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Abstract: In 4-dimensional curved space, the article presents the relations between the vector field inhomogeneity, biquaternions, 

rotations, and spinors. As a mathematical tool, the generalized Clifford algebra has been employed. The electromagnetic field 

inhomogeneity is proven to be made up of three independent rotations, biquaternions, and three pairs of spinors-antispinors.  
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1 Introduction 

In an inhomogeneous space (field), combining rotations, biquaternions, and spinors within the extended Clifford algebra 

(field) affords universal mathematical tools for uniting the equations of Einstein, Maxwell, and Dirac. Bivectors, rotations in four-

dimensional space, biquaternions, and bispinors are all repercussions of the vector field's local inhomogeneity.  

1.1 Theoretical basis 

The measure of local inhomogeneity of a vector field A was given in the paper  [1]: 

B =∇A                                                                                                               (1) 

here ∇ ≡ ei D/∂qi ≡ ei Di is an operator nabla; ei are vectors (4x4 matrices) of the base frame; D/∂qi is a covariant derivative by to 

argument qi.  

According to the vector product of Clifford [2]: 

B = ∇•A +∇∧A                                                                                                        (2) 

here ∇•A is an inner product of vectors; ∇∧A is an outer product of vectors.  

∇•A and ∇∧A are identified with the deformation and rotation of the vector field A in the paper [1].  

2 Results and Discussion 

2.1 Rotations in a 4-dimensional space 
 

Theorem: The local inhomogeneity B of the vector field (1) consists of the sum of independent rotations in 4-dimensional space: 
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here ggggee   000000  |||| ;  τα0 =eα∧e0;  gij – is the metric tensor; zα = ηα + γ φα; ηα – is the rapidity or the hyperbolic 

angle of rotation on the hyperplane of axes α and 0 (qα and q0); φα – is the angle of a usual rotation around the axis qα; γ = γ0γ1γ2γ3, 

γi – are the Dirac matrices. 

 

Proof. Taking into account F = ∇∧A, where F is the electromagnetic field tensor, we write equation (2) in the form: 

B = ∇•A +F                                                                                                (4) 

We will separate F to electric and magnetic field: 

∇∧A=F=ei∧ej Fij = eα∧e0 Fα0 +eλ∧eμ Fλμ 

or  

F= eα∧e0 Fα0 +γ (eα∧e0) Eα0λμFλμ = E+γ H                                                                   (5) 

here Eα0λμ is the Levi-Civita tensor of the fourth rank in the contravariant form;  E = eα∧e0 Fα0  is the electric field;  H = (eα∧e0) 

Eβλα0Fβλ  is the magnetic field. 

By putting (5) into (4) and denoting ∇•A = S I (S is a scalar), we get: 

B = S I +E + γ H                                                                                      (6) 



Squaring equation (6) and simplifying, we get:  

B2= (S2 + E2 - H2) I +γ E•H+2 S E+2 γ SH                                                                     (7) 

We denote the scalar, pseudoscalar, vector and pseudovector parts of the equation (7) as:  

SR = (S2 + E2 - H2) I is a scalar; SP = γ E•H  is a pseudoscalar; 

VR = 2 S E  is a vector; VP = 2 γ SH  is a pseudovector. 

Summing SR and SP and simplifying, we get the biscalar: 

SR + SP = |τα0||τβ0|cosh(zα/2+ zβ/2)                                                                    (8) 

Now summing VR and VP and simplifying, we get the bivector: 

VR +VP =2 τα0|τβ0|sinh(zα /2) cosh(zβ /2)                                                              (9) 

Finally, summing up (8) and (9) and simplifying, we get:  

B2 = (|τα0|cosh(zα/2) + τα0 sinh(zα/2))2                                                               (10) 

Taking the square root of (10) and summing over α from 1 to 3, we get the equation (3). The theorem has been proven. Appendix 

1 contains the computations in detail.   

So, the local homogeneity B of a vector field A consists of three rotations in 4-dimensional space.  

Expression (3) is the rotations to the complex angle zα/2 on the affine plane of the axes qα, q0. Swapping the indices α and 0, 

also λ and μ in the eα∧e0 Fα0 +eλ∧eμ Fλμ, we get the reverse rotations identical to (3). Rotations (3) are essential because Lorentz 

transformations (including conventional rotations in 3-dimensional space) and spinors in a generalized form, i.e. in curved space, 

can be easily obtained from them.  

Note. In the case of the Minkowski space (g00 =1; gαα = -1), these rotations are the Lorentz group SO(1,3) [3]. 

2.2 Bispinors  

Now we get spinors from rotations (3). According to Euler's formula 

cosh(zα/2) = 0.5(exp(zα/2) +exp(-zα/2)) =Υα + Ῡα 

sinh(zα/2) = 0.5(exp(zα/2) -exp(-zα/2)) =Υα - Ῡα, 

here  

Υα = 0.5 exp(zα/2);  Ῡα = 0.5 exp(-zα/2),                                                                   (11) 

we can write the formula (3) in form: 

B = Σα(|τα0|+ τα0)Υα + Σα(|τα0| - τα0)Ῡα  α=1,2,3.                                                          (12) 

Let's introduce the notation:  

Sα = (|τα0|+ τα0)Υα                                                                           (13) 

Šα = (|τα0| - τα0)Ῡα                                                                         (14) 

Following the group theory's terminology, in the general case, we say that the ideal of a ring K is such a subring k for ∀b∈ K 

and ∀S∈ k that the following equality holds [4]:  

Sb = cS 

where c – is a real number. If c>0 then S is a positive ideal (ideal), if c<0 then S is a negative ideal (anti-ideal). The term "anti-

ideal" was introduced for the generality of concepts.  



The ideals can be right and/or left. If an ideal is both left and right, then such an ideal is called a two-sided ideal or simply an 

ideal.  

In 4-dimensional physical space, such ideals correspond to spinors [5]. We will check are there such ideals (spinors) in our 

case: 

1. For Sα (13): 

Sα (τα0) =(|τα0|+ τα0)Υα(eα∧e0) = (|τα0|(τα0) + (τα0)(τα0))Υα = (|τα0|(τα0) + (τα0)2)Υα =|τα0|(τα0 + |τα0|)Υα = |τα0|Sα 

So            Sα (eα∧e0) =|eα∧e0|Sα 

2. For Šα (14) in the same way we get: 

Šα (eα∧e0) = - |eα∧e0|Šα 

Sα are called positive spinors (spinors) and are defined by formula (13); 

Šα is called negative spinors (antispinors) and is defined by formula (14).  

Then the local inhomogeneity of the electromagnetic field (12) can be written as the sum of three spinors - antispinors pairs:  

 

B = Σα(Sα + Šα)     α=1,2,3.                                                                        (15) 

Theorem: The ideals of positive and negative spinors are independent, i.e. 

Σα(nα Sα + ňαŠα) = 0     α=1,2,3.                                                                 (16) 

i.e., the condition (16) is satisfied only if all real numbers nα, ňα are simultaneously equal to zero (under the condition Sα ≠ 0, Šα ≠ 

0). 

The proof of the independence of spinors is given in Appendix 2. 

Below we present several consequences arising from the properties of spinors.  

1. The ideals of spinors and antispinors are double-sided.  

2. If a nonzero biquaternion B is a sum of spinors, then it satisfies the condition [6]: 

SαŠα = 0 

Really                              SαŠα = (|τα0|+ τα0)Υα (|τα0| - τα0)Ῡα = (|τα0|+ τα0)(|τα0| - τα0) ΥαῩα = 

= (|τα0||τα0|+ τα0|τα0| - |τα0| τα0 - τα0·τα0- τα0∧τα0)ΥαῩα =0∙1=0 

Spinors are crucial. We may get three pairs of Dirac equations by calculating the gradient from equation (15):   

Σα(∇Sα +∇ Šα) = Σα∇Bα   α=1,2,3.                                                                           (17) 

2.3 Biquaternions 

There is a lot of literature about quaternions, and their relationship with rotations and spinors  [7,8]. Therefore, we confine 

ourselves to describing biquaternions in the generalized case.  

Expanding cosh((ηα + γ φα) /2) and sinh((ηα + γ φα) /2) to the sum of arguments (in formula (3)) and separating into scalar, 

pseudoscalar, bivector and pseudobivector parts, we get a biquaternions in generalized form:  

Bα = I sα + τα0 bα + γ psα + γ τα0 pbα                                                                 (18)  

here I sα – is a scalar, γ psα – is a pseudoscalar, eα∧e0 bα – is a bivector, γ eα∧e0 pbα – is a pseudobivector. α = 1,2,3.  



It can be seen from (18) that the local inhomogeneity of the vector field B with potential A consists of the sum of three real 

quaternions I sα + eα∧e0 bα and three imaginary quaternions γ psα + γ eα∧e0 pbα.  

 

3 Conclusions 

1. The total of three independent biquaternions, rotations on the plane qα, q0 (Lorentz transformations) + ordinary rotations in 3-

dimensional space, and three spinors-antispinors pairs in generalized form makes up the local inhomogeneity of the 

electromagnetic field. 

2. Perhaps the presence of three pairs of independent biquaternions, accordingly, three pairs of spinor - antispinor are the reason 

for the existence of only three generations of leptons and quarks in four -dimensional space.    

 

Appendix 1 

We sum up SR and SP, then VR and VP from equation (7): 

SR+SP=|τα0||τβ0|cosh((ηα+ηβ)/2+γ(φα+φβ)/2)=|τα0||τβ0|cosh(zα/2+zβ/2)                                     (19) 

VR+VP = τα0|τβ0|(sinh((ηα+ηβ)/2+γ(φα+φβ)/2) - sinh((ηα - ηβ +γφα- γφβ)/2)) 

VR +VP = τα0|τβ0|(sinh((zα+ zβ)/2) - sinh((zα - zβ)/2)) 

VR +VP =2 τα0|τβ0|sinh(zα /2) cosh(zβ /2)                                                                  (20) 

Note that on the right side of equations (19) and (20) there is a summation over α and β from 1 to 3. 

Summing up (19) and (20), we get:  

B2 = |τα0||τβ0|cosh(zα/2+ zβ/2) +2 τα0|τβ0|sinh(zα/2) cosh(zβ/2) 

B2 = |τα0||τβ0|(cosh(zα/2)cosh(zβ/2) + sinh(zα/2)sinh(zβ/2)) +2τα0|τβ0|sinh(zα/2) cosh(zβ/2) 

B2 = (|τα0|cosh(zα/2)+τα0 sinh(zα/2)) (|τβ0|cosh(zβ/2) +τβ0 sinh(zβ/2)) 

Since α and β are summed from 1 to 3, we can write this equation in the form (10). Extracting from the (10), we get (3).  

 

Appendix 2 

The proof of the independence of spinors and antispinors:  

We multiply the equation (16) to (|τ10| - τ10) from left side:  

(|τ10| - τ10)n1S1 + (|τ10| - τ10)n2S2 + (|τ10| - τ10)n3S3 +(|τ10| - τ10) Σα ňαŠα =0                                            (21) 

Since (|τ10| - τ10)n1S1 = n1(|τ10| - τ10)(|τ10| - τ10)Υ1=0, then we get from (21): 

n2S2 + n3S3 +Σα ňαŠα = 0                                                                                  (22) 

So we multiply the equation (22) to (|e2∧e0| - e2∧e0): 

(|τ20| - τ20)n2S2 +(|τ20| - τ20)n3S3 +(|τ20| - τ20)Σα ňαŠα =0                                                    (23) 

Here (|e2∧e0| - e2∧e0)n2S2 = 0, therefor from (23) we get: 

n3S3 +Σα ňαŠα = 0                                                                                 (24) 



Further, repeating the multiplication (24) to (|e3∧e0| - e3∧e0), then to (|e1∧e0|+ e1∧e0), etc. and repeating the procedure, at the end, 

we get:  

(|τ30|+ τ30)ň3 Š3 = ň3(|τ30|+ τ30)(|τ30|- τ30)Ῡ3 = 0                                                 (25) 

Since neither (|e3∧e0|+ e3∧e0) nor Š3 are equal to zero in (25), it follows that ň3 = 0.  

Now we write equation (16) without the term ň3 Š3:  

Σα nα Sα + ň1 Š1 + ň2 Š2 = 0.                                                                                       (26) 

Repeating the procedure (22) - (25) with respect to equation (26), we finally get:  

ň2 (|e2∧e0|+ e2∧e0) (|e2∧e0|- e2∧e0)Ῡ3 =0,                                                                           (27) 

i.e.  ň2 =0.   Repeating these steps we can finally verify that all nα = ňα =0.  
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