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Abstract. We propose a modified primal-dual method for general con-
vex optimization problems with changing affine constraints. We establish
convergence of the method that uses variable metric matrices at each
iteration. This approach yields new opportunities for control of the pa-
rameters according to the constraints changes. In case of the multi-agent
optimization problems the method can be adjusted to the changing com-
munication topology and enables the agents to choose the parameters
separately of each other.
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1 Introduction

The standard optimization problem consists in finding the minimal value of some
goal function f̃ on a feasible set D̃. For brevity, we write this problem as

min
v∈D̃

→ f̃(v).

The feasible set D̃ is usually determined by equality and inequality constraints
involving some functions. Usually, all these functions are fixed, but may contain
some uncertain parameters. At the same time, there exist examples of applied
large-scale problems that contain superfluous constraints and variables, but only
some of them can be utilized at a given iterate. Various decentralized multi-agent
optimization problems can serve as examples of such systems; see e.g. [1–3] and
the references therein.

In [4], we presented a primal-dual method for finding a solution of these
problems. That method is a modification of the method from [5] for usual con-
strained optimization problems. In this paper we propose a further modification
of the primal-dual method, which enables us to enhance its convergence and im-
plementation properties. More precisely we now admit variable metric matrices
instead of the usual unit matrices. This approach opens new opportunities for
control of the parameters according to the constraints changes. In case of the
multi-agent optimization problems the method can be adjusted to the chang-
ing communication topology and enables the agents to choose the parameters
separately of each other.
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2 The general problem with changing constraints and its
properties

Let us consider first a general optimization problem of the form

min
x∈D

→ f(x) (1)

for some function f : E → R and set D ⊆ E in a finite-dimensional space E. The
set of its solutions is denoted by D∗, and the optimal function value by f∗, i.e.

f∗ = inf
x∈D

f(x).

It will be suitable for us to specialize this problem as follows. For each x ∈ E,
let x = (xi)i=1,...,m, i.e. x⊤ = (x⊤

1 , . . . , x
⊤
m), where xi = (xi1, . . . , xin)

⊤ for
i = 1, . . . ,m, hence E = Rmn. This means that each vector x is divided into m
subvectors xi ∈ Rn. In case n = 1 we obtain the custom coordinates of x. Next,
we suppose that

D = {x ∈ X | Ax = b} , (2)

where X is a subset of Rmn, the matrix A has ln rows and mn columns, so that
b = (bi)i=1,...,l, bi ∈ Rn for i = 1, . . . , l, and b ∈ Rln.

In what follows, we will use the following basic assumptions.

(A1) The function f : Rmn → R is convex, X is a convex and closed set in Rmn.
(A2) The set D∗ is nonempty, either X is a polyhedral set or Ax′ = b for some

x′ ∈ riX.

For brevity, we set M = {1, . . . ,m} and L = {1, . . . , l}. It is clear that the
matrix A is represented as follows:

A =


A1

A2

. . .
Al

 =
(
A⊤

1 A
⊤
2 . . . A⊤

l

)⊤
,

where Ai is the corresponding n×mn sub-matrix of A for i ∈ L. We will write
this briefly

A =
(
{A⊤

i }i∈L

)⊤
.

Similarly, we can determine some other submatrices

AI =
(
{A⊤

i }i∈I

)⊤
for any I ⊆ L, hence A = AL. Setting

FI = {x ∈ Rmn | AIx = bI} and DI = {x ∈ X | AIx = bI} = X
∩

FI , (3)

where bI = (bi)i∈I , we obtain a family of optimization problems

min
x∈DI

→ f(x). (4)
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As above, we denote the solution set of problem (3)–(4) by D∗
I , and the optimal

function value by f∗
I , so that D∗

L = D∗ and f∗
L = f∗. We intend to recall some

properties related to superfluous constraints. We will denote by F ∗ the solution
set of the optimization problem

min
x∈X

→ f(x),

and its optimal function value by f∗∗. If the set F ∗ ∩FI is nonempty for some
I ⊆ L, then f∗∗ = f∗

I and F ∗ ∩FI = D∗
I .

Definition 1. We say that I ⊆ L is a basic index set if

AIx = bI =⇒ Ax = b.

Clearly, if I is a basic index set, then f∗
I = f∗, DI = D, and D∗

I = D∗.
For each problem (3)–(4) associated with an index set I ⊆ L we can define its
Lagrange function

LI(x, y) = f(x) + ⟨yI , AIx− bI⟩

and the corresponding saddle point problem. It appears more suitable to utilize
the general Lagrange function

L(x, y) = f(x) + ⟨y,Ax− b⟩,

with the modified dual feasible set. Namely, we say that w∗ = (x∗, y∗) ∈ X ×YI

is a saddle point for problem (3)–(4) if

∀y ∈ YI , L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X, (5)

where
YI =

{
y = (yi)i∈L ∈ Rln | yi = 0 ∈ Rn for i /∈ I

}
.

We denote by W ∗
I = D∗

I ×Y ∗
I the set of saddle points in (5) since D∗

I is precisely
the solution set of problem (3)–(4), whereas Y ∗

I is the set of its Lagrange mul-
tipliers. Since D∗

L = D∗, we also set Y ∗ = Y ∗
L , i.e. W

∗ = D∗ × Y ∗ is the set of
saddle points for the initial problem (1)–(2). Properties of Lagrange functions
and their saddle points are described in detail e.g. in [6].

Observe that (5) is rewritten equivalently as follows:

AIx
∗ = bI , L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X.

Besides, if we take I = ∅, then YI = {0}, hence we can write D∗
I = F ∗ and

Y ∗
I = {0}. If assumptions (A1)–(A2) are fulfilled and I is a basic index set, then

D∗
I = D∗ and Y ∗

I ⊆ Y ∗. Also, if assumptions (A1)–(A2) are fulfilled, the set
F ∗ ∩FI is nonempty for some I ⊆ L, then F ∗ ∩FI = D∗

I and 0 ∈ Y ∗
I .

Let Q be a s× s symmetric and positive definite matrix. Then we can define
the corresponding scalar product of any points u′, u′′ and the norm of any point
u in Rs as follows:

⟨u′, u′′⟩Q = ⟨Qu′, u′′⟩ = (u′′)TQu′
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and
∥u∥Q =

√
⟨Qu, u⟩.

In case Q = E where E is the s × s unit matrix we obtain the standard scalar
product and norm. Let Q′, Q′′ be two s×s symmetric matrices and let Θ denote
the s× s zero matrix. Then Q′ ≽ Q′′ (Q′ ≻ Q′′) means that the matrix Q′ −Q′′

is positive semi-definite (definite), or equivalently, Q′ −Q′′ ≽ Θ (Q′ −Q′′ ≻ Θ).
We need two auxiliary properties of sequences of symmetric and positive

definite matrices.

Lemma 1. Suppose a sequence {Vk} of s × s symmetric and positive definite
matrices satisfies the conditions:

Vk ≽ Vk+1 ≽ V, k = 1, 2, . . . , (6)

where V is a s× s symmetric and positive definite matrix. Then

lim
k→∞

Vk = V̄ ≽ V.

Proof. It follows from (6) that ∥Vk∥ ≥ ∥Vk+1∥ ≥ ∥V ∥. Hence, the sequence {Vk}
is bounded and has limit points. Let V ′ and V ′′ be two different limit points of
{Vk}, i.e.

V ′ = lim
i→∞

Vki , V ′′ = lim
j→∞

Vlj .

For each ki there exists lj > ki such that Vki ≽ Vlj , therefore V
′ ≽ V ′′. Similarly

we can obtain the reverse inequality V ′′ ≽ V ′. It follows that

⟨(V ′′ − V ′)u, u⟩ = 0 ∀u ∈ Rs,

hence ∥V ′′ − V ′∥ = 0 and V ′′ = V ′ = V̄ . ⊓⊔

Lemma 2. Suppose a sequence {Qk} of s × s symmetric and positive definite
matrices satisfies the conditions:

(1 + αk)Qk ≽ Qk+1 ≽ Q, k = 1, 2, . . . , (7)

where Q is a s× s symmetric and positive definite matrix,

αk ≥ 0,
∞∑
k=0

αk = α′ < ∞. (8)

Then
lim
k→∞

Qk = Q̄ ≽ Q.

Proof. Set

Vk =
∞∏
i=k

(1 + αi)Qk,
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then, due to (7) and (8) we have Vk ≽ Qk ≽ Q and

Vk+1 =
∞∏

i=k+1

(1 + αi)Qk+1 ≤
∞∏
i=k

(1 + αi)Qk = Vk.

It follows that the sequence {Vk} satisfies the conditions in (6). On account of
Lemma 1 we have

lim
k→∞

Vk = V̄ ≽ Q.

However,

lim
k→∞

∞∏
i=0

(1 + αi) < ∞

due to (8), hence

lim
k→∞

∞∏
i=k

(1 + αi) = 1.

Since

Qk =

{ ∞∏
i=k

(1 + αi)

}−1

Vk,

we obtain
lim
k→∞

Qk = V̄ ≽ Q,

therefore V̄ = Q̄. ⊓⊔

3 Primal-dual method for the family of saddle point
problems

We intend to find saddle points in (5) by a modification of the method proposed
in [4]. First we note that the set of saddle points for the initial problem (1)–(2)
is nonempty under the assumptions in (A1)–(A2); see e.g. Theorems 5.2–5.3 in
[6, pp.57–59] and [7, Corollary 28.2.2]. Therefore, this is the case for each saddle
point problem in (5) associated with a basic index set I. Denote by πU (u) the
projection of u onto U . Also, for simplicity we will write Y(k) = YIk , Y

∗
(k) = Y ∗

Ik
,

etc. Then the method is described as follows.

Method (PDM). Step 0: Choose an index set I0 ⊆ L, a point w0 = (x0, y0) ∈
X × Y(0). Define a sequence {λk} of positive numbers and a sequence {Bk} of
mn×mn symmetric and positive definite matrices. Set k = 1.

Step 1: Choose an index set Ik ⊆ L, take and a matrix Bk and a number
λk > 0.

Step 2: Take pk = πY(k)
[yk−1 + λk(Ax

k−1 − b)].

Step 3: Take xk = argmin{f(x)+⟨pk, Ax−b⟩+0.5λ−1
k ∥x−xk−1∥2Bk

| x ∈ X}.
Step 4: Take yk = πY(k)

[yk−1+λk(Ax
k − b)]. Set k = k+1 and go to Step 1.
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First we observe that

pk = argmin{−L(xk−1, p) + 0.5λ−1
k ∥p− yk−1∥2 | p ∈ Y(k)}

and
yk = argmin{−L(xk, y) + 0.5λ−1

k ∥y − yk−1∥2 | y ∈ Y(k)}.

Therefore, each iteration of (PDM) involves two projection (proximal) steps in
the dual variable y and one proximal step in the primal variable x. The point
wk = (xk, yk) belongs to X × Y(k).

Lemma 3. Suppose U is a closed convex set in the space Rs, φ : Rs → R is
a convex function, u is a point in E, and Q is a s × s symmetric and positive
definite matrix. If

µ(z) = φ(z) + (2λ)−1∥z − u∥2Q, λ > 0,

and
v = argmin{µ(z) | z ∈ U},

then

φ(v)− φ(z) ≤ (2λ)−1{∥z − u∥2Q − ∥z − v∥2Q − ∥v − u∥2Q} ∀z ∈ U. (9)

Proof. Since the function φ is convex, using the squared Q-norm properties gives

µ(z)− µ(v) ≥ (2λ)−1∥z − v∥2Q ∀z ∈ U.

This inequality is equivalent to (9). ⊓⊔

In what follows we will define the matrices

Pk =

(
Bk Θ
Θ⊤ E

)
where E is the ln× ln unit matrix and Θ is the mn× ln zero matrix. Hence, Pk

is a symmetric and positive definite matrix and

⟨Pkw,w⟩ = ⟨Bkx, x⟩+ ⟨y, y⟩,

i.e.
∥w∥2Pk

= ∥x∥2Bk
+ ∥y∥2.

Proposition 1. Suppose that assumptions (A1)–(A2) are fulfilled. For any pair
w∗ = (x∗, y∗) ∈ D∗

(k) × Y ∗
(k) we have

∥wk − w∗∥2Pk
≤ ∥wk−1 − w∗∥2Pk

− ∥pk − yk∥2 − ∥pk − yk−1∥2 − ∥xk − xk−1∥2Bk

+2λk⟨yk − pk, A(xk − xk−1)⟩
= ∥wk−1 − w∗∥2Pk

− ∥pk − yk∥2 − ∥pk − yk−1∥2 − ∥xk − xk−1∥2Bk

+2λ2
k∥A(k)(x

k − xk−1)∥2. (10)
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Proof. Choose any w∗ = (x∗, y∗) ∈ D∗
(k)×Y ∗

(k). Setting φ(z) = L(z, pk), λ = λk,

Q = Bk, U = X, u = xk−1, v = xk, and z = x∗ in (9) gives

2λk{L(xk, pk)− L(x∗, pk)} ≤ ∥x∗ − xk−1∥2Bk
− ∥x∗ − xk∥2Bk

− ∥xk − xk−1∥2Bk
.

Also, using (5) with I = Ik, x = xk, and y = pk gives

2λk{L(x∗, pk)− L(xk, y∗)} ≤ 0.

Adding these inequalities, we obtain

∥xk − x∗∥2Bk
≤ ∥xk−1 − x∗∥2Bk

− ∥xk − xk−1∥2Bk
+ 2λk⟨pk − y∗, Axk − b⟩. (11)

On the other hand, setting φ(z) = −L(xk−1, z), λ = λk, Q = E, U = Y(k),

u = yk−1, v = pk, and z = yk in (9) gives

2λk{L(xk−1, yk)− L(xk−1, pk)} ≤ ∥yk − yk−1∥2 − ∥pk − yk∥2 − ∥pk − yk−1∥2.

Next, setting φ(z) = −L(xk, z), λ = λk, Q = E, U = Y(k), u = yk−1, v = yk,
and z = y∗ in (9) gives

2λk{L(xk, y∗)− L(xk, yk)} ≤ ∥y∗ − yk−1∥2 − ∥y∗ − yk∥2 − ∥yk − yk−1∥2.

Adding these inequalities, we obtain

∥yk − y∗∥2 ≤ ∥yk−1 − y∗∥2 − ∥pk − yk∥2 − ∥pk − yk−1∥2

−2λk{⟨y∗ − yk, Axk − b⟩+ ⟨yk − pk, Axk−1 − b⟩}. (12)

Now adding (11) and (12) gives the first inequality in (10). Since

⟨yk − pk, A(xk − xk−1)⟩ = λk∥A(k)(x
k − xk−1)∥2,

we conclude also that the second relation in (10) holds true. ⊓⊔

Now we can indicate conditions that provide basic convergence properties.

Theorem 1. Suppose that assumptions (A1)–(A2) are fulfilled,

∞∩
k=j

W ∗
(k) ̸= ∅ for some j ≥ 1, (13)

the sequence {λk} and the matrix sequence {Bk} satisfy the conditions:

(1 + αk)Bk ≽ Bk+1 ≽ B, k = 1, 2, . . . , (14)

for some mn×mn symmetric and positive definite matrix B, and

Bk − 2λ2
kA

⊤
(k)A(k) ≽ τE, λk ≥ λ′ > 0, k = 1, 2, . . . , (15)

for some τ > 0 where E is the mn×mn unit matrix, the sequence {αk} satisfies
the conditions in (8). Then:
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(i) the sequence {wk} has limit points,
(ii) each of these limit points is a solution of problem (5) for some I ⊆ L,
(iii) for any limit point w̄ of {wk} such that

w̄ ∈
∞∩
k=j

W ∗
(k) for some j ≥ 1,

it holds that
lim
k→∞

wk = w̄. (16)

Proof. Take any point

w∗ ∈
∞∩
k=j

W ∗
(k).

Then from (10) and (15) we have

∥wk−w∗∥2Pk
≤ ∥wk−1−w∗∥2Pk

−∥pk−yk∥2−∥pk−yk−1∥2−τ∥xk−xk−1∥2 (17)

for k = j, j + 1, . . . Due to Lemma 2 it follows from (15) and (8) that

lim
k→∞

Bk = B̄ ≽ B, (18)

hence
lim
k→∞

Pk = P̄ ≽ P,

where

P̄ =

(
B̄ Θ
Θ⊤ E

)
and

P =

(
B Θ
Θ⊤ E

)
.

It also follows from (17) and (14) that

∥wk − w∗∥2Pk
≤ (1 + αk−1)∥wk−1 − w∗∥2Pk−1

− ∥pk − yk∥2 − ∥pk − yk−1∥2

−τ∥xk − xk−1∥2 (19)

for k = j, j + 1, . . . This inequality gives

∥wk − w∗∥2P ≤ ∥wk − w∗∥2Pk
≤ C∥w1 − w∗∥2P1

where C < ∞. Hence, the sequence {wk} is bounded and has limit points, i.e.
part (i) is true. Besides, (19) gives

lim
k→∞

∥wk − w∗∥Pk
= σ ≥ 0 (20)

(see e.g. Lemma 2 in [8, p.50]) and

lim
k→∞

∥pk − yk∥ = lim
k→∞

∥pk − yk−1∥ = lim
k→∞

∥xk − xk−1∥ = 0, (21)
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hence
lim
k→∞

∥yk − yk−1∥ = 0. (22)

Let w̄ = (x̄, ȳ) be an arbitrary limit point of {wk}, i.e.

w̄ = lim
s→∞

wks .

Then there exists J ⊆ L such that J = Iks for infinitely many times. Without
loss of generality we can suppose that J = Iks for any s. Then wks = (xks , yks) ∈
X × YJ for any s, hence w̄ = (x̄, ȳ) ∈ X × YJ . Setting φ(z) = L(z, pk), λ = λk,
Q = Bk, U = X, u = xk−1, v = xk, and z = x ∈ X in (9) gives

2λk{L(xk, pk)− L(x, pk)} ≤ ∥x− xk−1∥2Bk
− ∥x− xk∥2Bk

− ∥xk − xk−1∥2Bk

= 2⟨Bk(x
k − xk−1), x− xk⟩.

Taking the limit k = ks → ∞ due to (21)–(22) and (18) gives

L(x̄, ȳ)− L(x, ȳ) ≤ 0. (23)

Also, setting φ(z) = −L(xk, z), λ = λk, Q = E, U = YJ , u = yk−1, v = yk, and
z = y ∈ YJ in (9) gives

2λk{L(xk, y)− L(xk, yk)} ≤ ∥yk−1 − y∥2 − ∥yk − y∥2 − ∥yk − yk−1∥2

= 2⟨yk − yk−1, y − yk⟩.

Taking the limit k = ks → ∞ due to (21)–(22) gives

L(x̄, y)− L(x̄, ȳ) ≤ 0. (24)

It follows from (23) and (24) that w̄ = (x̄, ȳ) ∈ W ∗
J = D∗

J × Y ∗
J . Hence, part (ii)

is also true.
Next, if

w̄ ∈
∞∩
k=j

W ∗
(k) for some j ≥ 1,

we can set w∗ = w̄ in (20). It follows now from (18) that

0 ≤ σ2 = lim
ks→∞

∥wks − w̄∥2Pks
= lim

ks→∞
{∥wks − w̄∥2Bks

+ ∥yks − ȳ∥2} = 0,

i.e. σ = 0. However, we have

∥wk − w̄∥P ≤ ∥wk − w̄∥Pk
,

therefore,
0 ≤ lim

k→∞
∥wk − w̄∥P = 0,

which gives (16) and part (iii) is true. ⊓⊔
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Let us discuss the matrix inequality in (15). Define by µ(B) the minimal
eigenvalue of B. Since

∥A⊤
(k)A(k)∥ ≤ ∥A⊤A∥

and

µ(B) ≤ µ(Bk),

it suffices to take τ < µ(B) and

λk <
√
0.5(µ(B)− τ)/∥A⊤A∥. (25)

However, taking into account peculiarities of the problem, we can utilize some
more efficient choice of the parameters. The above properties enable us to es-
tablish convergence to a solution under suitable conditions.

Definition 2. We say that I ⊆ L is a support index set with respect to the
sequence {wk} if I = Ik for infinitely many k. We say that I ⊆ L is a strongly
support index set with respect to the sequence {wk} if it is a support index set
and

inf
I=Il,k<l

sup
I=Ik

(l − k) ≤ d < ∞.

We denote by P (respectively, by P∗) the collection of all support (respec-
tively, strongly support) index sets with respect to the sequence {wk}. Also, we
set

Js =
∩
I∈P

I and J∗ =
∩

I∈P∗

I,

then clearly Js ⊆ J∗ if P∗ ̸= ∅.

Theorem 2. Suppose that assumptions (A1)–(A2) are fulfilled, the sequences
{λk} and {Bk} satisfy conditions (14), (15), and (8) for some τ > 0.

(i) If Js is a basic index set, then the sequence {wk} has limit points and each
of these limit points belongs to W ∗.

(ii) If Js is a basic index set and Js ∈ P or Js = J∗, then

lim
k→∞

wk = w∗ ∈ W ∗. (26)

Proof. Let J = Js be a basic index set. By assumption, the sets W ∗
J and W ∗

are now nonempty. Besides, W ∗
J ⊆ W ∗

(k) for k large enough, hence condition (13)

holds. Then the sequence {wk} has limit points due to Theorem 1 (i). Also, there
exists I ⊆ L such that J ⊆ I = Iks for infinitely many times. But now I is a
nonempty basic index set, hence W ∗

I ⊆ W ∗. Following the lines of part (ii) of
Theorem 1, we obtain that any limit point of {wks} will belong to W ∗

I ⊆ W ∗.
Therefore, part (i) is true.
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In case (ii) we first take the case where J ∈ P . It follows that J = Iks
for

infinitely many times. Then we have similarly that any limit point w∗ of {wks}
will belong to W ∗

J , but

w∗ ∈
∞∩
k=j

W ∗
(k) for some j ≥ 1, (27)

and (26) follows from Theorem 1 (iii).
Now we take the case where J = Js = J∗. Let w∗ = (x∗, y∗) be a limit point

of {wk}, i.e.
w∗ = lim

s→∞
wks

and let I ∈ P∗. By definition, for each ks there exists a number ls such that
I = Ils and ks ≤ ls ≤ ks + d. Due to (21)–(22) we have

w∗ = lim
s→∞

wls ,

but ylsi = 0 for any i /∈ I, hence y∗i = 0 for any i /∈ I. It follows that w∗ =
(x∗, y∗) ∈ D∗

J × Y ∗
J and (27) holds. Then (26) also follows from Theorem 1 (iii).

⊓⊔

Theorem 3. Suppose that assumptions (A1)–(A2) are fulfilled, the sequences
{λk} and {Bk} satisfy conditions (14), (15), and (8) for some τ > 0.

(i) If F ∗ ∩FL ̸= ∅, then the sequence {wk} has limit points.
(ii) If F ∗ ∩FL ̸= ∅ and each I ∈ P is a basic index set, then all the limit

points of {wk} belong to W ∗.
(iii) If F ∗ ∩FL ̸= ∅, Js is a basic index set and Js ∈ P or Js = J∗, then the

sequence {wk} converges to a point of W ∗.

Proof. By assumption, we now have F ∗ ∩FI = D∗
I , D

∗
I ̸= ∅, and 0 ∈ Y ∗

I for
any I ⊆ L. It follows that{

F ∗
∩

FL

}
× {0} ⊆

∞∩
k=1

W ∗
(k).

Therefore, (13) holds and assertion (i) follows from Theorem 1 (i). Following
the lines of part (ii) of Theorem 1, we obtain that any limit point of {wks} will
belong to W ∗

I ⊆ W ∗ where I is a nonempty basic index set. Therefore, assertion
(ii) is also true. Assertion (iii) clearly follows from Theorem 2. ⊓⊔

The conditions of part (ii) of Theorem 2 are satisfied if for instance we take
the rule Ik ⊆ Ik+1 or Ik+1 ⊆ Ik for index sets. These rules can be also applied
in part (iii) of Theorem 3. It is possible to utilize more general symmetric and
positive definite matrices Pk, i.e. apply variable metric matrices instead of the
unit matrices with respect to y as well. However, computational preferences of
this version are not clear, moreover, the method becomes very complicated.
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Variable metric matrices were applied in primal-dual alternating directions
methods for custom convex optimization problems; see [9, 10]. Their replacement
depended only on the behaviour of the method along the trajectory. Hence, these
methods did not take into account possible changes of constraints. Nevertheless,
we observe that the rules in (14) and (8) are weaker than those in [9, 10].

4 Primal-dual method for multi-agent optimization
problems

We now describe a specialization of the proposed method to the multi-agent
optimization problem

min →

{
m∑
i=1

fi(v)
m∩
i=1

Xi

}
, (28)

where m is the number of agents (units) in the system. That is, the information
about the function fi and set Xi is known only to the i-th agent and may
be unknown even to its neighbours. Besides, it is usually supposed that the
agents are joined by some transmission links for information exchange so that
the system is usually a connected network, whose topology may vary from time
to time. This decentralized system has to find a concordant solution defined by
(28).

For this reason, we replace (28) with the family of optimization problems of
the form

min
x∈DI

→ f(x) =
m∑
i=1

fi(xi), (29)

where x = (xi)i=1,...,m ∈ Rmn, i.e. x⊤ = (x⊤
1 , . . . , x

⊤
m), xi = (xi1, . . . , xin)

⊤ for
i = 1, . . . ,m,

DI = X
∩

FI , X = X1 × . . .×Xm =

m∏
i=1

Xi, Xi ⊆ Rn, i = 1, . . . ,m; (30)

the set FI describes the information exchange scheme within the current topology
of the communication network, and I is the index set of arcs of the corresponding
oriented graph. More precisely, the maximal (full) communication network with
non-oriented edges denoted by F corresponds to the set

F̃ = {x ∈ Rmn | xs = xt, s, t = 1, . . . ,m, s ̸= t} ,

i.e. each edge is associated with two directions or equations (xs = xt and xt =
xs). However, this definition of topology is superfluous. It seems more suitable
to associate each pair of vertices (agents) (s, t) to one oriented arc i, so that
L = {1, . . . , l} is the index set of all these arcs, hence l = m(m − 1)/2. In
other words, we fix only one direction of each arc and obtain the oriented graph
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G. At the same time, the agents will use both the directions of each arc for
communication. Taking subsets I ⊆ L, we obtain various constraint sets

FI = {x ∈ Rmn | xs − xt = 0, i = (s, t) ∈ I} , (31)

corresponding to the oriented graphs GI . Using non-oriented edges instead of the
arcs in GI , we obtain the communication network FI . It follows that F = FL,
G = GL, and F = FL. Next, for each arc i = (s, t) we can define the n × mn
sub-matrix

Ai = (Ai1 · · ·Aim) ,

where

Aij =

 E, if j = s,
−E, if j = t,
Θ, otherwise,

E is the n× n unit matrix, Θ is the n× n zero matrix. Then clearly

FI = {x ∈ Rmn | AIx = 0} ,

where

AI =
(
{A⊤

i }i∈I

)⊤
,

which corresponds to the definition in (3) for bI = 0 and any I ⊆ L, hence we
can set A = AL. Therefore, our problem (29)–(31) corresponds to (3)–(4).

In what follows, we will use the following basic assumptions.

(B1) For each i = 1, . . . ,m, Xi is a convex and closed set in Rn, fi : Rn → R is a
convex function.

(B2) The set D∗ = D∗
L is nonempty.

These assumptions imply (A1)–(A2). If the graph FI for some I ⊆ L is con-
nected, then I a basic index set. Now we present an implementation of Method
(PDM) for the multi-agent optimization problem (29)–(31), where each agent
(or unit) receives information only from its neighbours. Given an oriented graph
GI and an agent j, we denote by N+

I (j) and N−
I (j) the sets of incoming and

outgoing arcs at j. Since many oriented graphs GI are associated with the same
graph FI , we suppose that agent j is responsible for calculation of the current
values of the primal variable xj and all the dual variables yi and pi such that
i ∈ N−

I (j). That is, we will fix the oriented graph G and its subgraphs GI such
that agent j is associated with all the outgoing arcs for vertex j. The general
Lagrange function for problems (29)–(31) is written as follows:

L(x, y) = f(x) + ⟨y,Ax⟩ =
∑
j∈M

fj(xj) +
∑
i∈L

⟨yi, Aix⟩ (32)

=
∑
j∈M

fj(xj) +
∑

i∈N−
L (j)

⟨yi, xj⟩ −
∑

i∈N+
L (j)

⟨yi, xj⟩

 .
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The saddle point problems are defined in (5). Next, the method involves the
auxiliary matrix Bk at each k-th iteration. We will take it to be block-diagonal,
i.e.

Bk =


B1

k Θ . . . Θ
Θ B2

k . . . Θ
. . . . . . . . . . . .
Θ Θ . . . Bm

k

 (33)

where Bs
k is an n × n symmetric and positive definite matrix for s ∈ M and Θ

is the n×n zero matrix. As in Section 3, for simplicity we will write Y(k) = YIk ,
Y ∗
(k) = Y ∗

Ik
, etc.

Method (PDMI). At the beginning, the agents choose the communication
topology by choosing the active arc index set I0 ⊆ L. Next, each s-th agent
chooses x0

s and y0i for i ∈ N−
(0)(s) and reports these values to its neighbours.

This means that y0i = 0 for i /∈ I0. The agents define a common sequence {λk}
of positive numbers. Separately, each s-th agent chooses a sequence {Bs

k} of n×n
symmetric and positive definite matrices.

At the k-th iteration, k = 1, 2, . . ., each s-th agent has the values xk−1
s and

yk−1
i , i ∈ N−

(k−1)(s), and the same values of its neighbours. The agents choose

the current communication topology by choosing the active arc index set Ik ⊆ L
and determine the stepsize λk. This means that they set yki = 0 for i /∈ Ik.

Step 1: Each s-th agent sets

pki = yk−1
i + λk(x

k−1
s − xk−1

t ) ∀i = (s, t), i ∈ N−
(k)(s). (34)

Then each s-th agent reports these values to its neighbours.
Step 2: Each s-th agent calculates

vks =
∑

i∈N−
(k)

(s)

pki −
∑

i∈N+
(k)

(s)

pki

and
xk
s = arg min

xs∈Xs

{
fs(xs) + ⟨vks , xs⟩+ 0.5λ−1

k ∥xs − xk−1
s ∥2Bs

k

}
(35)

and reports this value to its neighbours.
Step 3: Each s-th agent sets

yki = yk−1
i + λk(x

k
s − xk

t ) ∀i = (s, t), i ∈ N−
(k)(s). (36)

Then each s-th agent reports these values to its neighbours. The k-th iteration
is complete.

We observe that the agents do not store the dual variables related to the
inactive arcs, i.e. yki = 0 for i /∈ Ik. If some arc i = (s, t) /∈ Ik−1 becomes active
at the k-th iteration, i.e. i ∈ Ik, then agent s simply sets yk−1

i = 0. Due to (32),
relations (34)–(36) correspond to Steps 2–4 of (PDM), respectively. Hence, the
convergence properties of (PDMI) will follow directly from Theorems 2 and 3.
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Corollary 1. Suppose that assumptions (B1)–(B2) are fulfilled, the sequences
{λk} and {Bk} satisfy conditions (14), (15), and (8) for some τ > 0.

(i) If Js is a basic index set, then the sequence {wk}, wk = (xk, yk), generated
by (PDMI) has limit points and each of these limit points belongs to W ∗.

(ii) If Js is a basic index set and Js ∈ P or Js = J∗, then (26) holds.

Corollary 2. Suppose that assumptions (B1)–(B2) are fulfilled, the sequences
{λk} and {Bk} satisfy conditions (14), (15), and (8) for some τ > 0.

(i) If F ∗ ∩FL ̸= ∅, then the sequence {wk}, wk = (xk, yk), generated by
(PDMI) has limit points.

(ii) If F ∗ ∩FL ̸= ∅ and each I ∈ P is a basic index set, then all the limit
points of {wk} belong to W ∗.

(iii) If F ∗ ∩FL ̸= ∅, Js is a basic index set and Js ∈ P or Js = J∗, then the
sequence {wk} converges to a point of W ∗.

Convergence of (PDMI) requires for all the agents to choose the common
stepsize λk and the matrix Bk in accordance with (14), (15), and (8) at the k-th
iteration. The usual choice Bk = E was taken in [4], then the stepsize λk must
satisfy the condition

λk ∈
[
τ, 0.5

√
(1− τ)/v(FIk)

]
(37)

for some τ ∈ (0, 1), where v(FIk) is the maximal vertex degree of the graph
FIk ; see (25). In case of varying communication network topology the agents
may meet difficulties in evaluation of v(FIk) and should take some its upper
bound ũ = v(FI) in (37) so that FI ⊇ F(k). For instance, they can simply take
ũ = v(F) as in the fixed full graph case. However, setting this value in (37) may
lead to the very small stepsize λk and slow convergence.

We intend to show that the agents are able to provide conditions (14), (15),
and (8) independently with respect to the variable metric matrices. First of all
we note that

A⊤
Ik
AIk = HIk ⊗ E =


G1

k

G2
k

. . .
Gm

k

 ,

where HIk is the Kirchhoff matrix of the graph FIk , E is the n× n unit matrix,
⊗ denotes the Kronecker product of matrices, Gs

k =
(
Gs1

k · · ·Gsm
k

)
is the n×mn

sub-matrix such that

Gst
k =

vskE, if s = t,
−E, if (s, t) ∈ FIk ,
Θ, otherwise,

vsk is the degree of vertex s in the graph FIk , Θ is the n×n zero matrix. Due to
(33), relation (15) can be fulfilled from the separate comparison of the matrices
Bs

k and Gs
k by each s-th agent. For instance, one can take

Bs
k = (1 + βk,s)ṽ

s
kE, βk,s > 0 for s ∈ M, (38)
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where ṽsk is some estimate of vsk. By using the Gershgorin theorem (see Theorem
5 in [11, Chapter XIV]), we obtain that (15) holds if

(1 + βk,s)ṽ
s
k − τ > 4λ2

kv
s
k for s ∈ M. (39)

This means that we can take the suitable fixed stepsize value λk = λ for all the
agents in order to avoid additional communications. For instance, if ṽsk = vsk and
we set λk = 1 for all the agents, then we should choose βk,s > 3, then (15) holds
for

τ < min
s∈M

{(βk,s − 3)vsk}.

Also, if ṽsk = vsk and we set λk = 0.5, then it suffices to choose any βk,s > 0, then
(15) holds for

τ < min
s∈M

{βk,sv
s
k}.

This rule together with (39) has clear preference over (37) even in the case of the
fixed communication network topology or centralized systems since the matrices
Bk take into account the possible non-regularity of the graph. At the same time,
each s-th agent can choose his/her own value βk,s without any information from
the other agents, as indicated above. In comparison with (37), this approach
seems much more efficient just for the multi-agent systems.

In order to satisfy (14) and (38), the choice of parameters must be subordi-
nated to the conditions

0 < (1 + βs)v
s ≤ (1 + βk+1,s)ṽ

s
k+1 ≤ (1 + αk)(1 + βk,s)ṽ

s
k,

where the sequence {αk} satisfies the conditions in (8). In case of stationary or
non-increasing topology it suffices to take ṽsk = vsk and the constant values of
βk,s = βs, then the metric matrices Bk will correspond to the network topology.
In case of non-monotone varying topology the separate agents can apply different
strategies to satisfy the conditions in (14) and (38) by proper choice of βk,s and ṽsk
instead of the exact values vsk if necessary. It is supposed that each agent after
some finite number of iterations can evaluate the behaviour of joining edges,
in particular, the further upper and lower bounds of vsk. Afterwards, he/she
can simply take the upper bound us = ṽsk in (38) instead of the exact current
values vsk and fixed values of βk,s. Afterwards, the upper bound us = ṽsk can be
decreased if some edges become inactive. The other way consists in applying the
exact current values vsk, but the evaluation of both the possible upper and lower
bounds of vsk and changing βk,s. It is suitable if the behaviour of the network
topology is cyclic or if the difference between the upper and lower bounds is
rather small. This approach makes the control process more smooth 1. Next,
we have to choose the fixed basic topology that corresponds to an arc index set

1 After obtaining the main results of the paper, the author found that variable metric
matrices were applied in [12] in similar primal-dual methods for multi-agent opti-
mization problems. However, these matrices are used in [12] as a general tool for
enhancing convergence properties, since they are used in the same manner both for
the stationary and varying topology cases. Moreover, the methods in [12] are based
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J0 ⊂ L so that it gives the connected graph FJ0
and J0 ⊆ Ik for any k. This

means that all the arcs in J0 remain always active. The status of the other arcs
may vary from time to time. This approach provides convergence properties. In
general, most known iterative methods for multi-agent optimization problems
utilize some other models of the changing communication topology; see e.g. [13–
15].
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