y =0  Vji=1,23 (10.22)

Then by (10.22) and (2.16) we deduce
0yt g wo (v’ vyt y?) > 0, (10.23)
and in particular, at the point (y°,y',4?%,y3) we must have
(0t Y% y®) #£0. (10.24)

Thus, by (10.20), (10.21) and (10.24), using Lemma 11.5 from the Appendix we deduce that at the
point (y°, 4!, 4%, y3) we have

det ({Kmn(yo,y17y2,y3)}m7n=0,17273) #0, (10.25)

and moreover, the matrix { K™"(y°, y', y%, y*) }o<m,n<3 necessary has one positive and three negative
eigenvalues at the point (y°, 4!, 32, 4%). Thus, since a point (y°, 3, y?,y3) € R* was chosen arbitrary,

we deduce that the tensor field {K™"},, n=0,1,2,3, given by (10.20) indeed forms a contravariant
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pseudo-metrics and a valid generalized-Lorentz’s structure on R*. On the other hand, by (2.15) and

(10.20), at every point (20,2, 22, 23) € R* we have

3 3 3 3
Zijwj =™ Zvjwj —ZAjmwjzvm Zvjwj Ym=0,1,2,3. (10.26)
§=0 j=0 §=0 j=0

Thus, by (10.26) we deduce we also infer

2
3 3 3

Z Z K™ w; | wy, = Zvjwj >0 V(2% 2t 22 23) e RY, (10.27)

m=0 \ j=0 §=0

so, by (10.27) and (2.16) we get

2

3 3 3
Zvjwj = ZZ Kimwjw, | >0 V(20 2t 2? 2) € RY, (10.28)

§=0 §=0 k=0

and moreover, by the Definition 2.3, pseudo-metrics K™ and the time direction (wq, w1, wo, w3) are

weakly correlated. Finally, by (10.28) and (10.26) we deduce

|

3 3 3
SO KIMwu > KM, Vm =0,1,2,3  V(«% 2!, 2% 2% € R*,
=0 k=0 j
(10.29)
This completes the proof. O

Proof of Theorem 2.1. Let

FO) (20

20, 2t 22 23),

(10.30)

0

(
= fW(0 2, 22, %),
(20, 21, 2% 2?),

f(2)

'3 :f(S)(z Il 72 IS)

be the corresponding change of coordinates and assume that in the first coordinate system we have

A =0 V (20,21, 2% 23) e RY
AY =A"=0 Vj=1,23 V(' 2% 2% cR? (10.31)
A = n Vm,n=1,2,3 V(%! 2223 cR*

and

<§;’00, 88;;, 68;:2, gﬂ) (2%, 2%, 2% 2%) = (1,0,0,0) V(2% xt 22 2%) € R:. (10.32)
However, by (10.4) we have

P _~0fM 0
oxI _k ‘ Oz Oz'k

Vj=0,1,2,3, (10.33)
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and by (10.6) we have

afm grm
Amn_E:z:f SN Ymyn=0,1,2,3. (10.34)
== Oxk  OxI

Thus, by (10.32) and (10.33) we have

3
of® dp )
6Oj - o1 O’k Vj=0,1,2,3. (10.35)
k=0
Moreover, by (10.31) and (10.34) we deduce
aftm f(") 5 9Fm) g
mn o B
A ZZ Oxk 6331 A ) vm,n=0,1,2,3. (10.36)

j=1k=1 j=1

In particular, by (10.36) we deduce that the following identity

A/OO =0 v(x/() 'l 2 1‘/3) c R4
AT =A"=0  Vj=1,2,3 V(02" 2 2"?) € R (10.37)
AN =6 Vm,n=1,2,3 V(20 2t 2" 2"3) € RY,

is equivalent to identity:

2

af(O) —0

ozk

e

>
Il
—

VO _y Wj=1,2,3 (10.38)

oxk  ozk T

Mw

=~
Il
—

Mes

S

=
5
S

<~
5

|

Smn VYm,n=1,2,3.

AN
I

A
Q
3
2
Q
g

In other words, (10.37) is equivalent to the following:

af(O) 3f(0) af(O)
oxl v 9z2? 7 9z3

3 S ES
o fr) gl 9f(m) gr(n)
8];"‘ 6fac" = Z fggj ggﬁ = Omn Vm,n =1,2,3.

0

(10.39)

j=1
However, using Corollary 11.1 from the Appendix, we deduce that (10.39) is equivalent to the
following:
2" = ¢(z0)

3 | (10.40)
am =3 Amj(aco) 27 4 2m(20) Ym=1,2,3,

where { A0 (2°) }am=1.23 € R¥*3 is a 3 x 3-matrix, depending on the coordinate z° only (indepen-

dent on x := (z!,2% 2?)), and satisfying

3 3
D Ami(a®) A (@) =D Ajm (%) Ajn (@) = 0 Ymyon=1,2,3 V(" a' 2% 2%) e R,
j=1 j=1

(10.41)
¢(2%) € R is depending on the coordinate z° only (independent on x := (z!,22,2%)) and z(2°) :=

(zl(xo),zQ(xO),z3(mo)) € R? is a three-dimensional vector field, depending on the coordinate z°
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only (independent on x := (2!, 22, 2%)). So, (10.37) is equivalent to (10.40). On the other hand, by
(10.35) the following equality

(&p dp  dp Op

520 91’ 522’ B /3> (2", 2", 2", 2") = (1,0,0,0) V(2,2 22 2®) e R? (10.42)
x x x x

is equivalent to
ofk) af©

Soj = 0 o = = Vj=0,1,23. (10.43)

In other words, (10.42) is equivalent to the following:

2" =2+ ¢, (10.44)

where c is a constant independent on (z°, 2!, 22, 2%) € R?. Finally, by the above, (10.37) and (10.42)
together are equivalent to (10.40) and (10.44) together. In other words, (10.37) and (10.42) together

are equivalent to (2.44). This completes the proof. O

Proof of Theorem 2.2. Let

FO) (20

20,2t 2?23,

(

(1)(,.0 3
f@)im Eakakas (10.45)
=f

'3 :f(S)(z xl 72 IS)

20,2t 22 23),

be the corresponding change of coordinates and assume that in the first coordinate system we have
K% =1 V (20,2, 2% 23) € RY
KV =K%=0 V;j=1,23 V(22! 22 2% cR? (10.46)

Kim = —§;, Vim=123 V(2% 2t 22, 23) € R*,

A9 =0 V(! 22 2% eR?
AY =A0=0 Vj=1,2,3 V(202" 22 2% eR? (10.47)

A = n Vm,n=1,2,3 V(20 21, 2% 2®) € R?
and

(%v?ﬁaéﬁi,%) ($ 1-1 ;Uz @ ): (1,0,0,0) V(l’o :L'l 22 oz )ER4 (1048)

In particular, denoting a two-times contravariant tensor {=™"},, ,=0.1,2,3, defined by
EMn = K™ 4 A Ym,n=0,1,2,3 V(2% 2" 2% 2% e R?, (10.49)
by (10.46) and (10.47) we have
20 =1 V(2% 2! 22 2% e R?
20 =20=0 Vj=1,2,3 V(! 22 13) e R (10.50)

=im .— Vim=1,2,3 V(20 2t 22, 23) e R,
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However, by (10.6) we have

3 3 (m) (n) )
Elmnzzza‘f 8f - Ek] Vm,n:0717273'

ozk  OxI
=0 k=0

Thus, by (10.51) and (10.50) we deduce:

afm g
= 5920 520 Ym,n=20,1,2,3.

=/mn

In particular, by (10.52) we deduce that the following identity

/00 .
=9 — 1 \7(1,/07 1,11’ I'Q, :17/3) c R4

—/0j =50

=09 _ =1i0 _ V(20,2 22, 23) € R

=M =0 VYm,n=12,3 V(20 2"t 2" 23) € RY,

is equivalent to identity:

0x0

m)\ 2
(af( )) -0 VYm=1,23

(m) (n)
U =0 Vm,n=1,23

oz 9z0 T

(4) (0) .
Moy Vi=1,23

0\ 2
(88fm0> =1.

In other words, (10.53) is equivalent to the following:

o o Ym=1,2,3

0z0
02
(8510 ) =1.

On the other hand, using Theorem 2.1 we deduce that

A/OO =0 V(I/O, :L”l, J312’ 1:/3) c R4
AT =A"=0  Vj=1,2,3 V(2" 2% 2"?) € R
AN = 6n Vm,n=1,2,3 V(20 2t 2" 2") € RY,

and

ax/O’ Ozt ’ 8:8'2) axls

0 0 0 0
( 14 ¥ 14 14 ) (x/07x/1’x/2,$/3) _ (170,070) v(xlo’xll,x/27x/3) cR*

together are equivalent to the following relations:
20 =204 ¢,

3 .
am =3 Amj(xo) 27 4 2m(20) Ym=1,2,3,
=1

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)

(10.58)

where {40 (2°) }rm=1,23 € R3*3 is a 3 x 3-matrix, depending on the coordinate z° only (indepen-

dent on x := (z!, 2% 2?)), and satisfying

ZAmj(xo)Anj(xO) = ZAjm(xO)Ajn(xo) = Omn VYm,n=1,2,3 V(20 2t 2%, 2%) e R,
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c € Ris a constant (independent on (z°, z*, 2%, 2%) € R*) and z(2°) := (2! (2°), 22(20), 23(2?)) € R®
is a three-dimensional vector field, depending on the coordinate x° only (independent on x :=
(x1, 2%, 23)). Therefore, inserting (10.55) into (10.58) we deduce that, (10.53), (10.56) and (10.57)
together are equivalent to (10.58), where A,,; and 2™ are constants (independent on z°). So, we

deduced that
K% =1 V(20 2"t 22, 2%) e R*
K% =K7"=0 Vvj=1,23 V(@° 2" 272 2% cR? (10.60)
K™= =6, Vjim=123 V(@9 22 2%) R,

together with (10.56) and (10.57) are equivalent to the following

20 =2+ ¢°
3 } (10.61)
'™ = 3" Byjz! +c" Ym=1,2,3,

Jj=1
where {Byn }nm=123 € R¥*3 is a constant (independent on (2%, 2!, 22, 2%) € R*) matrix, satisfying

3 3
Zijan = ZB]«,,LB]-” =0mn  Ym,n=1,23, (10.62)

i=1 =1
and (¢, c!,c?, ¢®) € R* is a constant (independent on (20, 2!, 2% 2%) € R*) vector. This completes

the proof. O

Proof of Theorem 2.5. First, by Proposition 2.1 we obviously obtain

3
ZAJ’mwj =0 Vm=0,1,23, (10.63)
7=0
and
3 3 .
DD Tt =1 V(% at2?a%) e R (10.64)
=0 m=0

Thus, by (2.122), using Proposition 2.2, we deduce that {K™"},, n=01,23, given by (2.123), is a
symmetric non-degenerate two-times contravariant tensor field, which forms a contravariant pseudo-

metrics and a valid generalized-Lorentz’s structure on R*. Moreover, by Proposition 2.2 we also

have
SOKMwi =Y vlw; o™ VYm=0,1,2,3  V(a,2',2%2%) € R, (10.65)
j=0 j=0
2
3 3 ‘ 3
ZZ K7™ w;wy, = Zvjwj V(2% xt 22 23) e RY, (10.66)
§=0 k=0 §=0
and therefore,
_1
3 3 ‘ 2 3 ‘
" = ZZ K™ wjwy, Z K™ w;, VYm=0,1,2,3 V (20,2t 2%, 23) € R?,
§=0 k=0 §=0

(10.67)
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So, (v9,v1,v% v3) is a potential of generalized gravity, corresponding to K™" and (wo, w1, wa, w3).
In particular, we have

det ({K™"}mn=0,1,2,3) <0, (10.68)

and there exists the inverse to {K™"},,, n=01,2,3 covariant pseudo-metrics, which satisfies

3 1 if m=n
ZK’"’“K,M = Vm,n=0,1,2,3. (10.69)
0 if m#n

Moreover, again, at every point in R* we also have
3 3
SN Kjmvlv™ =1, (10.70)
j=0 m=0
Next, fix a constant point (2°,z',2% 23) € R%. Then, since {J™"},, n—0,1,2,3 has one positive

and three negative eigenvalues, by the Sylvester’s law of inertia together with (10.64), using Lemma

11.7 from the Appendix, we deduce that there exist a coordinate system, that we now fix, such that

in this coordinate system at the fixed point (z°,x!, 22, 23) we have

JO20 2t 22 23) =1
JIm (20, 2t 2 23) = =8, V1<jm<3 (10.71)
JO (20 2t 22 23) = JI0(a0 2t 2%, 23) =0 V1< <3,
and
(0t r? ) (20, 2t 2%, %) = (1,0,0,0). (10.72)
Then, we also obviously have
Joo(20, 2t 22, 23) = 1
Jjm (2%, 2t 22 23) = 0, V1< jm<3 (10.73)
Joj (20,21, 22, 23) = Jjo(a®, 2t 2% 23) =0 V1 <j<3.
Moreover, by (2.121), (10.71) and (10.72) we deduce that at the fixed point (z°, 2!, 22, 23) we have
A% (20 2t 2% 2%) =0
AT (20, 2t 2? 23) =65, VI<jm <3 (10.74)
A% (20 2t 22 23) = A0 (20, 2t 2% 23) =0 V1< j<3.
On the other hand, by (2.120) and (10.72), in the same coordinate system we deduce
w;(2°, 2, 2% 2%) =0 V1<j<3 and wo(z0, 2t 2%, 2%) > 0. (10.75)

Then, by (10.75) and (2.122) we deduce that

3
wo (2, 2, 2%, )00 (20, 2!, 22, 2%) = Zvj(xo,ml,xz,xg)wj(xo,xl,xQ,xg) >0. (10.76)

=0
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In particular, we have
020 2t 22 23) > 0. (10.77)

Furthermore, using Lemma 11.5 from the Appendix, we deduce that {K,un}m.n=01,23 is given at

the point (20, 2%, 22, 23), in the coordinate system, where (10.74) holds, by the following:

Koo(20, a1, 22, %) = ((”[1))2 _ (I;;\;) (29, 21, 22, 2%)
Kjm (20 2t 2% 23) = =5, V1<jm<3 (10.78)
Ko (20,01, 2%,2%) = Kjo(a®, 2t 2%, 2%) = (%) (a9,2",0%,0%) V1<) <3,
with v := (v!,v?,9?), and moreover, by Lemma 11.5 from the Appendix, we have
det ({K™(a°, 2", 2% 2% }mnc0,1.23) = — (0°)7 (2%, 2,22, 2%) < 0. (10.79)
Thus, by (10.79) we obviously have
(—det ({Kmn}mm=o123)) " (2% 2,22, 2%) = (00)2 (2%, 2!, 2%, %) (10.80)
Therefore, by (10.80) and (10.77) we deduce

(—det ({Kmntmneo.123)) % (2%, 2%, 2%, 2%) = 0 (a°, 2!, 22, %) (10.81)

In particular, by (10.78) and (10.72) we have

3
Z Koj(z% 2t 22, 237 (20, 2t 22, 2%) =
7=0

3
Koo(2°, zt, 22, 2%)r0(20, 2!, 2%, 23) + ZKoj(aco,xl,x27m3)rj(m0,x1, x?, 23)
j=1
1 2 0.1 .2 3
= (00 (1—=1v[?) | (@ 2", 2% 2?)
3 .
and Zij(xO,xl,IQ,x?’)rj(xo,xl,xQ,x3) =
3=0
3 .
Ko(2®, 2, 22, 23)r0(2°, 2, 22, 2°) + Zij(zo,xl,xQ,xS)rJ(xO,xl,zZ,xB) =
§=0

1 m
(1}0 v ) (2% 2! 2% 2%) VI<m <3. (10.82)
Next, if we consider, a covariant four-covector (Sp, S1, 52, 53), defined by:

1
-1 —1
3 3 2

3 3 3
Sm::% ZZijijk ]Z(:)ijrj —% j;)vjwj jZ::Oijvj vOo<m<3,

j=0 k=0
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then by (10.82), (10.73), (10.75), (10.77) and (10.72) we deduce

So(a®, 2,22, 2%) = (10 <(Ui)2 (1—|vP) - 1)) (29, 2", 22, 2%)
1

wov0

and S (20,2t 22, 2®) = ( v’”) (2% 2t 2% 2%) VI <m <3. (10.84)

On the other hand, by (10.78) and (10.73) we have

(KOO — JOO) (:v .’L‘l LL’Q .%‘3) ( v‘%)Q (1 - |V|2) — 1)

(Kjm — Jjm) (2% 2t 2%, 23) =0 VI<jm<3 (10.85)

(Koj — Joj) (2%, 2t 22, 2%) = (K o — Jjo) (20,21, 2%, 23) = 20507 V1 < j <3.

wov9

Thus, by (10.84) and (10.85) we deduce

(Koo — Joo) (2%, 21, 22, 23) = 2(wpSp) (20, 2!, 22, 23)
(Kjm — Jjm) (2% 2t 2%, 23) =0 VI<jm<3
(Koj — Joj) (2%, 2, 2%, 23) = (Kjo — Jjo) (2, 21, 22, 23) = (w0 S;) (20, 21, 22, 23) V1 <j<3.
(10.86)
Therefore, inserting (10.75) into (10.86) we deduce
(Koo — Joo) (2°, 2", 2%, 2%) = 2(woSo) (2°, 2, 22, 2°)
(Kjm — Jjm) (20,21, 2% 2®) = (WjSm +wmS;) Y1<jm<3

(Koj JOJ) (33‘ .131 x? 1‘3) (Kjo — Jjo) (J:O,xl,xQ,x3) = (won + ijO) V1l < 7 <3.
(10.87)

We can rewrite (10.87) in the equivalent form:
Kjm (2% 2, 22, 2%) = Jj (2%, 21, 22, 2%) + (0; S + wimS;) (2%, 2, 22 2%) V0 < j,m < 3. (10.88)

On the other hand, since by (10.71) and (10.75) we have

m=0n=0

3 3
J Z Z Jmnaw, | (20,2t 22, 23) = we(a®, 2, 22, 23) (10.89)

by (10.73), (10.89), (10.76) and (10.81) we deduce:

3 3
(—det ({Jmn}m,n=0,1,2,3)) < > Jm”wmwn)
(

m=0 n=0

(—det ({Hmntmn=0,1,2,3))

Zvjwj 2% 2t 2% %) > 0. (10.90)

Next, since (20,21, 2%, 23) € R* in (10.88) and (10.90) was chosen arbitrary, and moreover since

(10.88) and (10.90) are independent on the coordinate system, we deduce that the inverse to
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{K™"},, n—0.1,2,3 covariant pseudo-metrics is given at every point in R* by the following
ij = (ij+wj5m+wm5j) VOo<jm<3, (10.91)

where the covariant four-covector (Sp, S1,S2,53) is defined by (10.83) and, moreover, we have

3 3
(_det ({Jmn}m7n:0,1,2,3)) ( Z Z Jm”wmwn) 3
m=0n=0 _ I . )
(_ det ({Knm}'rrL,n:0,1,2,3)) jz_%v wJ > 0 ( 09 )

Finally, by (10.66) and (10.92) we deduce

3 3
3 3 (_det ({Jmn}m,n:O,l,Q,S)) < Z Z Jmnwmwn>
K™ wjw,, = m=0n=0 : 10.93
Z_:O —0 ! ' (_det ({Kmn}m,n:O,l,Q,S)) ( )
m=0 j=
O
Proof of Theorem 2.6. As before, we have
_1
3 } 2 3 A
= Z Z J7 w0y, Z T, Vm=0,1,2,3, (10.94)
§=0 k=0 j=0
and
AI™ . e _ gim Vim=0,1,23, (10.95)
so that
3 3 .
Z Z Jjmr?r™ =1 V(2% 2t 22 23) e RY. (10.96)

§=0m=0
Next, consider, an arbitrary covariant four-covector (Sp, S1,S2,S3) such that a two-times covariant
tensor field {K,p tm.n=0,1,2,3, defined by (2.129) satisfies (2.130) at every point in R*. Then, by
(2.130) there exists the inverse to {Kyn fm.n=01,23 two-times contravariant symmetric tensor field
{Kmn}m,n=01,2,3, which satisfies
3 1 if m=n
> K™ Ky = Vm,n=0,1,2,3. (10.97)
k=0 0 if m#n
Next fix a constant point (z°,z1,22,2%) € R%. Then, by (10.96), since {J™"},, n—0.1,2,3 has one
positive and three negative eigenvalues, by the Sylvester’s law of inertia together with (10.96), using
Lemma 11.7 from the Appendix, we deduce that there exist a coordinate system, that we now fix,

such that in this coordinate system at the fixed point (2%, 21, 22, 23) we have

JO(20 2t 22, 23) =1
JIm(20 2t 2%, 2%) = —Gjm V1< jm<3 (10.98)

JO (20 2t 22 23) = JI0(a0 2t 2% 23) =0 V1< <3,

111



and

(0t r? ) (20, 2t 2%, %) = (1,0,0,0). (10.99)
Then, we also obviously have
Joo(20, 2t 22, 23) =1
ij(.TO,xl,l’Q,IES) = 75jm V1 S]am S 3 (10100)
Joj (20,21, 22, 23) = Jio(a®, 2t 2 23) =0 V1 <j<3.
Moreover, by (10.95), (10.98) and (10.99) we deduce that at the fixed point (z°, 2!, 2%, 23) we have
A0 2t 22 23) =0
AjM(xO’gcl?xQ,wS) :5jm V1 S]am < 3 (10101)

A% (20 2t 2% 23) = A0, 2t 2%, 23) =0 V1 <j<3.

w;(2% 2t 2%,2%) =0 V1<;j<3 and wo (2, 2!, 2%, 2%) > 0, (10.102)

and by (10.102) and (10.98) we also have

Z Z Jmrww, | (20,2, 22 23) = wo(a, 2!, 22, 23) . (10.103)

m=0n=0

Next by (10.102), (10.100) and (2.129) we deduce that { K, (2%, 21,22, 2%) }n=0.1,2,3 is given at the
point (20, 2!, 22, 2%), in the coordinate system, where (10.100) and (10.99) holds, by the following:

Koo(z%, 2t 22, 23) = 1 + (2woSo) (20, 21, 2%, 23)
Kjp (20,21, 2%, 23) = =6, V1<jm<3 (10.104)
Ko (2%, 21, 22, 23) = Kjo (2%, 2!, 22, 2%) = (woS;) (2, 21,22, 23) V1< j<3.
We rewrite (10.104) as
Koo(20, 2!, 2%, 23) = 1+ (2woSo + wi[S[?) (20, 1, 2%, 23) — (wd|S|?) (2°, 2!, 2%, 23)
Kim(a® 2t 22 23) = =6, V1 <jm<3 (10.105)
Koj(a® 2! 2%, 2%) = Kjo(2°,2', 2%, 2%) = (wo ;) (2,21, 2%, 2%) V1 <j<3,

where we denote S := (S, S2,S53). Thus, by (10.105) for every (h°, k', h% h?) € R* with h :=
(h',h% h3) € R3, we have

(14 2woSo + wi[SI?) (2%, 2", 2%, 2%)(h")? (’h howoS| ) 2 2t 2% %) . (10.106)
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Thus, if we assume that (1 + 2woSo + w|S|?) (2%, ', 2%, 2®) < 0, then by (10.106) we deduce that

1

the matrix {— K, (2%, 21, 2%, 23)},. n=0,1,2,3 is positively defined, which contradicts to (2.130). On

the other hand, if we assume that (1 + 2woSo + w3|S|?) (2%, 2!, 2%,2%) = 0 then, by (10.106) we
deduce that (h°, ht, h? h3) € R%, defined by

=1
(10.107)
hjZ’U)QSj VISJS?),

1

is an eigenvector of the matrix { K, (2%, 2!, 22, 2%) },1,.n—0.1,2,3, corresponding to the vanishing eigen-

value, and therefore, the matrix { K,,, (2, x*,

0 (2.130). So, (2.130) necessary implies

22, 23) }in.n=0.12.3 is degenerate, which also contradicts

144

(14 2woSo + wi[S[?) (2%, 2", 2%, 2%) > 0. (10.108)

Therefore, by (10.108), using Lemma 11.5 from the Appendix, we deduce that the inverse to

{Kpn (20, 2, 2%, 23) by 0,123 matrix {K™" (2%, 21, 2%, 23)},, n—0,1,2,3 is given by the following

s L4

00,0 .1 .2 .3\ _ 1 0,1 .2 .3
K (l’ y LT, L™, & )* 1+2wOSO+w§\S\2(I y LT, L7, & )

2
im(,.0 .1 .2 .3\ _ wg S8 0,1 ,2 .3 .
K7 (x,x,x7x)_(1+2w00509+$g|8|2>(xVm,x,a:)—éjm Vi<jm<3

. . S. .
K% (20 21 2% 23) = K720, 21, 2%, 2?) = (M)W) (20,2, 2% 2%) V1<j<3,
(10.109)

and moreover, we have
mn -1
<_ det ({K }m,n:O,1,2,3)>

_ (_ det ({Kmn}mwnzomg)) (14 2woSo + w2[SP2) (2°,2%,22,2%) > 0. (10.110)

Then, by (10.110) and (10.109) we infer

00/,.0 .1 ,.2 .3\ _ 1 0,1 ,2 .3
K (x , T, T4 )— (7det({Kmn}mm:o‘l)gys)) (iU , T, x4 )
2
jm (.0 .1 .2 .3\ _ w5 S; Sm 0 .1 .2 .3\ _ 5. .
Ot ) = (i ) 6t o V1< im <3
0j(,0 .1 .2 .3\ _ 7750(,.0 .1 .2 .3\ _ wo S 0.1 ,2 .3 < i<
K (l‘ y LT, X7, T ) K (37 y LT, T, X ) <( det({Kmn}m,”_o,Lz,g))) (.’If N N ) V1 S) s 3.

(10.111)
Thus, by (10.101), (10.99), (10.103) and (10.100) using (10.111) we deduce

Kmn(I07l,1,:E2’ 133) — vm(z(],xl,x27x3)vn(x0, :Z?l,it2,x3) _ Amn(m(),xl,IZ,l‘S)
VYm,n=0,1,2,3, (10.112)

where the contravariant vector field (v°, v, v? v3) is given by

—det ({Jkn}k,nzo,l,z,?))

—det ({Kkn}k,n:0,1,2,3) =0 k=0 j=0

Ym=0,1,2,3. (10.113)
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Moreover, by (10.113), (10.99), (10.101) and (10.102) we obtain

—det ({J'rrm}m,n:O,l,Z?))
—det ({Kmn}m,n:o,Lz,B)

Zvjwj (2% 2!, 2%, 2%) = | wo (2% ', 2%, 2%) > 0. (10.114)

Next, since (20,21, 2% 2%) € R* in (10.112) and (10.114) was chosen arbitrary, and moreover since

(10.112) and the left hand side of (10.114) are independent on the coordinate system, we deduce

that at every point we have
K™ =9™™ — Ay, Ym,n=0,1,2,3. (10.115)

where the contravariant vector field (v°, v, v? v3) is given by (10.113) and moreover, we have

> vw; | >0. (10.116)

Thus we can apply Theorem 2.5 to complete the proof. O

Proof of Proposition 2.3. Differentiating (2.58) in Definition 2.13 gives,

ax/m B
ozn
> dB
Bmn (Z wkﬂ?k> + Z aBmj <Z WET ) z7 —|— — <Z WET ) Wy, Vm,n=20,1,2,3.
k=0 j=0
(10.117)
However, differentiating the identity
B7(s) - B(s) = Idyxs  Vs€ER, (10.118)
gives
dB—! dB
I (s)-B(s)—&—Bil(s)-%(s) =0 Vs e R, (10.119)
that implies,
dB~! dB
b () = =B~ (s) - y —(s)-B7'(s) VseR. (10.120)

S

Therefore, by (2.60) in Definition 2.13 together with (10.120) we deduce:

3

3 3
—Zzwj ({B—l.f}_k(s)> ({B7'},, (5)=0 ¥Ym=0,1,2,3, VseR. (10.121)
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In particular,

iwj ({B*l}jm (s)) - zsjwj ({B*l}jm (0)) ¥Ym=0,1,2,3, VseR.  (10.122)
§=0 j=0

Then, using (10.117) and (10.122), together with (2.60) and (2.61) in Definition 2.13 we deduce:

3 '™ 3 3 oz'm 3 3 i
S 0) 255 1 () 2
3 3 3 5
- Z ij <{B_1}gm (Z wya® ) B (Z wkxk>
m=0j=0 k=0 k=0
33 3 3 4B 3 o (3
+ Z ij <{B_1}]m (Z wkxk>> (Z d;@r (Z wk$k> "+ s <Z wkxk>> Wy,
m=0 j=0 k=0 r—0 k=0 P

=w, Vn=0,1,23. (10.123)

Moreover, by (2.57) and (2.59) in Definition 2.13 we deduce

3 3 3 3 3 3
>3- ar i = 0300 (3 (571,0) ) (Lo, 0))
m=0n=0 m=0n=0 7=0 k=0
3 3
=33 MFwjw, =1 (10.124)
=0 k=0
This completes the proof. O

Proof of Proposition 2.4. By Definition 2.13 we have,

3 3 3
2™ =" B, <Z wk:ck> 2 4 2™ (Z wkxk> VYm=0,1,2,3, (10.125)
k=0

7=0 k=0

where B(s) := {Bm;(5)},, j—0123 R — RY>* and (29(s), 2 (s), 2%(s), 2%(s)) : R — R* satisfy

3 3
Z Z Bij(s S\M*  Ym,n=0,1,2,3, Vs eR, (10.126)
7=0 k=0
5 dB
ij {Bl-d} (s)) =0 Ym=0,1,2,3, Vs € R, (10.127)
=0 7 jm
and
3 3 dz™
S wy ({B*l}jm (5)) “—(s)=0 VseE. (10.128)
m=0 j=0

However, by (2.72) in Proposition 2.3 there exists a constant C' € R such that we have

(;wkx”f) —C+ (éwkm’“> : (10.129)

Thus, by (10.125) and (10.129) we deduce

3 3 3
= Z By (Z wha'® — C) x4 2™ <Z wha'™ — C’) Ym=0,1,2,3, (10.130)
j=0 k=0

k=0
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that we rewrite as:

=3, (St o) -3, (St - 0) < (Yo o)

7=0 7=0 k=0

Ym=0,...,3. (10.131)

Thus, denoting B'(s) := {B},,; :R = R and (2°(s), 2/1(s), 2/%(s), 2%(s)) : R = R4,

}m ,j=0,1,2,3
given by

B'(s)=B™ (s - 0C) (10.132)

dM(s) = =Yoo {B ), (5- ) (s—C)  ¥Ym=0,...3,

by (10.131) we infer

3 3
™ :Z (Z ) g (Zw’ ”“) Ym=0,...,3. (10.133)

7=0 k=0
However, by (10.126) and (10.132) we deduce

3

=2

j=0

Moa

Bl ()Bl(s)M*  ¥Vm,n=0,1,2,3, VseR, (10.134)

E
I
o

Moreover, by (10.132) and (2.70) in Proposition 2.3 we deduce

3 , 3 3
Zw§<{3/1'd£}, (5)>22wjd8 B*l}jm(st) VYm=0,1,2,3, Vs € R,
mm

7=0 m=0 j=0
(10.135)
and
3 3
dZ/’!n
1 _
S (B, ) L)
m=0 j=0
3 3 d 3
~1 k
Z Zwmd— (—Z{B }mk (s—0C)z (s—C))
m=0 5=0 k=0
3 3 3.4
=22 wn (Z (B (5= 0) (s - m)
m=0 j=0 k=0
3 3 3 d:k
+ ZZwm <Z{Bl}mk (s—0C) pi (sC’)) Vs eR. (10.136)
m=0 j=0 k=0
On the other hand, as in (10.120) we have:
-1 B
dg (S—C):—B_I(S—C)-%(S—C)-B_l(S—C) Vs e R. (10.137)
s s
Thus, by (10.135) and (10.137) together, using (10.127) we deduce
2 dB’
Zw; {B’_1 " } (s)] =0 VYm=0,1,2,3, Vs € R. (10.138)
s .
3=0 jm
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Finally, by (10.136) and (10.137) together, using (10.127) and (10.128) we deduce

3 3
3 dz/m
S S ({B’ 9o (s)) “—(s)=0 VseER. (10.139)
m=0 j=0
This completes the proof. O

Lemma 10.1. Given a constant vector (wo, w1y, ws, ws) € R*, satisfying

3
(wo)® = (w))* =1, (10.140)

j=1
assume that that the change of coordinate system (z%, 21,22, 23) — (2'°, 21,22, 23) belongs to the

class PL(wo,wy,ws, ws). Next, as before, let (w0, wy,wh, wh) € R* be defined as
3
w, =Y w; ({B7},,(0)  ¥m=0123 = VscR, (10.141)
3=0

where B(s) = {Bm;(s)},, j—0123 : R = R4 be as in (2.58). Furthermore, consider another

/"1 12 113)

change of coordinate system (z'°, x't, 22, 2'3) — (2", 2”1, 2", 2""3), belonging to the class P L(w{, w}, wh, w}).

Then, the composition of the above two changes of coordinate systems:

0 1 2 3 no 1o 2 13\ __ 0 1 2 .3 0 11 2 13 no 1o 2 13
(x)x 7'r ’x)%(x 7'2: 7'1: 7x )_(x 71‘)3: "r)%('r 71‘ 7'2: 733 )%(x 7'1; 7I 756 )
also belongs to the class PL(wo, w1, wa,w3).

Proof of Lemma 10.1. As before, assume that (wo, w1, w2, w3) € R*, B(s) := {Bm;(s)},, ;20123 °
R — R4X4 and (Zo(s),zl(s),zz(s),z?’(é’)) : R — R* satisfy

3 3
SN MM wjwg, =1, (10.142)

7=0m=0

3 3 _
M™ =35 Buoj () Bur(s)M* ¥m,n=0,1,2,3,  VseR, (10.143)

7=0 k=0
> B
> w; <{B_1'd} (8)> =0 VYm=0,1,23  VseR, (10.144)
=0 S )im
and . s
dz™
. -1 _

n;);wg ({B Yim (8)) 7 (8)=0  VseR. (10.145)

Then, consider

3 3 3
2™ =" B, (Z wk:ck> 4+ 2" <Z wkxk> Vm=0,1,2,3, (10.146)
§=0 k=0 k=0

Furthermore, let (w(,w], w), w}) € R* be defined as

3
W = D W; ({B_l}jm (0)) Vm=0,1,2,3,  Vs€R, (10.147)
7=0
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and assume that B'(s) := {B},;(s)} : R — R¥™* and (2%(s), 21 (s), 2/2(s),2"3(s)) : R —

m,j=0,1,2,3
R* satisfy
3 3 )
M™ =3"N"B(5)Bi(s)M*  ¥Ym,n=0,1,2,3, VseR, (10.148)
j=0 k=0
3 dB/
Zw; {B'l- } (s)] =0 VYm=0,1,2,3, Vs e R, (10.149)
=0 ds jm
and
3 3 dzlm
S 3w ({8, 0) “—(s)=0 VseE. (10.150)
m=0 j=0
Then, consider
3 3 . 3
Z'm = ZB;nj (Z w;cx’k) ¥ + 2™ (Z w;m’k> VYm=0,1,2,3. (10.151)
j=0 k=0 k=0

However by (2.72) in Proposition 2.3 we have

(é%x’k) =C+ (éww’“) : (10.152)

In particular, (2.72) in Proposition 2.3 together with (10.146) in the case 27 = 0, with the help of
(10.147), give us the following:

3

3
X (BT}, 0) w2 (0)=C. (10.153)

m=0 r=0

Therefore, by (10.153) we rewrite (10.152) as:

m=0 m=0r=0

Z wy, '™ = ijxj + Z Z ({B~'},., (0) w2 (0) . (10.154)

Thus, by (10.151), (10.146) and (10.154) we have
3 3 _ 3
z'm = Z By (Z wkxk> xd 4+ 2 (Z wka:k> Ym=0,1,2,3, (10.155)
j=0 k=0 k=0

with B”(s) := {wa(s)} : R — R*** is given by

m,j=0,1,2,3
3
By (s) =Y B, (1) Byi(s)  ¥Ym,j=0,1,2,3 VseR, (10.156)
q=0
and with
3 .
2" () = Z By, (1s) 27 (8) + 2™ (7s) Vm=0,1,2,3 VseR, (10.157)
j=0
where we denote s s
re=s+y > ({B7'},,(0) w2 (0) . (10.158)
d=0r=0
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In particular, by (10.143), (10.148) and (10.156) we deduce

3
=Y Bhi(s)Bl(s)M?*  ¥Ym,n=0,1,2,3, VseR, (10.159)

3
7=0 k=0

Moreover, by (10.156) we have

;wj ({B & }jm <s>> - Zw ({Bl@) B ) (U () B }m>

e o)) ol 20

Ym=0,1,2,3, VseR. (10.160)

Thus, by (2.68) and (2.70) in Proposition 2.3 and (10.144), (10.149), we rewrite (10.160) as

jio“’j < {B a }jm (S)> _

Similarly, by (2.68) and (2.70) in Proposition 2.3 together with (10.145), (10.150), (10.156), (10.149)
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and (10.157), using (10.158) we obtain:

3 3 dz'"m
S w ({871, ) () =

3 3 m
3> ({B’*1 (T‘g)}jm) dfls (r) =0 V¥seR. (10.162)

This completes the proof. O

Lemma 10.2. For every constant vector (wg, w1, ws, ws) € R*, satisfying

3 3
> MIMwjw, =1, (10.163)
j=0 m=0

the classes L((wo,wl,wg,wg), (1,0,0,0)) and L((l,O,O,O)7 (wo,wl,wg,w3)> are not empty. More-
over, for every transformation in L((wo7 wy, we, w3 ), (1,0,0, O)) , the inverse transformation belongs

to L((LO,O,O), (w07w17w2,w3))-
Proof of Lemma 10.2. Follows by Lemma 11.7. O

Corollary 10.1. For every given two fized constant vectors (wo, w1, w2, w3) € R, (w), wy, wh, wh) €
R*, satisfying
3 3 j
20 2am=o M7 wjwn = 1

(10.164)
Z?:O an:O M]mw;w;" =1 ’

the class L((wo, wy, wa, w3), (wh, Wi, wh, wé)) is not empty. Moreover, for every transformation in
L((wo,wl,wg,wg), (wfy, wy, w’z,wé)), the inverse transformation belongs to

L((uwh, wf wh, wh), (wo, wr, wn, ws) )

Lemma 10.3. Assume that the new coordinate system is obtained from some old Pseudo-Lorentzian
system by a Lorentz’s transformation. Then the new coordinate system is also a Pseudo-Lorentzian

system.
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Proof of Lemma 10.5. Consider a ancillary contravariant pseudo-metrics {L™"},, n=0.1,2,3, given in

IR

the old coordinate system by

L% =1
LV =1=0 Vj=123 (10.165)
L™= —§,,  Vijim=123,

Note that in general this metrics can differ from pseudo-metrics {K™"},, n=0,1,2,3- Then, since
the old system is Pseudo-Lorentzian, there exists a covector, which in this system is equal to some
constant (independent on the point (20, 2!, 22, 23) € R*) vector (wq, wy,ws, w3) € R* satisfying

3 3

SN LMwpw; =1, (10.166)

m=0 j=0
and such that in the old system we have
3 3
A™ = LMy (ZLmkwk) (Z L”kwk> Y0 <m,n<3. (10.167)
k=0 k=0
and and at the same time in the old coordinate system we have

Op Op dp 0O
(%’(‘ﬁ’@ﬁ’%) (2% 2, 22, 2%) = (wo, w1, wa, w3) V(20 2t 2 2%) e RY. (10.168)

On the other hand since the new system is obtained from the old one by some Lorentz’s transfor-
mation, that are also necessarily linear, in the new coordinate system we also have
L' =1
L% =[0=0 Vj=1,23 (10.169)
Lim = —§;, Vim=123,
and moreover, the covector (w, w}, wh,w}) € R* also in the new system is equal to some constant

vector in R* (independent on the point (20,2’ 22, 2"%) € R*). Finally, by covariance of (10.166),

(10.167) and (10.168), in the new system obviously we have

3 3
SN mMww; =1, (10.170)

m=0 j=0
3 3
A = (ZL'mkw;> (ZL'”%;) V0 <m,n<3. (10.171)
k=0 k=0

and

(9$/0a ) R 9%’2, 955/?’) (x/07$/1,x/2,x/3) (w(’),w'l,w’g,wé) V(a:'o,xll,xa,xlg) S R4,

Thus, using (10.169), we deduce by (10.170), (10.171) and (10.172) that the new system is also

Pseudo-Lorentzian. O
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Proof of Theorem 2.3. Consider a Pseudo-Lorentzian coordinate system, so that

A% = (wp)? -1 V(2% 2t 2%, 23) € R?
A% = N9 = —wow; Vi=1,23 V(2% 2t 2%, 2%) € R? (10.173)
A = §n + W wy, Vm,n=1,2,3 V(2% 2t 2%, 23) € RY,

and at the same time in the same coordinate system we have

($a§;35§7$> (x(),xlaxzaxs): (w07w1aw27w3) V(SCO,’JZI,:L’Q,IL'g') €R4a (10174)

where (wg, w1, ws, ws) € R* is some constant (independent on the point (2%, 2!, 22, 3) € R*) vector,

satisfying
3

(wo)® = (w;)* =1, (10.175)

j=1
Next again let {L™"},,, n=0.1,2,3 be an ancillary contravariant pseudo-metrics, satisfying
L% =1
LV =[0=0 Vj=1,23 (10.176)
LI™ = —§, Vim=1,2,3,
in the given coordinate system. Then, by Lemma 11.7, there exists a constant non-degenerate

matrix {Amnto<mn<s € R**4, such that det ({Amnto<m,n<s) # 0, and if we consider a matrix

{len}ogm’ngg S R4X4, defined by
3 3 ‘
L =3 Ak An; LY Ym,n=0,1,2,3, (10.177)
=0 k=0
and a vector (w0, w't, w? w) € R*, defined by
' 3
w =" Apwt  Vj=0,1,2,3, (10.178)
k=0
then we have:
L/OO =1
L™ = 8, V1<j,m<3 (10.179)
L' =17=0 Vv1<j<3,

and

(w, w'™, w?,w"™) = (1,0,0,0) . (10.180)

Obviously matrix { A, o<mn<s € R*** represents some Lorentz’s transformation leading to a new

system. However, by (10.173), (10.174) and (10.175) we have
3 3 4
SN LMwpw; =1, (10.181)
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3 3
A = ™ g (ZLmkwk) (ZL"kwk> V0<m,n<3. (10.182)
k=0 k=0

and

(%,gﬁ,gﬁ,%) (xo,ml,xz,x3) = (wo, w1, Wa, w3) V(xo,xl,x2,:ﬂ?’) e RY. (10.183)

Thus, again by a covariance in the new system we also observe:

3 3
SN Mww; =1, (10.184)

m=0 j=0

3 3
A =y (ZL””%@) (ZL'”kw;) VY0 <m,n<3. (10.185)
k=0 k=0

and

( 00 x/l’ 50 /3> ((E/O7£L'/1,.’L'/2,£C/3) = (w&wbwé,wé) V(x/0,$/171'/2,$/3) S R4,

Therefore, inserting (10.180) into (10.186) gives

dp Op Op Oy
81.10’ axll ? a$l27 61.13

> (2", 2, 2%, 2"%) = (1,0,0,0) V(20,2 22 2®) e RY,  (10.187)
and inserting (10.180) together with (10.179) into (10.185) gives,

A/OO =0
AN =A0=0 Vj=1,2,3 (10.188)
NI =65 Yim=1,23.

Therefore, by (10.187) and (10.188) the new system is cartesian and obtained from the old system
by some Lorentz’s transformation. Thus, since the inverse transform to Lorentz’s transformation
is also a Lorentz’s transformation, we deduce that the original system (old) is obtained from the
cartesian system (new) by some Lorentz’s transformation.

Conversely, if any new system is obtained from the old cartesian coordinate system by Lorentz’s
transformation, then since every cartesian system is also a Pseudo-Lorentzian coordinate system, by

Lemma 10.3 we deduce that the new system is also a Pseudo-Lorentzian coordinate system. O

Proof of Theorem 2.4. Indeed, assume that the transformation in (2.67) is of class PL ((wp, w1, wa, ws3)).
Then, obviously there exists another constant vector (wf, w}, wh, w}) € R?, satisfying

3

(w)® = > (w))® =1, (10.189)

j=1
and such that the transformation in (2.67) is of class PL ((wg, w1, wa, w3); (wy, wi, wh, wh)). Then by
Corollary 2.8 there exists three other changes of coordinate system (20, 2!, 22, 23) — (20,2’ 2"2, 23)

belonging to the class L((wo, wy, we, w3); (1, O,O,O))7
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(270, 2"t 2" 2"3) — (2”0, 2", 2"?, 2""?), belonging to the class PL((l,0,0,0); (1,0,0,0))

and (20, 2"t 22 2""3) — (20, 2" 2% 2'""3), belonging to the class

L(((l, 0,0,0); (wj, wh, wh, w’g)), so that the original transformation

(20,2t 22 %) — (20, 2" 2" 2"""3) is a composition of the above three changes of coordinate

systems:

(1’ ,1,1’ x27 :CS) N (x///()’ :17/'/1, x”’Q, :17/'/3) —

(xO’ 1,1"r ,$3) N (xlo’ 3J,/171,/2’x/3) BN (1‘”0,1‘”1,1‘"2,32"3) BN (x//IO’:C///l 1‘”/2 JCWS) . (10'190)

) 9

However, since the original system with coordinates (z°, 2%, 2%, #3) is Pseudo-Lorntzian and since,

the change (20, 2%, 2%, 23) — (29,21, 22, 2"3), belongs to the class L((wo,wl,wg,wg); (1,0,0,0)),
by Lemma 10.3 the system with coordinates (2'°, 2!, 2%, 2/3) is Pseudo-Lorntzian, and moreover,

we have

(ifwaajpai%vai%)(:c’o,x'l,x’Q,m’?’):(1,070,0) V(202 22 2®) e RY,  (10.191)

and thus also

A/OO =0 V(ZL'/O $/1 $/2 .’17’3) c R4
A% = N0 =0 ¥j=1,23 ¥(Pa" 22 a2") R (10.192)

A =6 Vm,n=1,23 V(20,2 22, 2"3) € R4,

so that the system with coordinates (z°,2'!,2'2 2'3) is cartesian. Therefore, since the change

(20, 2" 22 2") — (2”0, 2", 2”2, 2""), belongs to the class PL((l,0,0,0);(l,0,0,0)),by Corollary

7no 1 2 13
"9, ,x'’?)

2.7 we deduce that the system with coordinates ( " x is also cartesian, and thus in

particular, the system with coordinates (z°,2"%, z

"2 2'3) is Pseudo-Lorentzian. Finally, since the

change (20, 2" 22 2"3) — (2", 2", 22 2""3) is a Lorentian transformation, and since the

7m0 1 12 13
2", ,x'"?)

system with coordinates ( P is Pseudo-Lorentzian, by Lemma 10.3 we deduce that

///3)

the system with coordinates is also Pseudo-Lorntzian.

(aj///o7 x///l, me, T

Conversely, assume that the system with coordinates (z"’°, 2”1, 2”2, 2'""3) is Pseudo-Lorntzian.
Then, by Theorem 2.3, there exists two Lorentz’s transformations (z°, 2!, 22, 23) — (20,21, 2%, 2'3)
and (270, 2"t 2”2 2"3) — (20 2" 2" 2"""3), so that the both systems with coordinates
(270, 2"t 22 23) and (270, 2", 2", 2""3) are cartesian. Then, again by Corollary 2.7, the change
(20, 2" 22, 2"3) — (2”0, 2", 2", 2""3), belongs to the class PL((l,0,0,0); (1,0,0,0)). However,
since the system with coordinates (20, 21, 22, 2'3) is cartesian, by (2.65) we deduce that the transfor-
mation (2%, 2%, 2%, 23) — (2,21, 22, 2’3) also belongs to the class PL((wo, wy, wa, ws); (1,0,0, 0))
Therefore, by Proposition 2.5 we obtain that the transformation (29, 2%, 22, 23) — (2”0, 2", 22, 2"'3)
also belongs to the class PL((wO,wl,wg,wg); (1,0,0,0)). On the other hand, since the change

(270, 2" "2 2" — (20, 2" 2" 2'"3) is a Lorentz’s transformation, it also belongs to the
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class PL((l, 0,0, O)) Then, by Corollary 2.6 together with Proposition 2.5, we finally deduce that

the composed transformation (z°, 2!, 22, 23) — (20, 2%, 2""2 2"'3) given through:
b) b) bl b b b

3) N (m”07x”17$”2,x"3) — (m///o’ (EWI,:EHQ x///?))

(29 2, 2%z

belongs to the class PL ((wo, w1, we, ws)). O

Proof of Proposition 3.1. For every smooth scalar classical function with compact support

£(20, 2,22, 2%) € C° (R*), by (3.7) we have

/// {le (I‘(/)V7II¥V7I{%V5I‘%V)}Kg(xo?mlaxQ’xB) ’det <{Kmn}n,m:0,1,2,3) )75 dxo dxl de de =

813 2 3 0,1 .2 3 mn 3 014943
////Z dxJ (20", 2%, 2%) €(a, 2, 2% )‘det <{K }n,m:071,2,3>‘ dx’ dzt da® da®+
I (2%, 2, 2? 2%)g (a0, 2t 2 153) det ({K™"} 1,2 o dzdztda?da®.
n,m=0,1,2,3

(10.193)

However, by the definition of the derivative of the distribution we have,

//// Zaal (@t a,a®) (et (B, caras)] € (00t 20 e i s
7////21&18;11 (’det ({Kmn}n,m=0,1,2,3)’_;€) ($O ot a? )dm dzt da? da® =
Ri -~ J=0
_////EB:I‘J”;W (’dEt ({Kmn}n,m_o,l,z,s)‘_é) f(xo ot a? )dx dzt da? da?
Ri - J=0

3 1
- I |det ({K™} : % — (2% 2t 2% 2%) da® dat da? dx® . (10.194)
w n,m=0,1,2,3 a j
R4 j=0

Thus, inserting (10.194) into (10.193) gives

1
/// {div (1%, Iy, I3, T8) . €@, 2, 2%, ) ’det ({Km”}mmzo,l’z’g)) ? 420 dat da? da® =
R4

3 1
—////ZI{,V ’det ({Kmn}n,mZO,l,Z,S)’ ’ ;i (2%, 2", 2% 2%) da® dat da? dx®.  (10.195)
R4 j=0

On the other hand, by (3.5) we deduce:

3 _1
////Zlgv(xo,xl,f,xg) (‘det ({Knln}n,m:O,I,Q,S)‘ ’ ;;EJ) (2%, 2!, 22, 2%) da® dxt da? da®
R4 j=0

b

3 j b
:/ Zai N X (s) ds:/ W(s) (€ (u(s))) ds. (10.196)

a
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Thus, if we assume that W (s) is a constant across the trajectory of the motion, so that W(s) = W
where Wy is independent on s, then by (10.195) and (10.196), using the Newton-Leibnitz formula,

we deduce:

//// {div (I{,)V,Iév,l‘%v, IS’V)}Kf(aso,xl, z?, 2®) ’det ({Km”}n7m:0’172’3) ’_§ dz® dxt da? da®
R4

b

b
—— [ W) e ds = =W [ L€ 0)) ds = Wal€ (x(a) — € ((®) - (10197

a

However, since &(z2°, 2t 22, 23) € C° (R4) has a compact support, by (3.8) we obtain

£ (x(0)) =& (x(a)) =0, (10.198)

and thus, inserting (10.198) into (10.197) gives:
_1
/// {div (I, Iy, Iy, ISV)}K E(z¥ 2t 2?, 2®) ’det ({Km"}n’m:()}m’?))) * d2® dxt da? da®
R4

=0 véecr (RY) . (10.199)

Therefore, since the test function &(z2°, 21, 22, 23) € O (R4) in (10.199) is arbitrary, by (10.199),

using the basic properties of distributions, we finally deduce (3.9). This completes the proof. O

Proof of Lemma 4.1. By inserting (4.60) into (4.58) we deduce:

FOO = 0
o(=4;) _ ov .
FO‘:—F‘OZ— I] = 927 Vj:1,2,3
! ! gt ow (10.200)
Fi; =0 Vj=1,2,3
ij:_ij:W_ag;ﬁj) vm#J:]-vag?
Thus, if we define, as usual the magnetic and the electric field:
B = curliA,
(10.201)
E:=-V,U - 24,
then denoting E := (Ey, Ea, E3) and B := (B, Ba, Bs), by (10.201) we rewrite (10.200) as:
Foj = —Fjo=FE; vVji=1,2,3
Fi;i=0 Vji=1,2,3
v (10.202)

Fig = —Fy =—DB3

Fi3=—F3 = By

Fy3 = —F3 = —By,
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so that we get (4.63). Next consider two-times contravariant tensor {F™"},, n—o,1,2,3 defined by:

3 3
Fr=3"N"K™K"Fy  Ym,n=0,1,2,3. (10.203)
k=0 j=0
We rewrite (10.203) as:
an —
3 3 3 3
K™ K™ Foo+ > K™ K™ Fo,+Y K™E"™Fjo+Y Y K™E"™Fj, Ym,n=0,1,2,3.
k=1 j=1 k=1j=1

(10.204)
In particular, by inserting (4.29) into (10.204) we deduce:
F% = Fyo + Zzzl v* For + Z?’:l v Fjo + 22:1 Z?’:l v/ " P
Fm0 = ymFO — Fo— S0 0FFu Ym=1,2,3,

FOr = FO — Fy, — 30 WIFy, Yn=1,2,3,

Fmn — ymyn 00 _ 22:1 vk F L — Zf’:l VUm0 Fjyy — 0™ Fopy — 0" Fppo + Frpn Vmyn =1,2,3.

(10.205)
We rewrite (10.205) as:
F% = Foo + Zi:l vF Foy, + Z?:l v/ Fljo + 22:1 Z?:l “jUijk
Fm0 — ymp00 _p oSS oRE Ym=1,2,3,
" ;’“1 " (10.206)
FOr =P — By, =30 v F, Yn=1,2,3,
Fmn — ,UmFOn + UnFmO _ ,Umv'nFOO + an vm) n = 1’ 27 3.
In particular, since the tensor {Fiun}mn=01,23 i antisymmetric, i.e. F, = —Fpp Ym,n =
0,1,2,3, then we simplify (10.206) as
F% =9
Fmm—0 Ym=12,3,
(10.207)

FomimeOZ*FOm“i’Zz:lkamk Vm:172737

Fmn —ympOn _ynp0m L B Ym,n=1,2,3.

In particular, since {F,,;}o<m,j<3 is the antisymmetric two times covariant tensor field, then by
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inserting (10.202) into (10.207) we deduce:

F00 —

Fil=0 Vj=1,2,3,

FOl = —F' = —Fo1 + v*Fip + v’ Fi3 = — (E1 + (v2Bs — v3By)

F02 = _F20 — _Foo+ 0 ' Fy + 03 F; = — (Eg + ( 3By — leg)
)

)
)
)
)

(10.208)
F03 = —F30 = —Fo3 + v F3y + 02 F30 = — (B3 + (v! By — 2By
F12 — _F21 :,UlFOQ —U2F01 +F12 — (Bg—|— (U1F20 _,U2F10 )
F13 — 7F31 — U1F03 _ ’U3F01 + F13 — Bg + (,UBFIO _ UlFSO)
F23 — _F32 _ ,U2F03 _ U3F02 + F23 — _ (Bl + (UQFSO _ ,U3F20)) .
Thus, defining;:
D=E+vxB
(10.209)
H:=B+vxD,
and denoting D := (D1, D2, D3) and H := (H1, Ha, H3) we rewrite (10.208) as
F9 =90
FY = _Fi0 = -D; Vj=1,23,
Fii=0 Vj=1,2,3,
(10.210)

F12:_F21 :_HS

F13 — _F31 — Hg

F23:7F32:7H1,

so that we get (4.64). In particular, by (10.202) and (10.210), using (10.209) and using the definition
(4.58), we deduce that

(EEE g (- 5) (- 5) g

n=0 k=0 m=0 p=0 =0 k=0

=F OE)()+ZF0kE)k+ZFJ ]0+ZZFJ Fj=—-2E-D+2B-H=
j=1k=1
—2(D-vxB)-D-B:-(B+vxD))=-2(D?-|BJ?), (10.211)
and so by (10.211), (10.209) and (10.201) we finally obtain (4.65). O

Proof of Lemma 6.1. Since the current coordinate system is cartesian, by Theorem 2.1 there exists

a change of variables from the kinematically preferable coordinate system to the current cartesian
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coordinate system of the form:

20 =204 ¢,

3 , (10.212)
=3 Ay (@) 27 + 2™ (20) Ym=1,2,3,
j=1

where {A;n(2"0)}m=1,23 € R¥*3 is a 3 x 3-matrix, depending on the coordinate ’® only (inde-

pendent on x’ := (2'', 2’2, 2"?)), and satisfying

ZAmj(x’O)Anj(a:’o) = ZAjm(x’O)Ajn(m’o) =0mn  Ym,n=1,23 V(@ 2" 2?2 R,

(10.213)
c € Ris a constant (independent on (20,2, 22, 2/%) € R*) and z(2"°) := (2! (2"0), 22(2°), 2%(2")) €
R? is a three-dimensional vector field, depending on the coordinate 2° only (independent on
x' = (2/1,2'%,2/3)). On the other hand, since the kinematically preferable system is simultane-

ously Lorentzian and cartesian, in this system we have
(", "t 2 1) = (1,0,0,0) so that v = (r" % r"3) = (0,0,0). (10.214)

On the other hand, by the rule of transformations of contravariant vector in (10.3), using (10.212),

(10.214) and (10.213) we deduce

0 =1, (10.215)
and
°LdA dzm
rm o= Z dxrlréj (m/o) 4 dx/o( /o) _
j=1
2 Cn dA dzm
>N y L (2%) Apj(a®) (2" — 2"(20)) + W(xO) VYm=1,2,3. (10.216)
j=1n=1 z v
Therefore, differentiating (10.216) gives
ar™ S dA,,;
o = > dx”gj (2°) A (2°)  ¥Ym,n=1,2,3. (10.217)

Thus, by (10.217) and (10.213) we deduce

or n 3 [dA,,; dA,:
(ax” a:cm> - Z( g0 (@) Anj (@) + 5 (2) A (xo)>
3

d d
=3 D Apj(a®) Apj(2°) p = —5 Omn} =0 ¥mn=1,23 (10.218)
j=1

In particular,

(2 +20)=0  VYm,n=1,2,3
' (10.219)
diver = > 250 = 0.

oz
n=1
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Moreover, differentiating (10.217) one more time by z7 gives

827,,m
- = j =1,2,3. 10.22
DT O 0 Vim,n=12,3 (10.220)
So, by (10.219) and (10.220) we deduce (6.3). O

Proof of Lemma 9.1. By the Theory of Distribution, the definition in (9.4) means that for every

smooth scalar classical function with compact support &(z°, 21, 2%, 23) € C° (R4) we have

1 b
//// ’det ({qu}p’q:0,172,3>‘7§ T (20 2t 22 2?), E(20, 2t 2%, 2%) daVdat datda® = // a{
R4 0 a

(6 =26 (PG + =G0 =) =) (6 + -0 )

} E(rx(s)+ (1 —71)z2(s)) dsdr vYm=0,1,2,3, (10.221)

Next, since by the Theory of Distributions we have

1
Z////a {‘det - 0123)’ 2 TZL"} £(2°, 2", 2%, 2%) da'da' da?da® =
-3 mn 8€ 0 .1 T
_Z ‘det ({KPQ}p’q:0,1,2,3)‘ Ty O n(ﬂﬁ T Z‘ , T )dx drtdx®dz® VYm=0,1,2,3,
n=0 RA

(10.222)
by (10.221) we can proceed in (10.222) as

Z//// {’det KP Yoa- 0’1’2’3)’_§ Tfrfnn} €(2°, 2!, 22, 2%) daldat daPda® =

3

oY /b o{ — (o) (r e+ -0 0
0

n=0 o

: - T)ﬁj(s)) }aafn (x(s) + (1 —71)z(s)) dsdt

¥Ym =0,1,2,3. (10.223)

Furthermore, by the Chain Rule we can rewrite (10.223) as
_1
Z////a {‘det - 0123)‘ 2 T;’m} £(2°, 2", 2%, 2%) da'da' da?da® =

1 b
~ [ o0 = =ms) G o) + (1= st dsar
0

s}

1b
dxm dz™ 55 _
Jro/a/a <7’ s (S)Jr(lT)dS(s)> a(TX(S)+(1 —7)z(s)) dsdr VYm=0,1,2,3.

(10.224)
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However, taking into account (9.3), integration by partes by s gives:

1 b
[ o6 =6 G () + (1= )a(s)) dsdr =

0 a
1

//bg (dil(:( d;S (s )) €(rx(s) + (1 —7)2(s)) dsdr  ¥Ym=0,1,2,3. (10.225)

0 a

On the other hand, integration by partes by 7 gives:

/1/bo (Td;C: (s)+(1— T)(Z;R(SO % (mx(s) + (1 = 7)2(s)) dsdr
0 a

+ [o D@ e ds— [0 T C)) ds

a a

1 b
— //a (dgs (s) — d;s (s )) E(rx(s)+ (1 —7)z(s)) dsdr  Vm=0,1,2,3, (10.226)
0 a

Thus, inserting (10.225) and (10.226) into (10.224) gives:

Z////a {‘det qu}pq:0,1,2,3)‘7% Tgm} 5(950 ot a? )dmodmlda:Qdat =

b
/o@;@fu@»m—/}%gww@@mds Vm=0.1,2.3. (10.227)

a a

Thus, since &(2°, 21, 2%, 23) € C® (]R4) was chosen arbitrary, by the Theory of Distributions, using

(10.227) we deduce

i % {’det ({qu}p,q=071»273) ‘_% T;nn} -
n=0
b

b
/0’ djicg (5)0 (22 =x°(s),....2° —x(s)) ds — /0’ dd%(s)é (2% = 2%s),..., 2% = 2°(s)) ds.
(10.228)
Finally, (10.228) obviously implies:
> 1 9 -3
_% a? {‘det ({qu}(p’q)g) T?n} =

n=0 ’det ({qu}p,q=o,1,z,3) ’
b

: /a d;(: ()8 (2° = X°(s),...,2° = x*(s)) ds

a

‘det ({qu}p,q:O,l,Qﬁ)

b
: /a d;—:(s) § (2% = 2°(s),..., 2% — 2%(s)) ds. (10.229)

a

— ‘det ({qu}p,q:o,1,2,3)
O]

131



11 Appendix: some technical statements

Lemma 11.1. Assume that a contravariant pseudo-metrics {K™"},, n=0.1,2,3 and a covector of the

time-direction (wg, w1, wa, ws) are weakly correlated (see Definition 2.3), so that we have everywhere
3 3 ‘
Z Z K7™ wjw,, >0 V(2% xt 2% 23) € RE. (11.1)

Moreover, assume that there exists a scalar field ¢ such that

3 3 6(,0 880
lim gim 28 90 ) g (11.2)
{@0)2 @422 +(29)2 oo ;on; 9l O

dp Op Jp O
(w07w17w2’w3) = <a;i)78;017 67;027 8;03) \V/(Z‘O’xl’x2’$3) 6 R4’ (113)
and
3 9 3 dp Ay 3 D
> o ZZ " 5em 5 L Zan”)}ZO V(2% at 2%, 2% e R
=03 {(m 0n=0 gz Oz ) (n—O Oz
(11.4)

Then, scalar global time ¢ and pseudo-metrics {K™" },, n—012.3 are strongly correlated on R*, i.e

@ satisfies the following eikonal-type equation:

3 3 90
Z Z ija;; a;fn =1 V(20 2t 2? 2%) € RY. (11.5)
=0 m=0
Proof. Define
3 3 9w 8
Ay = (2% 2t 2% 2%) e R Z Z ija—;’;ax—fn (2 2t 2% %) —1 <0y, (11.6)
§=0 m=0
3 3 90 8
Ay = (20,2, 22, 2%) e R - Z Z ija—;pjax—f; (2 2t 2% 2®) —1>0p . (11.7)
Jj=0m=0

Then, we obviously have

3 3 &p 830
jm 2 Yv 4 0 i
E E K 5 B 1=0 V(22" 2% 2% € 04, UDA,. (11.8)

j=0m=0
where by A we denote the boundary of the set A. Therefor, by (11.4), (11.2) and (11.8), the

Gauss-Green formula gives

dp g S By Ay
mn _r _ gn ¥ ¥ 0,1 .2 .3y _
////Ak (ZZK ox™ Jx™ 1) EZK 917 O™ d(z”,z", 2%, z°)

m=0n=0 j=0n=0
3 3 3 3
- 2 mn 09 0p in 99 0 1.2 3
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However, by (11.1) and (11.3) we have
3 3
3 KimI2 00 0 0000 a2 o) e RY. (11.10)

Thus, inserting (11.6), (11.7) and (11.10) into (11.9) gives

mngiai_ j’na(p 890 0 1 2 3
////Ak ( ox™ Oz ) ZZK Oxd Oxm d(z”,x", 2%, x°)

m=0n=0 j=0n=0

So, by the definition of A;, A5 we must have

//// (ZZ %%1) iZK g;gﬁ (2’ a' 2% %) = 0, (11.12)

m=0n=0 7=0n=0

which, together with (11.10), finally implies (11.5). O

Lemma 11.2. Consider a contravariant pseudo-metrics {K™"},, n=0.1,2,3 0on R* and let
{Kpmn}tmmn=0123 be the inverse covariant pseudo-metrics on R*, associated with { K™} n—012.3-
Next, consider the Christoffel Symbols {FZ;}K, defined by (2.25). Then, in some coordinate system
we have

{r} =0 Vijmmn=0123, (11.13)

if and only if the tensor { Kyun }m.n—0.1.2,3 s independent on the local coordinates (z°, 2!, 22, 2%) € R*

in the given coordinate system.

Proof. If in some fixed coordinate system { K, }m.n=01,2,3 is independent on the local coordinates
(29,21, 22, 2%) € R4, then by (2.25) we obviously deduce (11.13).

Conversely, if in some fixed coordinate system we have (11.13), then we obviously have

a-K—mn
oI

= {6;Kmn} =0  Vj,mmn=0,1,2,3, (11.14)

where {0 K}, is the covariant derivative of the pseudo-metrics K with respect to the same
pseudo-metrics K, which is vanishes, due to the well known rule of the tensor analysis. So, by (11.14)
we deduce that {Km,}m.n=01,23 is indeed independent on the local coordinates (z°, 2!, 22, 2%) €

R*. O

Lemma 11.3. Consider a contravariant pseudo-metrics {K™"},, n=0.1,2,3 O R* and let

{Kn}m.n=0,1,23 be the inverse covariant pseudo-metrics on R*, associated with {K™ "} mon=0,1,2,3-

Next, consider two coordinate systems in R*, so that the change of coordinates from the first to the
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second coordinate system is given by:

(11.15)

Finally, assume that the tensor { K tm.n=0,1,23 s independent on the local coordinates in both given
coordinate systems, i.e. {Kmn}tmn=0123 is independent on the coordinates (x°,z', 22, 23) € R* and
{K!,n}mn=0123 is independent on the coordinates (z', 2"t 2'%,2'3) € R*. Then, the transforma-
tions in (11.15) are linear, i.e.

%(zo,zl,ﬁ,ﬁ) =0 V(2% zt, 22, 2%) e RY Vi, k,n=20,1,2,3. (11.16)
Proof. First of all, observe that since { Ky }m,n=0,1,2,3 is independent on the coordinates
(2%, 21, 22, 2%) € R* and {K/,,, }:m.n=0.1,23 is independent on the coordinates (2, 2, 2/?,23) € R?,

then, by (2.25) in both coordinate systems we have
{T} =0 Vjimn=0,1,23 (11.17)
and
{T7} e =0 Vjmmn=0,1,23. (11.18)
Next fix an index j € {0,1,2,3} and define the proper scalar field ¢/ (20, 2/, 22, 2"3) = (2, 21, 22, 23)
by the following
(a2t 22, 2%) = £ (20, 21, 2%, 2®) V(20 2t 2% %) e R? (11.19)
so that we have
w/(xm’ x/17x/2’x/3) — x/j V(Z‘/O,.’L‘ll,JTIQ,l‘/g) c R4 . (11.20)

On the other hand, by (2.26) with the covector ( oy 0y Y %) instead of (hg, hi, he, h3), using

0z97 9zl Ox27 Jx3

(11.17) and (11.18), in both coordinate systems we deduce

2
{6n (gwk)} — 6871;!} - Vn,k:O,172,3 v($07$1,$2’(ﬁ3) €R4, (1121)
€T K x"O0x
and
4 2,1,/
{5% (gjf/ )} = 53 gx, Vn,k=0,1,2,3 V(2" 2% 2"%) e R, (11.22)
k K’ n k

However, by (11.20) and (11.22) together we deduce

a¢/ azw/ 32$/j
5/ — — — k= 1.2 0 /1 2 13 R4.
0 (3) ) oy g =0 Y020 M e
(11.23)
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Therefore, since {{(5n (%) }K} is a proper two-times covariant tensor, by (11.23) we
* n,k=0,1,2,3

deduce
On 9 =0 Vn,k=0,1,2,3 V(%' 2% 2% e R, (11.24)
ok ) | 4
Thus, by (11.24) and (11.21) we deduce
¢ =0 Vn,k=0,1,2,3 V(%' 2% 2% e R (11.25)
8xn8xk b} ) ) ) ) ) )

Finally, by (11.25) and (11.19) we obtain

92 )
ﬁ(mo,xl,x{ﬁ) =0 V(20 2t 2%, 2%) e R? Vk,n=0,1,2,3, (11.26)
and since the fixed index j € {0,1,2,3} was arbitrary, we deduce (11.16). O

Corollary 11.1. Let f(x) := f(2!,22%,23) : R — R® be a smooth mapping. Next assume that the

Jacoby’s derivatives matriz dif = {gj;,,} of £ satisfies (everywhere)
1<m,n<3
{dof ()} - {duf(x)} =T Vx € R3, (11.27)

where I € R3*3 is the identity matriz. Then dxf is a constant matriz (independent on x) in R* and
so f is a linear orthogonal mapping, in other word there exists a constant matriz A € R3*3 and a
constat vector w € R3 such that

AT A=T, (11.28)
and we have
fx)=A-x+w vx € R3. (11.29)

We give here the full proof, although, the result is well known.

Proof of Corollary 11.1. Consider two coordinate systems in R, so that the change of coordinates

from the first to the second coordinate system is given by:

20 = 20

x/l — fl(xl, x2,x3)7

(11.30)
2 = fo(z', 22, 23),
2 = fy(z!, 22, 2%),
where (f1($17$2,$3)7f2($1,$2,1'3)7f3(1‘17$2,$3)) = f(2!, 22, 23). Next, consider a contravariant

pseudo-metrics {K™"},, n=0,1,2,3 on R* and the corresponding inverse covariant pseudo-metrics

{Kn}m,n=0,1,2,3, such that in the first coordinate system we have:

K% =1
K% = Ki0 — Vji=1,2,3 (11.31)

Kim = —6;,,  Vjm=123
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at every point in R%, so that in the same coordinate system we have:
Ko =1
Koj=Kjo=0 Vj=12,3
Kjp, = —0; Vim=12,3
at every point in R%. On the other hand, by (11.30) and (10.5) we have
Koo = Ky,

NP YIONS 2L 9fk)

Ko = Kom = Oxm kO = WKék Vm=1,2,3.
k=1 k=1
and s s
afk) o)
Km”:ZZ oxr™ Ox™ Kl/cj vm,n=123.
j=1k=1

Therefore, using (11.27) and (11.32), by (11.33), (11.34) and (11.35) we deduce
Kjy=1
K{)j:KJ'-O:O Vji=1,2,3
Kl = —0jm  Vjm=1,2,3.
Then, by (11.32) and (11.36) we can apply Lemma 11.3 to deduce
92 f()
dxmozk
Therefore, there exists a constant (independent on x) matrix A € R3*3 such that
AT A=1T,
and
def(x) = A Ve RS,
So there exists a constat vector w € R3, such that
fx)=A-x+w Vr € R3.
This completes the proof.

Lemma 11.4. Given an arbitrary (w®, w', w? w3) € R* such that

(W)~ [wp =1,

where w = (w', w? w3) € R, consider a matriz {A™" }o<m n<s € R4, defined by

A% = (0)* — 1

AI™ :5jm+ijm Vi<jim<3

AY = A0 = O V1< <3,
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(11.37)
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(11.39)
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Then the matriz {A™" }o<m n<3 15 degenerate and moreover, it has one vanishing and three positive

etgenvalues.

Proof of Lemma 11.4. By (11.42) and (11.41) we have

A% = |w|?
A = 8+ wlw™ V1< j,m <3 (11.43)
AY = A0 = O V1 <j<3,

Thus, in the case w = 0 we obviously have

A% =
A =8 V1< jim <3 (11.44)
AU =A0 =0 V1<j<3,

and so, by (11.44) we infer that {A™"}o<mm n<3 is degenerate and moreover, it indeed has one
vanishing and three positive eigenvalues.

Next we assume from now that w # 0. Furthermore, observe that by (11.42), for every
(20,21, 22, 23) € RY, with z := (21, 22, 23) € R3, we have

3 3
S TAYz = A%z 4 3 A%z = <(w0)2 . 1) 20 + w° (w - z) (11.45)

=0 j=1

and

3 3 3
Z Amjzj =A"0%, + Z Amjzj = zowlw™ + Z (§jm + ijm) 25
Jj=0 j=1 j=1

= 20wwW™ + 2, + (W - 2)w™ VYm=1,2,3. (11.46)

In other words,

3 .
> A%z = —z0 + (w20 + W - z)w"
30 (11.47)
SA™zp =z + (W20 + Wez)w™  Vm=1,2,3.
§=0
Furthermore, assume that (2o, 21, 22, 23) € R*, with z := (21, 20, 23) € R?, satisfies
1,0
20 — s 7w
At (11.48)
_ 1
zZ = 1 W
where A solves
AA=(1+2/w]?)) =0, (11.49)
or in other words, A\ satisfies
either A=0 or A= (2(w’)?-1)=(1+2w]*) >1. (11.50)
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Then, in particular, by (11.48) we have

1
0 .z7) = 02 2
(w20 + W - z) /\+1(w) +)\_1|w\ . (11.51)
Then by (11.41) and (11.51) we have
1 1 1 A 1
0 R I o2 _ _+ A 02 gyt

(w20 +w - 2z) (/\+1+/\_1> (w) 51 )\2_1(2(11)) 1) S (11.52)

If A =0 then, by (11.52) we have clearly
w2 +w-z=1 (11.53)

On the other hand, if A = (1 + 2|w|?) = (2(w®)? — 1) then by (11.52) we also have

A 1
P R

(w2 + w2z 1. (11.54)

Thus, if A solves (11.49) then in both cases w°zy + w -z = 1, and therefore, by (11.47) we deduce

3 .
> Az =~z + w0’
5 (11.55)
YAz =z +w™ VYm=1,2,3.
§=0

However, by (11.48) we have

w? = (A+ 1)z
(11.56)
w=(A—-1)z.
Thus by (11.55) and (11.56) we deduce
3 .
Z AOJZJ' = )\ZO
3P (11.57)
ZOAmjsz/\zm Ym=1,2,3.
j=

Thus, in the case where A solves (11.49) and (2o, 21, 22, 23) € R?, with z := (21, 22, 23) € R3, satisfies

(11.48), by (11.57) we deduce that (zg, 21, 22, 23) is an eigenvector of the matrix {A™" }o<pm n<s. So,
M =0 and A= (1+2|w[*) >1 are two eigenvalues of the matrix {A""}o<mn<s. (11.58)

Furthermore if A € R and (2o, 21, 22, 23) € R* with (21, 29, 23) := z € R3 satisfy

A=1
z-w=0 (11.59)
20:0,

then by (11.59) and (11.47) we have

Oij =0= )\Zo
(11.60)
mjzj:zm:)\zm Vm=1,2,3.

3
A
7=0
3
A
7=0
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However, obviously there exists two orthogonal unit vectors z; € R? and z, € R? such that
Z1 W =129 -W=21 -2 =0.

Therefore, in the case A = 1, if (29, 21, 22, 23) € R* satisfies 29 = 0 and either (z1,20,23) = z; or
(21, 22,23) = 22, then by (11.60) we deduce that in both cases (z, 21, 22, 23) is an eigenvector of of

the matrix {A™" }o<m,n<s. S0,
d2=1 and A3 =1 aretwo coinciding eigenvalues of the matrix {A™"}o<mn<s. (11.61)

Therefore, by (11.58) and (11.61) we deduce that the matrix {A™"}o<, n<s is degenerate, and

moreover it has one vanishing and three positive eigenvalues. O

Lemma 11.5. Consider an arbitrary (w®, w!, w? w3) € R* and consider a matriz { K™ }o<m.n<s €
R**4, defined by:

K00 (w0)2

Kim = —6jm + ww™ V1<jm<3 (11.62)

K% = K99 = 07 V1< j<3.
Then,

in the case w® =0 we have det ({K™ }o<mn<s) =0. (11.63)

On the other hand, in the case w® # 0 the matriz {K™}o<m.n<s is invertible, its reverse matrizc

{Komn Yo<mm<s € R¥*? is defined by the following:

2

Koo = goy — (LZVO‘V
Kijm = —0jm V1<j3,m<3 (11.64)

J

Koj=Kjo=75 V1<j<3,

where w := (w!, w?, w®) € R®. Moreover, the matriz { K™ }o<m.n<3 necessary has one positive and

three negative eigenvalues and
det ({K™"}o<mn<s) = —(w)?. (11.65)

Proof of Lemma 11.5. First of all, observe that in the case w" = 0 the first row of the matrix, given
by (11.62), vanishes and thus we obviously deduce (11.63).
Next, assume from now that w® # 0. Then, consider a matrix {Kmn}o<mmn<s € R**4 defined

by (11.64). Thus, by (11.62) and (11.64) we obtain

3 3
> KoK = KooK + Y Ko KM =1~ |wl* + [w|* = 1,
k=0 k=1

3 3
S KK = KoK + 3 Kpnp KM = w™w + 6,5 — w™w’ = 6,5 V1 <m,j <3,
k=0 k=1
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and
3

3
ZKkako = KnoK” + ZKkakO =w"w’ —wmw’ =0 V1<m<3,
k=0 k=1

3 3 3
. . | w”
k 0 k
> KoeKM = KooK +Y " Ko K% = —5 (1~ [wf*) w/ =" =5 (8 —wu’) =0 V1<j<3.
k=0 k=1 k=1
So,
3 1 if m=j
S KKy = Vm,j=0,1,2,3. (11.66)
0 if i#j

Therefore, we deduce that {Ku,o<m.n<s is an inverse matrix to {K™"}o<mn<s € R¥4 and, in
particular, in the case w® # 0 matrix {K™" }o<m.n<3 € R**? is invertible.
Next, in the case w := (w!, w?,w3) = 0 we are done, since then matrix {K™"}o<,, n<s € R4
obviously satisfies,
KO0 — (w0)2
Kim = —§;,, V1< jm<3 (11.67)
K% =Ki°=0 v1<j<3,

and thus it has one positive eigenvalue A\g = (w0)2, three negative eigenvalues Ay = Ay = A3 = —1
and we have (11.65).

Thus, we assume from now that w® # 0 and w := (w!, w? w?) # 0. Furthermore, observe that,
by (11.62) for every (29, 21, 22, 23) € R*, with z := (21, 22, 23) € R3, we have

3 3
ZKojzj =K% + ZKszj = (w0)2zo +w’ (w - 2) (11.68)
3=0 j=1

and

3 _ 3 _ 3
ZKszj = K™% + ZKszj = zow'w™ + Z (=6jm +ww™) z;
j=0 j=1 j=1

= 200'W™ — 2, + (W-zZ)w™  Vm=1,2,3. (11.69)

In other words,

e

KY%z; = (w9 + w - z)u®

J§0 (11.70)
SN K™z = —zp + (W02 +W-z)u™  Vm=1,23.
3=0
Next, if (20, 21, 22, 23) € R?, with z := (21, 20, 23) € R?, satisfies
zZ= %ﬂ w
(11.71)
zZ0 = %wo ,



where A € R is a solution of the following quadratic equation
A2+ (1= (w2)? = W) A= (w°)? =0 (11.72)

(obviously that if w® # 0 and w # 0, then A € {—1,0} does not satisfies (11.72)). Thus in particular,
by (11.71) and (11.72) we have:

1 wf? = A+ D)|w?? + Awl?

1
0 02
“Z = — — =1. 11.73
Therefore, by (11.73) and (11.70) we deduce:
3 .
> K%z =
=0
. (11.74)
Yo K™z ==z +w™ Vm=1,2,3.
=0
However, by (11.71) we have
w=(A+1)z
(11.75)
= >\ZO .
Therefore, by (11.75) and (11.74) we deduce:
3 .
Y K™zi=Azm  Ym=0,1,2,3. (11.76)

So, we obtain that, if \ is a root of the quadratic equation (11.72) then, by (11.76) (2o, 21, 22, 23) € R?,
with z := (21, 22, z3) € R3, given by (11.71), is an eigenvector of the matrix { K™"}o<m n<3. In other
words, every root of the quadratic equation (11.72) is an eigenvalue of the matrix {K™" }o<m n<s-
However, by Vieta’s formulas the quadratic equation (11.72) has to distinct real roots Ao > 0 and
A1 < 0 and AgA; = —(w?)?. Moreover, if w® # 0 and w # 0 then —1 does not satisfies (11.72)), and

S0,

A >0 and —1%# X\ <0 are two eigenvalues of the matrix {K™"}o<m n<s

and  MA; = —(w®)?. (11.77)

with z := (21, 22, 23) € R3, satisfy

€ R4,
(11.78)
zZo0 = 0

Furthermore, if A € R and (2o, 21, 22, 23)

then by (11.78) and (11.70) we have

3 .
Z KOJZj :OZAZO
T (11.79)
K™z = —zp = Az, vYm=1,2,3.
J
§=0
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However, obviously there exists two orthogonal unit vectors z; € R? and z, € R? such that
Z1 - W=2o-W=21 -22=0.

Therefore, in the case A = —1, if (29, 21, 22, 23) € R* satisfies zg = 0 and either (21, 22,23) = z; or
(21, 22, 23) = Za, then by (11.79) we deduce that in both cases (zo, 21, 22, 23) is an eigenvector of of

the matrix {K™" }o<m,n<3. S0,

A2 =—1 and A3 =—1 are two coinciding eigenvalues of the matrix {K™"}o<mn<s. (11.80)

Therefore, by (11.77) and (11.80) we deduce that the matrix {K™" }o<m n<s has one positive and

three negative eigenvalues and moreover,
Moo = —(w®)?. (11.81)
However, it is well known from the Linear Algebra that
AoA1deAs = det ({K™" }o<m n<s)
and thus, by (11.81) we finally deduce (11.65). O
Lemma 11.6. Let {A™"}o<m n<s € RY4 be a degenerate symmetric matriz, given by

A% =0
A™ =80, V1< j,m <3 (11.82)

A=A =0 VI<j<3,

with
§.=1 Vj=1,2,3
Y (11.83)
5]'rn:O v]#m:172737
and let (w°, w', w?, w?) € R* be such that
w® #0. (11.84)

Then, there exists a non-degenerate matriz { Amn fo<mn<s € R¥*?*, such that det ({ Amn fo<mn<s) #

0, and if we consider a matriz {A"™" }o<m.n<s € R¥*?, defined by
3 3
A =N Ak A A Ym,n =10,1,2,3, (11.85)
j=0 k=0

and a vector (w0, w't, w? w') € R4, defined by

3
w =" Apwt  Vj=0,1,2,3, (11.86)
k=0
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then we have:
A/OO =0
AT =5, V1< Gm <3 e
AN =AI0=0 V1<j<3,

and

(W, w™, w? W) = (1,0,0,0). (11.88)
Proof of Lemma 11.6. Consider a a non-degenerate matrix { A, fo<m,n<s € R**4 defined by:

Ag = 5
Aim = j 10 V1SJ7m§3

e (11.89)
Ajo=-% VI<j<3

w0

Ay =0 V1<j<3.

Then, by (11.86) and (11.89) we obtain

, 3 j 3 _ ,
w = Ajou® + > At = (—:ZO) w + > Gt = —w’ +w’ =0 Vj=1,2,3  (11.90)
k=1 k=1

and

3
. 1
w'® = Agow® + ZAOkwk = (w0> wl+0=1. (11.91)
k=1
So we deduce (11.88). On the other hand, by (11.85) and (11.82) we deuce:

3 3 3 3
A = Z Z AmkAnjAkj = Z AmkAnjékj = Z AmjAnj Vm, n= 07 1, 25 37 (1192)
1k=1 j=1

=0 k=0 j=

Therefore, by (11.92) and (11.89) we infer

3
A =345 =0, (11.93)
j=1
3

A/mO — A/Om — ZAmjAO] — 0 Vm — 1’2’3, (1194)

j=1

and
3 3
i=1 j=1

So, by (11.93), (11.94) and (11.95) we also deduce (11.87). This completes the proof. O

Lemma 11.7. Let {K™" }o<mn<3 € R**4 be a non-degenerate symmetric matriz, given by

K% =1
Kim = —§;,, Y1<jm<3 (11.96)

KV =K°%=0 V1<j<3,
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and let (w°, w', w?,w?) € R* be such that the real number M, given by

3
- Z w?|? (11.97)

satisfies

M>0. (11.98)

Then, there exists a non-degenerate matriz { Amn Yo<mn<s € R¥*?4, such that det ({Amn fo<m.n<3) #

0, and if we consider a matriz {K'™" }o<m.n<s € R4, defined by

K™ =3 "N " AppAn; KM ¥m,n=0,1,2,3, (11.99)
7=0 k=0

and a vector (w0, w't,w? w'3) € R, defined by

3
w =Y "Apwt  Vj=0,1,2,3, (11.100)
then we have:
K/OO =1
Klim — _5jm V1<ijm<3 (11.101)

K% =K =0 V1<j<3,

and

(W, w', w2, w'?) = (fooo) (11.102)

Proof of Lemma 11.7. Without any loss of generality we may assume M = 1 in (11.97), otherwise

we just replace (w® wl, w? w?) by (\ﬁo \7—1\17, \;’%f—%) So consider from now that M = 1. In
other words, we have
3
N =1 (11.103)
j=1

Then, by (11.103), using Lemma 11.4 we deduce that a matrix {A™"}o<,,.n<3 € R**4, defined by
A% = () — 1
A% = A0 = 0uwd V1 <j <3,

has one vanishing and three positive eigenvalues. Therefor, by the Sylvester’s law of inertia, there

exists a non-degenerate matrix { B Jo<mn<z € RY4, such that det ({Bmn fo<mn<3) # 0, and if

we consider a matrix {A”"™"}o<m <3 € RY*?1 defined by

A= NN " BB A Ymon=0,1,2,3, (11.105)
§=0 k=0
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then we have
A700 —

AT =5 V1< jm <3 (11.106)
A= A0 =0 V1<j<3.

However, by (11.101) and (11.104) we have
K™ = wmw"™ — A™" vVm,n=20,1,2,3. (11.107)

Thus, if we consider a vector (w”®,w”!, w2 w"?) € R*, defined by
3
w' =Y "Bjwt  Vj=0,1,2,3, (11.108)
k=0
and a matrix {K"™"}o<m n<s € R4, defined by

3 3
K" =3 "N " BuBp;K*  Ym,n=0,1,2,3, (11.109)
§=0 k=0

then, by (11.107) and (11.109) we deduce
KM = "My — AT VYm,n=0,1,2,3. (11.110)
Then, by (11.110) and (11.106) we obtain

K100 — (’LU”O)Q
KM — qpig!m 6jm V1<jm<3 (11.111)

K//Oj — K//jO — w//Ow//j V1 S] < 3,

In particular, since the matrix {K"™"}o<p, n<s is non-degenerate (follows by the fact that

{K™"}o<m,n<3 is non-degenerate), we deduce from (11.111) that we necessary have
w”’ #0. (11.112)

Therefore, we can apply Lemma 11.6 to deduce that, there exists a non-degenerate matrix
{Al  Yo<mm<s € RY?, such that det ({A,,, }o<m.n<3) # 0, and if we consider a matrix

{A™}o<mon<s € R**4_ defined by
3 3
A= NN AL AN Y, =0,1,2,3, (11.113)
=0 k=0

and a vector (w0, w't, w? w) € R*, defined by

3
w? =" Apw™ Vji=0,1,2,3 (11.114)
k=0
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then we have:
A0 —

AT = 50 V1< jm <3 —
AN =AI0=0 V1<j<3,

and

(W, w, w? W) = (1,0,0,0). (11.116)

Therefore, considering a non-degenerate matrix {4, bo<mn<s € R**4 . defined by
3
A = ZA;MCB,C” Vj=0,1,2,3, (11.117)
k=0
we obviously deduce, det ({Amno<m,n<s) # 0 and moreover, by (11.105) and (11.113) we have

3 3
A= NN A An A Ym,n =0,1,2,3, (11.118)
j=0 k=0

and by (11.108) and (11.114) we have
‘ 3
w? =" Apwt  Vj=0,1,2,3. (11.119)
k=0
Thus, if we consider a matrix {K'™"}g<m n<s € R**4, defined by

3 3
K™ =3 "N " ApAn; KM Vm,n=0,1,2,3, (11.120)
j=0 k=0

then, by (11.118), (11.119) and (11.107) we deduce
K'™™ = ™™ — A VYm,n=0,1,2,3. (11.121)
Finally, inserting (11.115) and (11.116) into (11.121) gives
K" =1
KM = —§,, V1<jm<3 (11.122)
K% =Ki%"=0 V1<j<3,

and

(W, w™, w?,w?) = (1,0,0,0), (11.123)

where {K'™"} o< n<s is given by (11.120) and (w0, w', w'?, w'3) is given by (11.119) with
det ({Amn fo<m.n<s) 7 0. This completes the proof. O
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