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Abstract: The paper presents the relation between line and surface integrals in Clifford algebra (ℰ4) and, in particular, in 

Cartesian space (ℰ3). The bijection between hypercomplex numbers and elements of space ℰ4, in particular ℰ3, has been 

set. The generalized Stokes theorem and Cauchy's integral theorem are generalized and combined into one. The physical 

interpretation of the formulas is in accord with the laws of the circulation of the electromagnetic field and gives some 

nontrivial results.   
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Introduction 

    The bijection between vectors and complex numbers is obvious from the theory of functions of a complex argument 

in two-dimensional flat space [1]. But this doesn’t seem obvious in a many-dimensional space (d > 2). We shall search 

for the relation between line and surface integrals in Minkowski space and three-dimensional Euclidean space in 

Clifford's algebra in this article. Bijection between hypercomplex numbers and elements of Clifford's algebra (spaces ℰ4 

and ℰ3) makes it possible to generalize linear and superficial integrals in a hypercomplex space. We will use the Pauli 

matrices σα(α=1,2,3) (because the space signature is +++) as basis vectors in the case of a 3-dimensional space and the 

Dirac matrices γi(i=0,1,2,3) for the Minkowski space (-+++).  

Results  

I. Spatial case (d=3) 

     Let a positively oriented surface D with contour l be given in the space XYZ (Figure 1). The normal n makes an angle 

α, β, γ with the coordinate axes x, y, z. 

 

Fig. 1 

    Let a vector-function A(x,y,z) =σ1A1(x,y,z) + σ2(x,y,z) + σ3A3(x,y,z) be given in a domain D.   

We will consider the integrals of ∮
𝑙

𝑨 𝑑𝒍 and ∬(
𝐷

𝛁𝑨)d𝒔 in 3-dimensional Euclidean space.  



here                      dl = σ1dx + σ2dy  + σ3dz is the elementary arc length (vector); 

ds = nds = (σ1σ2cosγ + σ2σ3cosα + σ3σ1cosβ)ds is the surface element; 

σ2σ3cosα ds= iσ1dydz;   σ3σ1cosβ ds= iσ2dzdx;   σ1σ2cosγ ds= iσ3dxdy; 

∇ ≡ σ1∂x+σ2∂y+σ3∂z is the nabla symbol; 

n = σ1σ2cosγ + σ2σ3cosα + σ3σ1cosβ is a positively oriented normal to the surface D. 

    According to Clifford product of vectors [2] 

 ∮
𝑙

𝑨 𝑑𝒍 = ∮
𝑙

𝑨 • 𝑑𝒍 + ∮
𝑙

𝑨 ⋀𝑑𝒍                                                                   (1)  

 ∬(
𝐷

𝛁𝑨)d𝒔 = ∬(
𝐷

𝛁 • 𝑨)d𝒔 + ∬(
𝐷

𝛁⋀𝑨) • d𝒔 + ∬(
𝐷

𝛁⋀𝑨)⋀d𝒔                                         (2) 

    We will prove some complex analysis theorems for three-dimensional space.  

Theorem 1. The following formula is correct:  

 ∮
𝑙

𝑨 𝑑𝒍 = ∬(
𝐷

𝛁𝑨)d𝒔                                                                               (3) 

or  

∮
𝑙

𝑨 • 𝑑𝒍 = ∬(
𝐷

𝛁 ∧ 𝑨) • d𝒔                                                                         (4) 

∮
𝑙

𝑨 ∧ 𝑑𝒍 = ∬(
𝐷

𝛁 • 𝑨)d𝒔                                                                           (5) 

∬(
𝐷

𝛁 ∧ 𝑨) ∧ d𝒔 = 𝟎                                                                                    (6) 

The proof of Theorem 1 is given in Appendix 1.  

So we get the generalized Stokes formula (3), or (4), (5), (6).   

     When integrating, we assumed that the domain D is simply connected and that the function itself has no singularities 

in the domain D.  

    We will not consider splitting a non-simply-connected domain into simply-connected domains, since this procedure is 

sufficiently described in the classical literature [4].  

    Now we consider the case when the function has singularities in the integration domain.  

Theorem 2 



    Let the function A(x,y,z) with its first derivatives be defined at all points in the domain D. In other words, the function 

is analytic in the domain D. Then the following formula is correct:  

 ∮
𝑙

𝑨 𝑑𝒍 = 0,                                                                                       (7) 

i.e., if the function A(x,y,z)  is analytic in the domain D, then the closed-loop integral l in this domain D is equal to zero. 

Conversely, if the line integral on the closed-loop l is equal to zero (7), then the function is analytic in the domain D.   

Proof.   We will expand the integral ∮
𝑙

𝑨 𝑑𝒍  over the surfaces X0Y, Y0Z, and Z0X. For example, on the X0Y plane, this 

integral has the form:  

∮
𝑙3

𝑨 𝑑𝒍 = ∮
𝑙3

( 𝜎1𝐴1 + 𝜎2𝐴2)(𝜎1𝑑𝑥 + 𝜎2𝑑𝑦) 

We transform the integrand   

∮
𝑙3

𝑨 𝑑𝒍 = ∮
𝑙3

( 𝜎0𝐴1 + 𝜎2𝜎1𝐴2)(𝜎0𝑑𝑥 + 𝜎1𝜎2𝑑𝑦) = ∮
𝑙3

( 𝜎0𝐴1 − 𝑖𝜎3𝐴2)(𝜎0𝑑𝑥 + 𝑖𝜎3𝑑𝑦)   

Since the function A (z)=σ0 A1 + iσ3 A2 (z=σ0 x + iσ3 y) is analytic, i.e., the Cauchy-Riemann condition is satisfied (when 

changing A2 → - A2):   

𝜕𝐴1

𝜕𝑥
=

𝜕𝐴2

𝜕𝑦
,    

𝜕𝐴1

𝜕𝑦
= −

𝜕𝐴2

𝜕𝑥
, 

then the integral on the closed-loop l3 is equal to 0. The proofs are similar for the planes Y0Z and Z0X.  Theorem 2 

(formula (7)) is proved.  

Now, we assume that in the D domain the A(r) function has a simple pole i.e. a singularity of the form:  

𝑨(𝑟) =   
𝑓(𝒓)

𝒓−𝒓0
                                                                                      (8) 

Theorem 3    

If the function A(r) is analytic in the domain D, except at the point r0, and has a simple pole (8) in this point, then the 

following formula is correct:  

∮
𝑙

𝑓(𝒓)

𝒓−𝒓𝟎
𝑑𝒍 = 2 𝑖 𝜋 𝒏 𝑓(𝒓𝟎)                                                                          (9) 

here n is normal to the surface. 

Proof.  We'll change the integral.    

∮
𝑙

𝑓(𝒓)𝑑𝒍

𝒓−𝒓𝟎
= ∮

𝑙

𝑓(𝒓)−𝑓(𝒓𝟎)+𝑓(𝒓𝟎)

𝒓−𝒓𝟎
𝑑𝒍 = ∮

𝑙

𝑓(𝒓)−𝑓(𝒓𝟎)

𝒓−𝒓𝟎
𝑑𝒍 + 𝑓(𝒓𝟎) ∮

𝑙

𝑑𝒍

𝒓−𝒓𝟎
  



𝑓(𝒓)−𝑓(𝒓𝟎)

𝒓−𝒓𝟎
 ⇒ 𝑓′(𝒓)   at r→ r0.   

Of course, the first integral is equal to 0:   

∮
𝑙

𝑓(𝒓)−𝑓(𝒓𝟎)

𝒓−𝒓𝟎
𝑑𝒍 = ∮

𝒍
𝑓𝒓

′ (𝒓)𝑑𝒍 = 𝑓(𝒓)|𝑙 = 0   

Projecting the second integral (∮
𝑙

𝑑𝒍

𝒓−𝒓𝟎
) onto the X0Y, Y0Z, and Z0X planes and replacing r = r– r0, we get:  

∮
𝑙

𝑑𝒍

𝒓−𝒓𝟎
= ∮

𝑙

𝜎1𝑑𝑥+𝜎2𝑑𝑦+𝜎3𝑑𝑧

𝜎1𝑥+𝜎2𝑦+𝜎3𝑧
 ⇒ ∮

𝑙3

𝜎1𝑑𝑥+𝜎2𝑑𝑦

𝜎1𝑥+𝜎2𝑦
+ ∮

𝑙2

𝜎1𝑑𝑥+𝜎3𝑑𝑧

𝜎1𝑥+𝜎3𝑧
+ ∮

𝑙1

𝜎2𝑑𝑦+𝜎3𝑑𝑧

𝜎2𝑦+𝜎3𝑧
  

For each integral, we apply the proof of Cauchy's integral formula [5]. 

For example, ∮
𝑙3

𝜎1𝑑𝑥+𝜎2𝑑𝑦

𝜎1𝑥+𝜎2𝑦
= ∮

𝑙3

𝑑𝑥+𝜎1𝜎2𝑑𝑦

𝑥+𝜎1𝜎2𝑦
= ∮

𝑙3

𝑑𝑥+𝑖𝜎3𝑑𝑦

𝑥+𝑖𝜎3𝑦
= 𝑖𝜎3 ∫

𝑟𝑒𝑖𝜎3𝜑

𝑟𝑒𝑖𝜎3𝜑

2𝜋

0
𝑑𝜑 = 2𝜋𝑖𝜎3   

In the calculation, we applied the parameterization 𝑥 + 𝑖𝜎3𝑦 = 𝑟𝑒𝑖𝜎3𝜑,  φ∈[0;2π].  

After all, we have   

𝑓(𝒓0) ∮
𝑙

𝑑𝒍

𝒓−𝒓0
=  2𝜋𝑖 𝑓(𝒓0)(𝜎1𝑐𝑜𝑠𝛼 + 𝜎2𝑐𝑜𝑠𝛽 + 𝜎3𝑐𝑜𝑠𝛾) = 2𝜋𝑖 𝒏 𝑓(𝒓0)    

Theorem 3 (formula (9)) is proved.  

    Formula (9) is a generalization of the integral formula of Cauchy for three-dimensional space.  

Corollary 

If the 𝑨(𝑥, 𝑦, 𝑧) function has all the derivatives up to k-order and has the form 
𝑓(𝒓)

(𝒓−𝒓𝟎)𝑘+1, then the following formula is 

correct: 

∮
𝑙

𝑓(𝒓)𝑑𝒍

(𝒓−𝒓𝟎)𝑘+1 = 2 𝜋𝑖 𝒏 𝑘! 𝑓(𝑘)(𝒓𝟎)                                                                 (10) 

By combining (6), (7), and (9), we can conclude:  

1. If the A(x,y,z) function is analytic in the D domain, then the following formula is true:  

∮
𝑙

𝑨 𝑑𝒍 = ∮
𝑙

𝑨 • 𝑑𝒍 + ∮ 𝑨
𝑙

⋀𝑑𝒍 = ∬(
𝐷

𝑟𝑜𝑡𝑨) • 𝑑𝒔 + 𝑖 ∬(
𝐷

𝑑𝑖𝑣𝑨)𝑑𝒔 = 𝟎                                     (11) 

Separating (11) into symmetric (real) and antisymmetric (imaginary) parts, we get the classical formulas:   

∮
𝑙

𝑨 • 𝑑𝒍 = ∬(
𝐷

𝑟𝑜𝑡𝑨) • 𝑑𝒔 = 𝟎                                                                   (11.a) 



∮ 𝑨
𝑙

⋀𝑑𝒍 = ∬(
𝐷

𝑑𝑖𝑣𝑨)𝑑𝒔 = 𝟎                                                                     (11.b) 

2. If the function has a simple pole, i.e. has the form 𝑨(𝒓) =
𝑓(𝒓)

𝒓−𝒓0
, then the following formula is true:  

∮
𝑙

𝑨 𝑑𝒍 = ∮
𝑙

𝑨 • 𝑑𝒍 + ∮ 𝑨
𝑙

⋀𝑑𝒍 = ∬(
𝐷

𝑟𝑜𝑡𝑨) • 𝑑𝒔 + 𝑖 ∬(
𝐷

𝑑𝑖𝑣𝑨)𝑑𝒔 = 2𝜋𝑖𝑓(𝒓0)                         (12) 

Separating (12) into symmetric (real) and antisymmetric (imaginary) parts, we get the classical formulas:  

  ∮
𝑙

𝑨 • 𝑑𝒍 = ∬(
𝐷

𝑟𝑜𝑡𝑨) • 𝑑𝒔 = 0                                                                 (12.a) 

∮ 𝑨
𝑙

⋀𝑑𝒍 = 𝑖 ∬(
𝐷

𝑑𝑖𝑣𝑨)𝑑𝒔 = 2𝜋𝑖𝑓(𝒓0)                                                        (12.b) 

Formula (12) unites the Generalized Stokes formula (11) with the Generalized Cauchy's integral formula. 

 

II. Space-time case (d=4 – Minkowski space) 

Now we consider the relationship between the integral line (∮
𝑙

𝐴 𝑑𝑙) and the integral surface (∬(
𝐷

∇𝐴)𝑑𝑠) in the 

Minkowski space. As a basis, Dirac's matrices are used in the following representation:  

𝛾0 = [
𝜎0 0
0 −𝜎0

] , 𝛾𝛼 = [
0 𝑖𝜎𝛼

𝑖𝜎𝛼 0
]. 

 where σi are Pauli matrices. 

    We consider the function 𝐴 = 𝛾𝑖𝐴𝑖(𝑥𝑗). Leave a positively oriented hypersurface D with its boundary l is given in the 

TXYZ space.   

Theorem 4 

The following formula is correct  

∮
𝑙

𝐴 𝑑𝑙 =  ∬(
𝐷

∇𝐴)𝑑𝑠                                                                           (13) 

Here dl = γi dxi ;   ∇ = γj∂i is the nabla operator;  

dS=Nds is an element of the 4-dimensional hyperplane S; 

N=γ0γ1cosα01+γ0γ2cosα02+γ0γ3cosα03+γ2γ1cosα12+γ1γ3cosα13+γ3γ2cosα23  is the normal to the surface S;  

 α01,  α02,… are the angles between N and the direction vectors of the hyperplanes TX (γ0γ1), TY(γ0γ2), etc. In other 

words, cosα01,  cosα02,… are direction cosines.  



x0=t, x1=x, x2=y, x3=z; 

γ0γ1cosα01ds= γ0γ1dtdx;     γ0γ2cosα02ds= γ0γ2dtdy;     γ0γ3cosα03ds= γ0γ3dtdz;    γ2γ1cosα12ds= γ2γ1dxdy;     γ1γ3cosα13ds= 

γ1γ3dxdz;     γ3γ2cosα23ds= γ3γ2dydz; 

 

    In Minkowski space, the line integral of the function A over the contour l is equal to the surface integral of ∇A over 

the domain D bounded by the contour l. Theorem 4 (formula (13)) is a specific case (4 dimensions) of a mixed Hodge 

structure [6]. 

    Taking into account Clifford product, also F=∇∧A, equation (13) is written as: 

∮
𝑙

𝐴 • 𝑑𝑙 + ∮ 𝐴
𝑙

∧ 𝑑𝑙 =  ∬(
𝐷

∇ • 𝐴)𝑑𝑆 +  ∬ 𝐹
𝐷

• 𝑑𝑆 + ∬ 𝐹
𝐷

∧ 𝑑𝑆                                       (14) 

Comparing the left and right sides of the equation (14) similar to (3), (4), (5) and (6), we get:  

∮
𝑙

𝐴 • 𝑑𝑙 =   ∬ 𝐹
𝐷

• 𝑑𝑆                                                                         (14.1) 

∮ 𝐴
𝑙

∧ 𝑑𝑙 =  ∬(
𝐷

∇ • 𝐴)𝑑𝑆                                                                        (14.2) 

 ∬ 𝐹
𝐷

∧ 𝑑𝑆 = 0                                                                                 (14.3) 

Note:                              𝛾0𝛾1 = [
0 𝑖𝜎1

−𝑖𝜎1 0
]; 𝛾0𝛾2 = [

0 𝑖𝜎2

−𝑖𝜎2 0
]; 𝛾0𝛾3 = [

0 𝑖𝜎3

−𝑖𝜎3 0
];  

𝛾2𝛾1 = [
𝑖𝜎3 0
0 𝑖𝜎3

];  𝛾1𝛾3 = [
𝑖𝜎2 0
0 𝑖𝜎2

];  𝛾3𝛾2 = [
𝑖𝜎1 0
0 𝑖𝜎1

]. 

𝛾0𝛾0 = −𝛾1𝛾1 = −𝛾2𝛾2 = −𝛾3𝛾3 = [
𝜎0 0
0 𝜎0

]. 

The proof of Theorem 4 (formula (13)) is given in Appendix 2.  

 

    Now we will prove theorems for the Minkowski space, like a 3-dimensional space, thus generalizing them.  

    We skip to divide a non-simply connected domain into simple connected ones, since this method was described many 

things in classical literature.   

Theorem 5 

If the function A=γiAi(xj) and its first derivatives are defined in all points of the domain D, i.e., if it is analytic in the 

region D, then the following formula is true: 



∮
𝑙

𝐴 𝑑𝑙 = 0                                                                                      (15) 

If the function A=γiAi(xj) is analytic in the domain D, then the line integral along the closed-loop l is equal to zero. And 

vice versa, if (15) is satisfied, then the function is analytic.      

We present Theorem 5 without proof because it is similar to the three-dimensional case.   

 

Now we consider the case where the A=γiAi(xj) function in the D domain has a singular point (the four-dimensional 

pole):  

𝐴(𝜌) =
𝑓(𝜌)

𝜌−𝜌0
  

where 𝜌 = 𝛾𝑖𝑥𝑖 is a 4-dimensional radius vector or interval; 𝑑𝑙 ≅ 𝑑𝜌; f (ρ) is a scalar function. “Einstein notation” 

indices mean summation.    

Theorem 6 

Let the function A(ρ) be analytic in the domain D except at the point 𝜌0. Let the function A have the first-order pole at 

the point 𝜌0, i.e., one has the form 
𝑓(𝜌)

𝜌−𝜌0
. Then the following formula is true:  

∮
𝑙

𝑓(𝜌)

𝜌−𝜌0
𝑑𝑙 = 2𝜋𝑖 𝑁𝑓(𝜌0)                                                                            (16) 

𝑁 = 𝛾0𝛾1 cos 𝛼01 + 𝛾0𝛾2 cos 𝛼02 + 𝛾0𝛾3 cos 𝛼03 + 𝛾2𝛾1 cos 𝛼21 + 𝛾1𝛾3 cos 𝛼13 + 𝛾3𝛾2 cos 𝛼32  is the normal.   

In other words, the formula (16) is a generalization of Cauchy's integral formula in the Minkowski space.  

Proof.    We transform the integral:  

∮
𝑙

𝑓(𝜌)

𝜌−𝜌0
𝑑𝑙 = ∮

𝑙

𝑓(𝜌)−𝑓(𝜌0)+𝑓(𝜌0)

𝜌−𝜌0
𝑑𝑙 = ∮

𝑙

𝑓(𝜌)−𝑓(𝜌0)

𝜌−𝜌0
𝑑𝑙 + ∮

𝑙

𝑓(𝜌0)

𝜌−𝜌0
𝑑𝑙  

The expression under the first integral is the derivative at 𝜌 → 𝜌0.  This integral is equal to zero:  

∮
𝑙

lim
𝜌→𝜌0

𝑓(𝜌)−𝑓(𝜌0)

𝜌−𝜌0
𝑑𝑙 = ∮

𝑙
𝑓′(𝜌) 𝑑𝑙 = 𝑓(𝜌)|𝑙 = 0  

Since the function 𝑓(𝜌0) = 𝑐𝑜𝑛𝑠𝑡 in the point 𝜌0, we will consider the integral ∮
𝑙

𝑑𝑙

𝜌−𝜌0
. We project this integral over 

hyperplanes and perform a parameterization (𝑡 − 𝑡0 = 𝑡, 𝑥 − 𝑥0 = 𝑥, 𝑦 − 𝑦0 = 𝑦, 𝑧 − 𝑧0): 

∮
𝑙

𝑑𝑙

𝜌−𝜌0
= ∮

𝑙

𝛾0𝑑𝑡+𝛾1𝑑𝑥+𝛾2𝑑𝑦+𝛾3𝑑𝑧

𝛾0𝑡+𝛾1𝑥+𝛾2𝑦+𝛾3𝑧
=    



= ∮
𝑙𝑇0𝑋

𝛾0𝑑𝑡+𝛾1𝑑𝑥

𝛾0𝑡+𝛾1𝑥
+ ∮

𝑙𝑇0𝑌

𝛾0𝑑𝑡+𝛾2𝑑𝑦

𝛾0𝑡+𝛾2𝑦
+ ∮

𝑙𝑇0𝑍

𝛾0𝑑𝑡+𝛾3𝑑𝑧

𝛾0𝑡+𝛾3𝑧
+ ∮

𝑙𝑋0𝑌

𝛾1𝑑𝑥+𝛾2𝑑𝑦

𝛾1𝑥+𝛾2𝑦
+ ∮

𝑙𝑋0𝑍

𝛾1𝑑𝑥+𝛾3𝑑𝑧

𝛾1𝑥+𝛾3𝑧
+ ∮

𝑙𝑌0𝑍

𝛾2𝑑𝑦+𝛾3𝑑𝑧

𝛾2𝑦+𝛾3𝑧
  

We consider each integral separately. For example, for the "purely spatial" plane X0Y:  

 ∮
𝑙𝑋0𝑌

𝛾1𝑑𝑥+𝛾2𝑑𝑦

𝛾1𝑥+𝛾2𝑦
= ∮

𝑙𝑋0𝑌

[
0 𝑖𝜎1

𝑖𝜎1 0
]𝑑𝑥+[

0 𝑖𝜎2
𝑖𝜎2 0

]𝑑𝑦

[
0 𝑖𝜎1

𝑖𝜎1 0
]𝑥+[

0 𝑖𝜎2
𝑖𝜎2 0

]𝑦
= ∮

𝑙𝑋0𝑌

[
0 𝜎1

𝜎1 0
]𝑑𝑥+[

0 𝜎2
𝜎2 0

]𝑑𝑦

[
0 𝜎1

𝜎1 0
]𝑥+[

0 𝜎2
𝜎2 0

]𝑦
=  

≡ ∮
𝜎1𝑑𝑥+𝜎2𝑑𝑦

𝜎1𝑥+𝜎2𝑦
𝑙𝑋0𝑌

= ∮
𝜎0𝑑𝑥+𝜎1𝜎2𝑑𝑦

𝜎0𝑥+𝜎1𝜎2𝑦
𝑙𝑋0𝑌

= ∮
𝜎0𝑑𝑥+𝑖𝜎3𝑑𝑦

𝜎0𝑥+𝑖𝜎3𝑦
𝑙𝑋0𝑌

= 𝑖𝜎3 cos 𝛼12 ∫
𝑟𝑒𝑖𝜎3𝜑

𝑟𝑒𝑖𝜎3𝜑

2𝜋

0
𝑑𝜑 = 2𝜋𝑖𝜎3 cos 𝛼12  

For the planes Y0Z and X0Z, the proof is similar.      

For "purely time" hyperplanes, for example, T0Z:  

∮
𝑙𝑇0𝑍

𝛾0𝑑𝑡+𝛾3𝑑𝑧

𝛾0𝑡+𝛾3𝑧
= ∮

𝑙𝑇0𝑍

𝐼𝑑𝑡+𝛾0𝛾3𝑑𝑧

𝐼𝑡+𝛾0𝛾3𝑧
= ∮

𝑙𝑇0𝑍

[
𝜎0 0
0 𝜎0

]𝑑𝑡+[
0 𝑖𝜎3

−𝑖𝜎3 0
]𝑑𝑧

[
𝜎0 0
0 𝜎0

]𝑡+[
0 𝑖𝜎3

−𝑖𝜎3 0
]𝑧

≡ ∮
𝑙𝑇0𝑍

𝜎0𝑑𝑡±𝑖𝜎3𝑑𝑧

𝜎0𝑡±𝑖𝜎3𝑧
= ±𝑖𝜎3 cos 𝛼03 ∫

𝜌𝑒±𝑖𝜎3𝜂

𝜌𝑒±𝑖𝜎3𝜂

2𝜋

0
𝑑𝜂 =

±2𝜋𝑖𝜎3 cos 𝛼03     

For the planes T0X and T0Y, the proof is similar.  

Summing up all the integrals over the planes, we get the equation (16). Theorem 6 is proved.   

Note. 

Here 𝜂 is the rapidity, tanh (𝜂) =
𝑣

𝑐
 ,   𝑣 is the speed, 𝑐 is the speed of light in vacuum. On the real (physical) plane 

−∞ < 𝜂 < +∞, but on the complex plane (𝑐𝑡, 𝑖𝑥), 𝜂 is the imaginary "rotation" angle – 𝑖𝜂. Therefore, we can formally 

take the boundaries 0 < 𝑖𝜂 < 2𝜋, since 𝑒±𝑖𝜎3𝜂 = 𝜎0 cos 𝜂 ± 𝑖𝜎3 sin 𝜂. This is the main point of Dirac matrices 

acceptance in our representation.           

Corollary  

If the function A(t,x,y,z) is k-times differentiable and has the form 
𝑓(𝜌)

(𝜌−𝜌0)𝑘+1 , then the following formula is true:  

∮
𝑙

𝑓(𝜌)𝑑𝜌

(𝜌−𝜌0)𝑘+1 = 2 𝜋 𝑖 𝑁 𝑘! 𝑓(𝑘)(𝜌0)                                                                     (17) 

Generalizing Theorems 4, 5, and 6 (formulas (13), (14), (15), and (16)), we can conclude:  

1. If the function A=γiAi(xj) is analytic at all points of the domain D, then the following formula is true:  

  ∮
𝑙

𝐴 • 𝑑𝑙 + ∮ 𝐴
𝑙

⋀𝑑𝑙 = ∬(
𝐷

∇ • 𝐴)𝑑𝑠 + ∬(
𝐷

∇ ∧ 𝐴) • 𝑑𝑠 + ∬(
𝐷

∇ ∧ 𝐴) ∧ 𝑑𝑠 = 0                        (18) 

or                                                        ∮
𝑙

𝐴 • 𝑑𝑙 = ∬(
𝐷

∇ ∧ 𝐴) • 𝑑𝑠 = 0                                                                  (19)  



∮ 𝐴
𝑙

⋀𝑑𝑙 = ∬(
𝐷

∇ • 𝐴)𝑑𝑠 = 0                                                                 (20) 

∬(
𝐷

∇ ∧ 𝐴) ∧ 𝑑𝑠 = 0                                                                             (21) 

 2. If the function A=γiAi(xj) is analytic in the domain D, except at the point ρ, also one has a so-called 4-dimensional 

pole of the first order at this point r (it has the form A(ρ) = f(ρ)/(ρ – ρ0)), then the following formula is true:  

∮
𝑙

𝐴 • 𝑑𝑙 + ∮ 𝐴
𝑙

⋀𝑑𝑙 = ∬(
𝐷

∇ • 𝐴)𝑑𝑠 + ∬(
𝐷

∇ ∧ 𝐴) • 𝑑𝑠 + ∬(
𝐷

∇ ∧ 𝐴) ∧ 𝑑𝑠 = 2𝜋𝑖 𝑁𝐴(𝜌0)                   (22) 

or                                                   ∮
𝑙

𝐴 • 𝑑𝑙 = ∬(
𝐷

∇ ∧ 𝐴) • 𝑑𝑠 = 0                                                                          (23) 

∮ 𝐴
𝑙

⋀𝑑𝑙 = ∬(
𝐷

∇ • 𝐴)𝑑𝑠 = 2𝜋𝑖 𝑁𝐴(𝜌0)                                                     (24) 

∬(
𝐷

∇ ∧ 𝐴) ∧ 𝑑𝑠 = 0                                                                        (25) 

Formulas (18) and (22) unite Stokes' theorem with Cauchy's generalized integral formula in a four-dimensional pseudo-

Euclidean space.  

The physical meaning of the formulas (18) - (25) will be considered in the next section.   

 

Physical interpretations 

    By comparing the formula (2.1) with (2.3) of Appendix 1, also taking into account the components of the 

electromagnetic field tensor F, we can write the formula (23) in the form:  

 ∮
𝑙

( 𝐴0𝑑𝑡 − 𝐴1𝑑𝑥 − 𝐴2𝑑𝑦 − 𝐴3𝑑𝑧) = ∬(
𝐷

(𝐸𝑥𝑑𝑥 + 𝐸𝑦𝑑𝑦 + 𝐸𝑧𝑑𝑧)𝑑𝑡 − 𝐵𝑥𝑑𝑦𝑑𝑧 − 𝐵𝑦𝑑𝑥𝑑𝑧 − 𝐵𝑧𝑑𝑥𝑑𝑦) = 0    

or 

 ∮
𝑙

( 𝐴0𝑑𝑡 − 𝑨 • 𝑑𝒓) = ∬ 𝑬
𝐷

• 𝑑𝒓𝑑𝑡 − ∬ 𝑩
𝐷

• 𝒏𝑑𝑠 = 0                                                    (26) 

Simply put, the circulation of the 4x potential of the electromagnetic field A=γiAi(xj) and the flux of the electric field E 

and the magnetic field B (more precisely, their difference) through domain D is equal to zero.    

      

    Equation (24) interests us better. We expand this equation into elements of the basis 𝛾𝑖:  

∮ 𝐴

𝑙

⋀𝑑𝑙 = 𝑖 ∮(

𝑙

[
0 1

−1 0
] (𝜎1(𝐴0𝑑𝑥 − 𝐴1𝑑𝑡) + 𝜎2(𝐴0𝑑𝑦 − 𝐴2𝑑𝑡) + 𝜎3(𝐴0𝑑𝑧 − 𝐴3𝑑𝑡)) + 

+ [
1 0
0 1

] (𝜎1(𝐴3𝑑𝑦 − 𝐴2𝑑𝑧) + 𝜎2(𝐴1𝑑𝑧 − 𝐴3𝑑𝑥) + 𝜎3(𝐴2𝑑𝑥 − 𝐴1𝑑𝑦)))              (27)  

∬(
𝐷

∇ • 𝐴)𝑑𝑠 = 𝑖 ∬(
𝐷

∇ • 𝐴)([
0 1

−1 0
] (𝜎1𝑑𝑥 + 𝜎2𝑑𝑦 + 𝜎3𝑑𝑧)𝑑𝑡 + [

1 0
0 1

] (𝜎1𝑑𝑧𝑑𝑦 + 𝜎2𝑑𝑥𝑑𝑧 + 𝜎3𝑑𝑦𝑑𝑥))  (28) 



2𝜋𝑖 𝑁𝐴(𝜌0) = −2𝜋𝐴(𝜌0)( [
0 1

−1 0
] 𝒏𝑇 + [

1 0
0 1

] 𝒏𝑟)                                            (29) 

Comparing (27), (28), and (29), simplifying and dividing by the elements of the matrix 𝛾𝑖, we get: 

∮(
𝑙𝑇

𝐴0𝑑𝒓 − 𝑨𝑑𝑡) = ∬(
𝐷𝑇

∇ • 𝐴)𝒏𝑇𝑑𝑠𝑇 = 2𝜋𝑖𝐴(𝜌0) 𝒏𝑇                                           (30) 

𝒏𝑇 = 𝜎1 cos 𝛼01 + 𝜎2 cos 𝛼02 + 𝜎3 cos 𝛼03 is the "time" vector of the surface normal.   

∮ 𝐀
𝑙𝑋𝑌𝑍

× 𝑑𝒓 = ∬(
𝐷𝑋𝑌𝑍

∇ • 𝐴)𝒏𝑟𝑑𝑠𝑟 = 2𝜋𝑖𝐴(𝜌0)𝒏𝑟                                                   (31) 

𝒏𝑟 = 𝜎1 cos 𝛼32 + 𝜎2 cos 𝛼13 + 𝜎3 cos 𝛼21 is the "spatial" vector of the surface normal;  

𝑨 × 𝑑𝒓  is an ordinary vector product of vectors.   

𝒏𝑟𝑑𝑠𝑟 = 𝜎1𝑑𝑧𝑑𝑦 + 𝜎2𝑑𝑥𝑑𝑧 + 𝜎3𝑑𝑦𝑑𝑧;  𝒏𝑇𝑑𝑠𝑇 = (𝜎1𝑑𝑥 + 𝜎2𝑑𝑦 + 𝜎3𝑑𝑧)𝑑𝑡;    𝑙𝑇 ∉ 𝑋𝑌𝑍, 𝐷𝑇 ∉ 𝑋𝑌𝑍   

Corollary:       

Even if the 4th potential of the vector field A=γiAi(xj) has a singularity at point ρ, and at other points of the domain D is 

analytic, then  

 1. According to the formula (23), the circulation ∮
𝑙

𝐴 • 𝑑𝑙 of the vector function A=γiAi(xj) and the flow ∬ 𝐹
𝐷

• 𝑑𝑠 of the 

electromagnetic tensor through the plane D are equal to zero. In particular, if 𝐴0 = 0 and A are not time dependent, the 

form (23) is as follows:  

∮
𝑙𝑋𝑌𝑍

𝑨 • 𝒅𝒓 = ∬ 𝑩
𝐷𝑋𝑌𝑍

• 𝒏𝑟𝑑𝑠 = 0, 

I.e., the circulation of the 3-dimensional potential of the electromagnetic field A and the flux of the magnetic field B are 

equal to zero. This is Gauss’s theorem.     

2. According to the formulas (30) and (31), the divergences through the surfaces DT and XYZ are equal to the 3-

dimensional residues (2𝜋𝑖𝐴(𝜌0) 𝒏𝑇 , 2𝜋𝑖𝐴(𝜌0)𝒏𝑟) of the A=γiAi(xj) function. In particular, if 𝒏𝑟 = 𝑐𝑜𝑛𝑠𝑡, then we get 

the classic formula:  

∬(
𝐷𝑋𝑌𝑍

∇ • 𝐴)𝑑𝑠𝑟 = 2𝜋𝑖𝐴(𝜌0).  

From a physical aspect, the divergence is the source of the field. So we can conclude that the multidimensional residues 

of the functionality found in the article means the source, i.e. current (charge) of the electromagnetic field.  

Discussions and Conclusions 

1.  The relationship between the line and surface integrals in 3-dimensional Euclidean space and in Minkowski space 

was considered in Clifford algebra.  



2. The Stokes theorem and the integral theorem and the Cauchy formula for hypercomplex numbers were generalized 

and combined.   

3. The physical interpretation of the formulas (26) - (31) indicates a correspondence between the laws of 

electromagnetism and the theory of generalized hypercomplex analysis: between the circulation of the vector potential A 

and the flow of the electromagnetic tensor F with the generalized Stokes formulas and the Cauchy integral formula.    

4. Formulas (30) - (31) establish the correspondence between the generalized 4-dimensional residues and the 4-

dimensional electromagnetic current (charge). In other words, the electromagnetic current (charge) is a 3-dimensional 

residue of the vector function A.  
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𝑙

𝑨 𝑑𝒍 and  ∬(
𝐷

𝛁𝑨)d𝒔 of equation (3) in the coordinate 
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∮
𝑙
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∬(
𝐷

𝛁 ∧ 𝑨) • d𝒔 = 𝜎0 ∬(
𝐷

(
𝜕𝐴2

𝜕𝑧
−

𝜕𝐴3

𝜕𝑦
)𝑑𝑦𝑑𝑧 + (

𝜕𝐴3

𝜕𝑥
−

𝜕𝐴1

𝜕𝑧
)𝑑𝑧𝑑𝑥 + (

𝜕𝐴1

𝜕𝑦
−

𝜕𝐴2

𝜕𝑥
)𝑑𝑥𝑑𝑦)            (1.3)  

∬(
𝐷

𝛁 • 𝑨)d𝒔 = 𝑖 ∬(
𝐷

(
𝜕𝐴1

𝜕𝑥
+

𝜕𝐴2

𝜕𝑦
+

𝜕𝐴3

𝜕𝑧
)(𝜎1𝑑𝑦𝑑𝑧 + 𝜎2𝑑𝑧𝑑𝑥 + 𝜎3𝑑𝑥𝑑𝑦))                    (1.4) 

∬(
𝐷

𝛁 ∧ 𝑨) ∧ d𝒔 = ∬(
𝐷

𝜎1(
𝜕𝐴2

𝜕𝑧
−

𝜕𝐴3

𝜕𝑦
) + 𝜎2(

𝜕𝐴3

𝜕𝑥
−

𝜕𝐴1

𝜕𝑧
) + 𝜎3(

𝜕𝐴1

𝜕𝑦
−

𝜕𝐴2

𝜕𝑥
)) ∧ (𝜎1𝑑𝑦𝑑𝑧 + 𝜎2𝑑𝑧𝑑𝑥 + 𝜎3𝑑𝑥𝑑𝑦) = 0      (1.5) 

We equate equation (1.1) to (1.3) because both equations are “scalar” (σ0). We also equate equation (1.2) to (1.4), since 

both of them are “vectors” (σα). Equation (1.5) is equal to zero. Now we will prove all this.  

   1.  We project equation (4) (respective integrals) on the X0Y, Y0Z, Z0X planes (Fig. 1) and apply the proof of Green's 

theorem for each plane [3]. For example,  

∮(
𝑙3

𝐴1 𝑑𝑥 + 𝐴2𝑑𝑦) = ∬(
𝐷3

𝜕𝐴1

𝜕𝑦
−

𝜕𝐴2

𝜕𝑥
)𝑑𝑥𝑑𝑦) etc. 

   2.    We project the double integral on the right side of equation (5) onto the planes X0Y, Y0Z, and Z0X and transform it 

into the line integral. For example, (Fig.2)  

  

Fig.2. 

𝑖 ∬(
𝐷3

𝜕𝐴1

𝜕𝑥
+

𝜕𝐴2

𝜕𝑦
)𝜎3𝑑𝑥𝑑𝑦 = 𝑖𝜎3 (∬

𝜕𝐴1

𝜕𝑥
𝐷3

𝑑𝑥𝑑𝑦 + ∬
𝜕𝐴2

𝜕𝑦
𝐷3

𝑑𝑥𝑑𝑦) =  

= 𝑖𝜎3 ∫ 𝑑𝑦 (𝐴1(𝑥2, 𝑦) − 𝐴1(𝑥1, 𝑦)) + 𝑖𝜎3 ∫ 𝑑𝑥 (𝐴2(𝑥, 𝑦1) − 𝐴2(𝑥, 𝑦2)) =  

  = 𝑖 ∮
𝑙3

𝜎3 𝐴1𝑑𝑦 − 𝑖 ∮ 𝜎3
𝑙3

𝐴2 𝑑𝑥 = 𝑖 ∮
𝑙3

𝜎3 (𝐴1𝑑𝑦 − 𝐴2𝑑𝑥)        etc.  

     3. For equation (6) (or (1.5)) we also project the integrals onto the planes. For example,  

∬(
𝐷3

𝛁 ∧ 𝑨) ∧ d𝒔 = ∬(
𝐷3

𝜎1𝜎2(
𝜕𝐴2

𝜕𝑧
−

𝜕𝐴3

𝜕𝑦
)𝑑𝑧𝑑𝑥 + 𝜎2𝜎1(

𝜕𝐴3

𝜕𝑥
−

𝜕𝐴1

𝜕𝑧
)𝑑𝑦𝑑𝑧) = 0   

Since dz=0 on the X0Y plane, the integral is also equal to zero. In addition, the thrice-outer product of the basis vectors 

in three-dimensional space is equal to zero: 𝜎𝛼⋀𝜎𝛽⋀𝜎𝜆⋀𝜎𝜇 = 0, because α≠β≠λ≠μ, and α, β, λ, μ = 1,2,3.                      

Theorem 1 is proved. 



Appendix 2 

Proof of formula (13) (or (14)).   

We decompose the TXYZ space, respectively, the ∮
𝑙

𝐴𝑑𝑙 and ∬(
𝐷

∇𝐴)𝑑𝑆 integrals into subspaces (planes) X0Y, Y0Z, Z0X, 

T0X, T0Y, T0Z.   

    1. We can write the left side of the equation (14) at the coordinates, separating it into the symmetric (∮
𝑙

𝐴 • 𝑑𝑙) and 

antisymmetric (∮
𝑙

𝐴 ∧ 𝑑𝑙) parts.  

∮
𝑙

𝐴 • 𝑑𝑙 = [
𝜎0 0
0 𝜎0

] ∮
𝑙

( 𝐴0𝑑𝑡 − 𝐴1𝑑𝑥 − 𝐴2𝑑𝑦 − 𝐴3𝑑𝑧)                                         (2.1) 

∮
𝑙

𝐴 ∧ 𝑑𝑙 = ∮
𝑙

( [
0 𝜄𝜎1

−𝜄𝜎1 0
] (𝐴0𝑑𝑥 − 𝐴1𝑑𝑡) + [

0 𝜄𝜎2

−𝜄𝜎2 0
] (𝐴0𝑑𝑦 − 𝐴2𝑑𝑡) + + [

0 𝜄𝜎3

−𝜄𝜎3 0
] (𝐴0𝑑𝑧 − 𝐴3𝑑𝑡) +

[
𝑖𝜎3 0
0 𝑖𝜎3

] (𝐴2𝑑𝑥 − 𝐴1𝑑𝑦) + [
𝑖𝜎2 0
0 𝑖𝜎2

] (𝐴1𝑑𝑧 − 𝐴3𝑑𝑥) + + [
𝑖𝜎1 0
0 𝑖𝜎1

] (𝐴2𝑑𝑧 − 𝐴3𝑑𝑦))                    (2.2) 

    2. Taking into account ∇∧A =F and separating in the same way the right side of the equation (14), we get:  

∬ 𝐹
𝐷

• 𝑑𝑆 = [
𝜎0 0
0 𝜎0

] ∬(
𝐷

𝐹01𝑑𝑡𝑑𝑥 + 𝐹02𝑑𝑡𝑑𝑦 + 𝐹03𝑑𝑡𝑑𝑧 + 𝐹12𝑑𝑥𝑑𝑦 + 𝐹31𝑑𝑥𝑑𝑧 + 𝐹23𝑑𝑦𝑑𝑧)   (2.3) 

∬(
𝐷

∇ • 𝐴)𝑑𝑆 = ∬(
𝐷

∇ • 𝐴)([
0 𝜄𝜎1

−𝜄𝜎1 0
] 𝑑𝑡𝑑𝑥 + [

0 𝜄𝜎2

−𝜄𝜎2 0
] 𝑑𝑡𝑑𝑦 + [

0 𝜄𝜎3

−𝜄𝜎3 0
] 𝑑𝑡𝑑𝑧 + + [

𝑖𝜎3 0
0 𝑖𝜎3

] 𝑑𝑦𝑑𝑥 +

[
𝑖𝜎2 0
0 𝑖𝜎2

] 𝑑𝑥𝑑𝑧 + [
𝑖𝜎1 0
0 𝑖𝜎1

] 𝑑𝑦𝑑𝑧)                         (2.4) 

∬ 𝐹
𝐷

⋀𝑑𝑆 = [
0 𝜎0

−𝜎0 0
] ∬(

𝐷
𝐹01𝑑𝑦𝑑𝑧 + 𝐹02𝑑𝑧𝑑𝑥 + 𝐹03𝑑𝑥𝑑𝑦 + 𝐹12𝑑𝑡𝑑𝑧 + 𝐹31𝑑𝑡𝑑𝑦 + 𝐹23𝑑𝑡𝑑𝑥)    (2.5) 

Other terms (integral (2.5)) are equal to zero.   

Comparing (2.1) with (2.3), and also (2.2) with (2.4), we get the equations (14.1), (14.2), and (14.3).  

It is now sufficient for us to consider all the subspaces and generalize the preceding theorems (case d=3) and apply the 

results of Appendix 1.  

    To prove equation (14.1), the integrals ∮
𝑙

𝐴 • 𝑑𝑙 and ∬ 𝐹
𝐷

• 𝑑𝑆 must be expanded into integrals over the planes X0Y, 

Y0Z, Z0X, T0X, T0Y, T0Z, and the proofs of Green's theorem must be applied to each.  

1. For example, for planes X0Y, Y0Z, Z0X there will be    

∮
𝑙𝑋0𝑌

( − 𝐴1𝑑𝑥 − 𝐴2𝑑𝑦) = ∬(
𝐷𝑋0𝑌

𝜕𝐴1

𝜕𝑦
−

𝜕𝐴2

𝜕𝑥
)𝑑𝑥𝑑𝑦, etc. 



    For the planes T0X, T0Y, T0Z, the proofs are a bit different, since these hyperplanes are complex, unlike X0Y, Y0Z, 

Z0X.      

∮
𝑙

( 𝐴0𝑑𝑡 − 𝐴1𝑑𝑥) = ∬(

𝐷

𝜕𝐴0

𝜕𝑥
−

𝜕𝐴1

𝜕𝑡
)𝑑𝑡𝑑𝑥 

Changing 𝐴1  → 𝑖𝐴1, 𝑥 → 𝑖𝑥, etc., we get the usual Green's theorem:  

∮
𝑙

( 𝐴0𝑑𝑡 + 𝐴1𝑑𝑥) = ∬(
𝐷

𝑖
𝜕𝐴0

𝜕𝑥
− 𝑖

𝜕𝐴1

𝜕𝑡
)𝑖𝑑𝑡𝑑𝑥 = ∬(

𝐷

𝜕𝐴1

𝜕𝑡
−

𝜕𝐴0

𝜕𝑥
)𝑑𝑡𝑑𝑥, etc. 

Summing up all the integrals in all subspaces, we get the equation (14.1).    

    2. We now consider equation (14.2). Also, as in the previous case, we divide the integrals l∮A∧dl and D∬(∇•A)dS into 

subspaces. We apply paragraph 2 of Appendix 1.  

For example,     

[
𝑖𝜎3 0
0 𝑖𝜎3

] ∮
𝑙𝑋0𝑌

( 𝐴2𝑑𝑥 − 𝐴1𝑑𝑦) = [
𝑖𝜎3 0
0 𝑖𝜎3

] ∬(
𝐷𝑋0𝑌

−
𝜕𝐴1

𝜕𝑥
−

𝜕𝐴2

𝜕𝑦
)𝑑𝑦𝑑𝑥 = − [

𝑖𝜎3 0
0 𝑖𝜎3

] (∬
𝜕𝐴1

𝜕𝑥
𝐷𝑋0𝑌

𝑑𝑦𝑑𝑥 + ∬
𝜕𝐴2

𝜕𝑦
𝐷𝑋0𝑌

𝑑𝑦𝑑𝑥), 

etc.  

Also for “time” planes: 

[
0 𝜄𝜎3

−𝜄𝜎3 0
] ∮

𝑙𝑇0𝑍
( 𝐴0𝑑𝑧 − 𝐴3𝑑𝑡) = [

0 𝜄𝜎3

−𝜄𝜎3 0
] ∬(

𝐷𝑇0𝑍

𝜕𝐴0

𝜕𝑡
−

𝜕𝐴3

𝜕𝑧
)𝑑𝑡𝑑𝑧 = [

0 𝜄𝜎3

−𝜄𝜎3 0
] (∬

𝜕𝐴0

𝜕𝑡
𝐷𝑇0𝑍

𝑑𝑡𝑑𝑧 − ∬
𝜕𝐴3

𝜕𝑧
𝐷𝑇0𝑍

𝑑𝑡𝑑𝑧), etc. 

3. For equation (14.3), we also apply point 3 from Appendix 1. Formula (14.3) is also proved by dividing into purely 

"spatial" and "time" hyperplanes.   

Theorem 4, i.e. equation (14), respectively (14.1), (14.2) and (14.3) are proved.   

Note This paper is a partial translation and a more mathematically general and strictly proven version of the author’s 

article in Russian, published in the reviewed journal: https://sci-article.ru/stat.php?i=1562874175  
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