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Abstract: The paper presents the relation between line and surface integrals in Clifford algebra (£4) and, in particular, in
Cartesian space (&3). The bijection between hypercomplex numbers and elements of space &, in particular &3, has been
set. The generalized Stokes theorem and Cauchy's integral theorem are generalized and combined into one. The physical
interpretation of the formulas is in accord with the laws of the circulation of the electromagnetic field and gives some
nontrivial results.
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Introduction

The bijection between vectors and complex numbers is obvious from the theory of functions of a complex argument
in two-dimensional flat space [1]. But this doesn’t seem obvious in a many-dimensional space (d > 2). We shall search
for the relation between line and surface integrals in Minkowski space and three-dimensional Euclidean space in
Clifford's algebra in this article. Bijection between hypercomplex numbers and elements of Clifford's algebra (spaces &
and &3) makes it possible to generalize linear and superficial integrals in a hypercomplex space. We will use the Pauli
matrices o,(0=1,2,3) (because the space signature is +++) as basis vectors in the case of a 3-dimensional space and the
Dirac matrices yi(i=0,1,2,3) for the Minkowski space (-+++).

Results
I. Spatial case (d=3)

Let a positively oriented surface D with contour | be given in the space XYZ (Figure 1). The normal n makes an angle

a, B, y with the coordinate axes X, Y, z.

Fig. 1

Let a vector-function A(X,y,z) =c1A1(X,Y,2) + 62(X,y,2) + o3A3(X,y,2) be given in a domain D.

We will consider the integrals of $ A dl and [[(VA)ds in 3-dimensional Euclidean space.
l D



here dl = 61dx + o2dy + o230z is the elementary arc length (vector);
ds = nds = (6102€0Sy + 6203C0Sa + 6361C0SH)ds is the surface element;
0203C0Sa 0S= io1dydz; ©3061C0SH ds= ic2dzdX; ©162C0Sy ds= icsdxdy;
V = 610,t020,+630; is the nabla symbol,
N = 6162C0Sy + 62063C0Sa + 6361C0SH is a positively oriented normal to the surface D.

According to Clifford product of vectors [2]

$Adl=¢ Aedl+§ ANdL (1)
l l l
[f(VA)ds = [[(VeA)ds + [[(VAA) «ds + [[(VAA)Ads (2)
D D D D

We will prove some complex analysis theorems for three-dimensional space.

Theorem 1. The following formula is correct:

g{SAcu: f{)(VA)ds @)
or
ng-dl=f£(V/\A)-ds (4)
%SA/\dl=flf)(V-A)ds (5)
flf)(VAA)/\ds=0 (6)

The proof of Theorem 1 is given in Appendix 1.
So we get the generalized Stokes formula (3), or (4), (5), (6).

When integrating, we assumed that the domain D is simply connected and that the function itself has no singularities
in the domain D.

We will not consider splitting a non-simply-connected domain into simply-connected domains, since this procedure is

sufficiently described in the classical literature [4].
Now we consider the case when the function has singularities in the integration domain.

Theorem 2



Let the function A(x,y,z) with its first derivatives be defined at all points in the domain D. In other words, the function

is analytic in the domain D. Then the following formula is correct:

glﬁAcu:o, (7)

i.e., if the function A(x,y,z) is analytic in the domain D, then the closed-loop integral | in this domain D is equal to zero.

Conversely, if the line integral on the closed-loop | is equal to zero (7), then the function is analytic in the domain D.

Proof. We will expand the integral ¢ A dl over the surfaces X0Y, YOZ, and ZOX. For example, on the X0Y plane, this
1

integral has the form:

¢ A dl = § (O-lAl + 0-2A2)(O-1dx + szy)
13 13

We transform the integrand

¢ Adl = § (0-0141 + 0'20'1A2)(0'0dx + 0'10'2dy) = ¢ (0-0141 - iO-3A2)(O-0dx + lO'3dy)

13 13 13
Since the function A (2)=c0 A1 + io3 A2 Z=c0 X + io3Y) is analytic, i.e., the Cauchy-Riemann condition is satisfied (when
changing Az — - Ay):

oay _2dy M _ 3

ax oy’ oy ox'’

then the integral on the closed-loop I3 is equal to 0. The proofs are similar for the planes YOZ and Z0OX. Theorem 2

(formula (7)) is proved.

Now, we assume that in the D domain the A(r) function has a simple pole i.e. a singularity of the form:

A =12 (8

r—rj
Theorem 3

If the function A(r) is analytic in the domain D, except at the point r0, and has a simple pole (8) in this point, then the

following formula is correct:

$ L2 a1 =2imnf(ry) 9)
1 0

T
here n is normal to the surface.

Proof. We'll change the integral.

r—

f f(r)dl — ? f(r)—f(r0)+f(r0) dl — ? f(rr)'::(ErO) dl + f(TO)?

al
r—To r—To To



f@)—f(ro)

e = f'(r) atr—ro.

Of course, the first integral is equal to 0:

(r)—f(ro) ’
§ Lo dl=§ £ dl = f@), =0

Projecting the second integral ($ %) onto the X0Y, YO0Z, and Z0X planes and replacing r = r— ro, we get:
1 T To

¢ dl — ¢ o,dx+o,dy+o3dz . ¢ aldx+0'2dy+¢ 0'1dx+a3dz+ o,dy+o3dz

1 r—ro 1 01X+0,y+03Z 13 o1X+02y 12 01X+03Z 11 0,y+03Z

For each integral, we apply the proof of Cauchy's integral formula [5].

ﬁ oi1dx+o,dy — fﬁ dx+o,0,dy — § dx+iozdy _ . x f27trei°'3<ﬂ

For example, 0 o030

do = 2mio;

i3 O1X+02y i3 X+t0102y i3 x+iozy
In the calculation, we applied the parameterization x + iozy = re'?s?, ¢€[0;2x].

After all, we have

—= 2mi f(ry) (o cosa + a,cosB + azcosy) = 2min f(ry)

f(ro) Ef

dl
To
Theorem 3 (formula (9)) is proved.

Formula (9) is a generalization of the integral formula of Cauchy for three-dimensional space.

Corollary
If the A(x, y, z) function has all the derivatives up to k-order and has the form % then the following formula is
—To
correct:
¢ LD _ 2 minkl F®(ry) (10)

f (r—ro)k"'l
By combining (6), (7), and (9), we can conclude:
1. If the A(x,y,z) function is analytic in the D domain, then the following formula is true:

$Adl=¢ Aedl+ ANl = [[(rotA)sds+i [[(divA)ds = 0 (12)
l l l D D

Separating (11) into symmetric (real) and antisymmetric (imaginary) parts, we get the classical formulas:

¢ Aedl= [[(rotA)eds =0 (11.a)
l D



gﬁlA Adl = f{) (divA)ds =0 (11.b)

2. If the function has a simple pole, i.e. has the form A(r) = % then the following formula is true:
—To
¢ Adl=¢ Aedl+$ANdl = [[(rotA) eds +i [[(divA)ds = 2mif (1) (12)
1 1 l D D

Separating (12) into symmetric (real) and antisymmetric (imaginary) parts, we get the classical formulas:

¢ Aedl= [[(rotA)eds =0 (12.a)
l D

$ANdL =i [[(divA)ds = 2mif (o) (12.b)
l D

Formula (12) unites the Generalized Stokes formula (11) with the Generalized Cauchy's integral formula.

I1. Space-time case (d=4 — Minkowski space)

Now we consider the relationship between the integral line (§ A dl) and the integral surface (ff( VA)ds) in the
1 D

Minkowski space. As a basis, Dirac's matrices are used in the following representation:

o _ [90 0 a_[0 o,
¥ =lo —00]’y _[iaa 0

where g; are Pauli matrices.

We consider the function 4 = yiAi(xj). Leave a positively oriented hypersurface D with its boundary | is given in the

TXYZ space.
Theorem 4

The following formula is correct
$ Adl= [[(VA)ds (13)
l D

Here dl =y'dx; V =yld; is the nabla operator;
dS=Nds is an element of the 4-dimensional hyperplane S;
N=y%*cosao1+y’y2cosao2+y v cosaos+y*y cosai+yly3cosais+y®y2cosays is the normal to the surface S;

o1, aoz,... are the angles between N and the direction vectors of the hyperplanes TX (y%?), TY(y%?), etc. In other

words, coSao1, COSany,... are direction cosines.



Xo=t, X1=X, X2=Y, X3=Z;

Yy'cosands= yoy'dtdx;  yPy’cosands= y%y’dtdy;  y%y’cosaosds= y%y®dtdz; y?y'cosasods= y*y'dxdy; Yy cosaisds=
yldxdz;  yPycosassds= yy?dydz;

In Minkowski space, the line integral of the function A over the contour I is equal to the surface integral of VA over
the domain D bounded by the contour I. Theorem 4 (formula (13)) is a specific case (4 dimensions) of a mixed Hodge
structure [6].

Taking into account Clifford product, also F=VAA, equation (13) is written as:

$Asdl+$§ANdl= [[(VeA)dS+ [[FedS+ [[FAdS (14)
l l D D D

Comparing the left and right sides of the equation (14) similar to (3), (4), (5) and (6), we get:

$Aedl= [[FedS (14.1)
l D
$ANdl= [[(VeA)dS (14.2)
l D
J[FAdS=0 (14.3)
D
0 io 0 io: 0 io
- 0,1 _ 11..,0.,2 _ 21.,,0,,3 31.
Note: yoye = [—ial 0 ],y Yo = [—iaz 0 ],y o= [—i03 0]

2.1 _[tos 07 1 5 [ioy 0]. 32_[i0'1 0]
rv=lo iag]’y _[0 io,]’ = '

0,0 — _

Yoyl = —ylyt = —y?

yr==vy =

The proof of Theorem 4 (formula (13)) is given in Appendix 2.

Now we will prove theorems for the Minkowski space, like a 3-dimensional space, thus generalizing them.

We skip to divide a non-simply connected domain into simple connected ones, since this method was described many

things in classical literature.
Theorem 5

If the function A=y'Ai(x;) and its first derivatives are defined in all points of the domain D, i.e., if it is analytic in the

region D, then the following formula is true:



$ Adl=0 (15)

If the function A=y'Ai(x;) is analytic in the domain D, then the line integral along the closed-loop | is equal to zero. And

vice versa, if (15) is satisfied, then the function is analytic.

We present Theorem 5 without proof because it is similar to the three-dimensional case.

Now we consider the case where the A=y'Ai(x;) function in the D domain has a singular point (the four-dimensional

pole):

_ f
Alp) = P—po

where p = y'x; is a 4-dimensional radius vector or interval; dl = dp; f (p) is a scalar function. “Einstein notation”

indices mean summation.
Theorem 6

Let the function A(p) be analytic in the domain D except at the point p,. Let the function A have the first-order pole at

the point py, i.e., one has the form %. Then the following formula is true:
—Fo

%5 %dl = 21ti Nf (po) (16)

N =y%cosay; +¥°y? cosay, + ¥°y3 cosays + y2yt cosay, + yly3 cosayz + ¥3y? cosas, isthe normal.
In other words, the formula (16) is a generalization of Cauchy's integral formula in the Minkowski space.
Proof. We transform the integral:

l l - ~Fo

1 P~Po P—Po Po 1

The expression under the first integral is the derivative at p — p,. This integral is equal to zero:

$ lim wdl =¢ f'(p)dl=f(p); =0
1 P—Po P—Po l

Since the function f(p,) = const in the point p,, we will consider the integral § %. We project this integral over
1 P=Po

hyperplanes and perform a parameterization (t —t, = t,x —Xo =X, Y — Yo = ¥, Z — Z):

ﬁ dl _¢y°dt+y1dx+y2dy+y3dz_
1 P=Po 7 YOt+ylx+yly+ydz



_ fﬁ yOdt+ytdx 45 yodt+y?dy 4)- yOdt+y3dz gs yldx+y?dy 45 yldx+y3dz y2dy+y3dz
wwox YOUrYix o poy YOURYEY o ypoz ¥OURYEZ o yxoy VIXAYEY g0z VIXHYEZ O yoz vEHYRzZ

We consider each integral separately. For example, for the "purely spatial” plane X0Y:

0 ioq 0 o, 0 o; 0 oy
yldx+y?dy [ial 0 [2* [iaz 0 | [01 O]dx+[<fz O]dy

ylx+y2y 0 1oy 0 io, - [0 0'1] [0 0'2]
lXoy lxoy [i01 0 x+ ig, 0 y lxXoy o, 0 x+ o, 0 y

— goidx+oydy _ copdx+oi0,dy _ opdx+iozdy . 2m reld3® _ .
$ o1x+ay $ oox+a10,y $ ooX+iozy 103 €OS (12 fO relo3® de = 2mioz cos as,
LXoy LXoy X0y
For the planes YOZ and X0Z, the proof is similar.
For "purely time" hyperplanes, for example, TOZ:
gy O 0 iog .
yldt+y3idz Idt+y°y3dz 0 o dt+[—i03 0 ]dz _ oodt+iogdz ) 21 petiosn
Ofav3, 0,3, § gy O 0 io = § ; = tio3 cos a3 fo Tiogn AN =
iroz YUYYCZ o qroz THYYZ poz [00 ] [ ) 31z 1Toz Oot*iosz pe=
(o) —ioz3 O
+2mio; cos ag3
For the planes TOX and TOY, the proof is similar.
Summing up all the integrals over the planes, we get the equation (16). Theorem 6 is proved.
Note.
Here 7 is the rapidity, tanh(n) = 2, visthe speed, c is the speed of light in vacuum. On the real (physical) plane

c

—oo < 11 < 400, but on the complex plane (ct, ix), n is the imaginary "rotation" angle — in. Therefore, we can formall
n plexp n ginary g n y

take the boundaries 0 < in < 2m, since e¥93" = g, cosn + io3 sin7. This is the main point of Dirac matrices

acceptance in our representation.

Corollary

f(p)

If the function A(t,x,y,z) is k-times differentiable and has the form opayFH
—Fo

then the following formula is true:

f(p)d ;
§ mpoir = 2T N KO (po)

Generalizing Theorems 4, 5, and 6 (formulas (13), (14), (15), and (16)), we can conclude:

1. If the function A=y'Ai(x;) is analytic at all points of the domain D, then the following formula is true:

$Aedl+FANdl= [[(VeA)ds+ [[(VAA)eds+ [[(VAA)Ads =0
l l D D D

or ¢ Aedl=[[(VAA)sds=0
l D

(17)

(18)

(19)



gﬁlA Adl = f{)(V-A)ds =0 (20)
flf)(V/\A)/\ds=0 (21)

2. If the function A=y'Ai(x;) is analytic in the domain D, except at the point p, also one has a so-called 4-dimensional

pole of the first order at this point r (it has the form A(p) = f(0)/(» — po)), then the following formula is true:

%SA-dl+5ﬁlA/\dl =f{)(V-A)ds+f{)(V/\A) -ds+f£(V/\A)/\ds = 2mi NA(p,) (22)

or fA-dlzf{)(V/\A)-dszO (23)
gﬁlA/\dl =f{)(V-A)ds = 2mi NA(p,) (24)

flf)(V/\A)/\ds:O (25)

Formulas (18) and (22) unite Stokes' theorem with Cauchy's generalized integral formula in a four-dimensional pseudo-

Euclidean space.

The physical meaning of the formulas (18) - (25) will be considered in the next section.

Physical interpretations

By comparing the formula (2.1) with (2.3) of Appendix 1, also taking into account the components of the
electromagnetic field tensor F, we can write the formula (23) in the form:

$ (Aodt — Aydx — Apdy — Asdz) = [[((Eydx + E,dy + E,dz)dt — B,dydz — B,dxdz — B,dxdy) = 0
l D

or
¢ (Agdt —Aedr)= [[Eedrdt— [[Bends=0 (26)
! D D

Simply put, the circulation of the 4x potential of the electromagnetic field A=y'Ai(x;) and the flux of the electric field E

and the magnetic field B (more precisely, their difference) through domain D is equal to zero.

Equation (24) interests us better. We expand this equation into elements of the basis y*:

l l

10
+[y 7] @1sdy — 4,d2) + 0, (41dz = A3dx) + 05(Azdx — A1dy))) 27)

[[(Veyds=i[f(Ved)|° 1] (ordx +opdy +asdnydt + [} O] (ordzdy + opdxdz + ozdyd)) (28)
A ) 10 0 1



2mi NA(po) = ~2mA(po) ([ °) o|nr+ [y ]mo) (29)

Comparing (27), (28), and (29), simplifying and dividing by the elements of the matrix y*, we get:

$(Agdr — Adt) = [[(V e A)nrpdsy = 2miA(py) ny (30)
I DT

Np = 0, COS Ay, + 0, COS Ay, + 03 COS A3 IS the "time" vector of the surface normal.

$A xdr= [[( VeA)n,ds, =2niA(py)n, (31)
IXYZ DXYZ

n, = 0, COS A3, + 0, COS A3 + 03 COS @yq IS the "spatial™ vector of the surface normal;
A X dr is an ordinary vector product of vectors.

n,ds, = o;dzdy + o,dxdz + o3dydz; nydsy = (01dx + o,dy + o3dz)dt; T € XYZ,DT ¢ XYZ
Corollary:

Even if the 4th potential of the vector field A=y'Ai(x;) has a singularity at point p, and at other points of the domain D is

analytic, then

1. According to the formula (23), the circulation ¢ A  dl of the vector function A=y'Ai(x;) and the flow [f F « ds of the
l D

electromagnetic tensor through the plane D are equal to zero. In particular, if A, = 0 and A are not time dependent, the

form (23) is as follows:

¢ Aedr= [[Ben,ds=0,
XYz DXYZ

l.e., the circulation of the 3-dimensional potential of the electromagnetic field A and the flux of the magnetic field B are

equal to zero. This is Gauss’s theorem.

2. According to the formulas (30) and (31), the divergences through the surfaces DT and XYZ are equal to the 3-
dimensional residues (2riA(p,) nr, 2miA(py)n,) of the A=y'Ai(x;) function. In particular, if n,, = const, then we get

the classic formula:

[[( Vs A)ds, = 2miA(py).
DXYZ

From a physical aspect, the divergence is the source of the field. So we can conclude that the multidimensional residues

of the functionality found in the article means the source, i.e. current (charge) of the electromagnetic field.
Discussions and Conclusions

1. The relationship between the line and surface integrals in 3-dimensional Euclidean space and in Minkowski space

was considered in Clifford algebra.



2. The Stokes theorem and the integral theorem and the Cauchy formula for hypercomplex numbers were generalized
and combined.

3. The physical interpretation of the formulas (26) - (31) indicates a correspondence between the laws of
electromagnetism and the theory of generalized hypercomplex analysis: between the circulation of the vector potential A

and the flow of the electromagnetic tensor F with the generalized Stokes formulas and the Cauchy integral formula.

4. Formulas (30) - (31) establish the correspondence between the generalized 4-dimensional residues and the 4-
dimensional electromagnetic current (charge). In other words, the electromagnetic current (charge) is a 3-dimensional
residue of the vector function A.
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Appendix 1.

Taking into account formulas (1) and (2), we write the integrals § Adl and [f( VA)ds of equation (3) in the coordinate
l D

form:

¢ Ae dl = 0-0 §(A1 dx + Azdy + A3dZ) (11)
l l

§ A /\dl == l¢ (O'l(Ade - A3dy) + 0'2(A3dx - Ale) + 0'3(A1dy - Azdx)) (12)
l l
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[[(V A« ds = a0 [[ (G2 = Gdydz + (G2 = FThdzdx + G2 =Bdxdy)  (13)
ff(v e A)ds = sz( G % + 289 (0,dydz + 0,dzdx + o3dxdy)) (1.4)
ff(V/\A)/\ds = ff(al(‘”‘z —‘“3) + oy (52— 2y 4 ("’ﬁ—"’ﬁ))A(aldydz+azdzdx+agdxdy) =0 (L5

We equate equation (1.1) to (1.3) because both equations are “scalar” (co). We also equate equation (1.2) to (1.4), since

both of them are “vectors” (o,). Equation (1.5) is equal to zero. Now we will prove all this.

1. We project equation (4) (respective integrals) on the X0Y, YOZ, Z0X planes (Fig. 1) and apply the proof of Green's
theorem for each plane [3]. For example,

§(Ardx + Aydy) = [[(52 = FBdxdy) ete.

2. We project the double integral on the right side of equation (5) onto the planes X0Y, YOZ, and Z0X and transform it

into the line integral. For example, (Fig.2)

Va(x)

" ;3
xi(y), )
> _//

X

b1

0

>1v

Fig.2.

lff(aA1+aA2)a3dxdy 103<ﬂ — dxdy +ff dedy)
3

D
= ioz [ dy (A1(x2,¥) — A1 (x1,¥)) + i03 [ dx (A (x,¥1) — Ay (x, 7)) =
- lﬁ O-3A1dy_i¢0-3A2 d.x: lﬁ 0-3 (Aldy_Azdx) etC
i3 13 i3

3. For equation (6) (or (1.5)) we also project the integrals onto the planes. For example,

ff(v AA) Ads = ff(alaz(% - ‘“3)dzdx + 0,0, (52 - Ly dydz) = 0

Since dz=0 on the XQY plane, the integral is also equal to zero. In addition, the thrice-outer product of the basis vectors

in three-dimensional space is equal to zero: o, Aog Ao Aoy, = 0, because a#f#1#u, and a, B, 4, u=1,2,3.

Theorem 1 is proved.



Appendix 2

Proof of formula (13) (or (14)).

We decompose the TXYZ space, respectively, the ¢ Adl and [[(VA)dS integrals into subspaces (planes) X0Y, Y0Z, Z0X,
l D

TOX, TOY, TOZ.

1. We can write the left side of the equation (14) at the coordinates, separating it into the symmetric ($ A « dl) and
l

antisymmetric (¢ A A dl) parts.
f

g{SA.dz = [”00 ;)0] g{i(Aodt—Aldx—Azdy—A3dz) (2.1)

0

wZ](AOdy Azdt)++[ "

0
§and =9 [_“,1 “’1] (Agdx — A;dt) + [ o “’3] (Agdz — Azdt) +

0, 0
[“83 o ] (Aydx — Aydy) + [“’2 ] (Aydz — Agdx) + + “51 o ] (Aydz — Asdy)) (2.2)
3 1

2. Taking into account VAA =F and separating in the same way the right side of the equation (14), we get:

[[ Fods = [“00 00 ] [[(Foydtdx + Fopdtdy + Fosdtdz + Frpdxdy + Fsydxdz + Fyadydz) (2.3)
D ol p

f£(V-A)dS=f£(VoA)([_?61 “’1]dtd +[ ?02 mz]dtdy+[ ?J ‘(’)3]dtdz++ Lo ]dydx+
[“’2 ]dxd +[ ]dydz) (2.4)

ff FAdS = [ o ] [f(Fo1dydz + Fy,dzdx + Fysdxdy + Fy,dtdz + F31dtdy + F,3dtdx) (2.5)
0

Other terms (integral (2.5)) are equal to zero.
Comparing (2.1) with (2.3), and also (2.2) with (2.4), we get the equations (14.1), (14.2), and (14.3).

It is now sufficient for us to consider all the subspaces and generalize the preceding theorems (case d=3) and apply the
results of Appendix 1.

To prove equation (14.1), the integrals ¢ A ¢ dl and [f Fe dS must be expanded into integrals over the planes X0Y,
1 D

Y0Z, Z0X, TOX, TQY, TOZ, and the proofs of Green's theorem must be applied to each.

1. For example, for planes XQY, Y0Z, Z0X there will be

§ (= Mrdx—Aydy) = JI( 5 Lt
LX0Y

)dxdy, etc.



For the planes TOX, TOY, TOZ, the proofs are a bit different, since these hyperplanes are complex, unlike X0Y, Y0Z,
Z0X.

99 (Apdt — Aydx) = ﬂ(% - aAl)d dx

Changing A; — iA;,x — ix, etc., we get the usual Green's theorem:

04, .04,

sﬁ(Aodt+A dx) —ff(l——l—)ldtdx _ ff(aAl_aAo

29y dtdx, etc.

Summing up all the integrals in all subspaces, we get the equation (14.1).

2. We now consider equation (14.2). Also, as in the previous case, we divide the integrals $AAdI and pff (VeA)dS into
subspaces. We apply paragraph 2 of Appendix 1.

For example,

io 0 io A, 04 _ [io dA

o] $ (rdx-man =T o] 1= - Leyayar = - [T | (2 dyd + 122 dyd),
1031 1oy 03] pxoy iog] ™ 0x ony

etc.

Also for “time” planes:

[ 0w 5ﬁ(A0dz—A3dt)=[ 0 ‘03] [[( 2o -2y atdz = [ 0 “’3] (I 2o dedz — [ 22 dedz), ete,

—to3 0 |70z —lo3 DT0Z k] ook oz

3. For equation (14.3), we also apply point 3 from Appendix 1. Formula (14.3) is also proved by dividing into purely

"spatial” and "time" hyperplanes.

Theorem 4, i.e. equation (14), respectively (14.1), (14.2) and (14.3) are proved.

Note This paper is a partial translation and a more mathematically general and strictly proven version of the author’s

article in Russian, published in the reviewed journal: https://sci-article.ru/stat.php?i=1562874175
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