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Introduction  

    It is known that in the covariant form, Maxwell's equations consist of two independent systems [1]:  

• homogeneous – 𝐸𝑖𝑗𝑘𝑙𝐹𝑖𝑗;𝑘 = 0;   

• inhomogeneous –𝐹;𝑘
𝑖𝑘 = 𝐽𝑖.   

here 𝐹𝑖𝑗 is an electromagnetic field tensor; 𝐽𝑖 is a 4-dimensional electromagnetic current density; 𝐸𝑖𝑗𝑘𝑙 =

𝜀𝑖𝑗𝑘𝑙

√−𝑔
 (𝜀0123 = +1) is the contravariant antisymmetric tensor of the fourth rank or Levi-Civita symbol; (-g) is 

a determinant of the metric tensor; 𝜀𝑖𝑗𝑘𝑙 is a antisymmetric tensor of the fourth rank in the orthonormal 

basis; 𝐹𝑖𝑗;𝑘 = 𝒟𝑘𝐹𝑖𝑗 =
𝒟𝐹𝑖𝑗

𝜕𝑞𝑘
 is a covariant derivative of the electromagnetic field tensor by argument 

(coordinate) 𝑞𝑘.  

   

Relevance.  

    It would make sense to combine two independent systems of Maxwell's equations into one equation. 

Marcel Ries [2] for the first time combined these systems in Minkowski space. But he did not connect the 

four-current with the properties and special points of space, i.e., he "threw out" the features of space: 

curvature and special points. This very limited the ability of Clifford algebra to combine the systems of 

Maxwell's equations and 4-current.    

    In classical physics, electric charge and current are not related to the explicit properties of space, such as 

the space's metric (curvature) and special points.     

    The scientific novelty of this research lies in the fact that two independent systems of Maxwell's 

equations are combined into a single one for any space. Also, the 4-current and basic calibration conditions 

(Lorentz, Coulomb calibration, etc.) are associated with special points in space where the field potential is 

not defined and/or there is no limit.      

   

Theoretical foundations  

    As a measure of the change in the vector field, we introduce the concept of local inhomogeneity (B) of 

the vector field with potential A:   



𝐵 = ∇𝐴                                                             (1)  

here ∇≡ 𝑒𝑖𝐷/𝜕𝑞𝑖 is a Del or nabla operator; 𝐴 = 𝑒𝑖𝐴𝑖 is the expansion of the vector-potential A in the 

vectors ej of the curvilinear basis.  

    Latin letters take values from 0 to 3: i,j ... = 0,1,2,3., Greek - from 1 to 3: α,β ...= 1,2,3.  

As an orthonormal basis, we take the canonical basis:  

𝛾𝑖𝛾𝑗 + 𝛾𝑗𝛾𝑖 = ±𝐼𝛿𝑖𝑗                                                    (2)  

 here 𝛾𝑖 is the Dirac matrices; 𝛿𝑖𝑗 is Kronecker delta; I is a 4x4 unit matrix.   

According to the signature of space, in particular Minkowski, if i=0 (or j=0), we take the sign "+" in equality 

(2), if not, we take the sign "-".  

   

Instead of the usual scalar and vector products, we use Clifford products [3] in the products of basis vectors 

𝑒𝑗 = 𝛾𝑘𝜕𝑗𝑋
𝑘:   

𝑒𝑖𝑒𝑗 = 𝑒𝑖 • 𝑒𝑗 + 𝑒𝑖⋀𝑒𝑗                                                  (3)  

here   

inner product –                         𝑒𝑖 • 𝑒𝑗 = 0.5(𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖)                                            (4) 

outer product –                        𝑒𝑖⋀𝑒𝑗 = 0.5(𝑒𝑖𝑒𝑗 − 𝑒𝑗𝑒𝑖)                                             (5)  

Remark. The inner product of vectors is not a scalar product, as is often mistakenly used in the scientific 

literature. The inner product of the two vectors is a second-rank symmetric tensor, and the scalar product of 

the same vectors is simply a scalar, i.e., a trace of the second-rank symmetric tensor.  

    Xk are functions of {qi}, i.e., functions of transition from the curvilinear to the orthonormal coordinate 

system.    

     Taking into account (4) and (5), the inhomogeneity of the vector field (1) in the coordinate form has the 

form:   

𝐵 = 𝑒𝑖 • 𝑒𝑗𝒟𝑖𝐴𝑗 + 𝑒𝑖⋀𝑒𝑗𝒟𝑖𝐴𝑗                                             (6)  

here 𝑒𝑖 • 𝑒𝑗 = 𝑔𝑖𝑗 is a metric tensor; 𝑒𝑖⋀𝑒𝑗 is an antisymmetric second-rank tensor or bivector.  

 

In the general case  

а) The antisymmetric tensor of rank 𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 is dual to the pseudoscalar in the 4-dimensional space: 

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 = −𝛾𝛦𝑖𝑗𝑘𝑛                                                (7.1)  

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 = 𝛾𝐸𝑖𝑗𝑘𝑛                                                (7.2)  

here 𝛾 = 𝛾0𝛾1𝛾2𝛾3; 𝛦𝑖𝑗𝑘𝑛 = √−𝑔𝜀𝑖𝑗𝑘𝑛, (𝜀0123 = −1); 𝐸𝑖𝑗𝑘𝑛 =
𝜀𝑖𝑗𝑘𝑛

√−𝑔
, (𝜀0123 = +1) is absolutely 

antisymmetric tensors (or Levi-Civita symbol) of the 4th rank in covariant and contravariant form;  

    The product e0∧e1∧e2∧e3 is equal to the "4-dimensional volume" built from the vectors e0, e1, e2, e3. 

Proof of equalities (7.1) and (7.2) is given in Appendix 1. 

   



b) In 4-dimensional space, the product 𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘 (3rd rank antisymmetric tensor) is dual to the 

pseudovector: 

  𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘 = −𝛾𝛦𝑖𝑗𝑘𝑛𝑒
𝑛                                                  (8.1) 

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘 = 𝛾𝐸𝑖𝑗𝑘𝑛𝑒𝑛                                                   (8.2)  

Proof of equalities (8.1) and (8.2) is given in Appendix 2.  

   

c) In 4-dimensional space, the product 𝑒𝑖⋀𝑒𝑗 (2nd rank antisymmetric tensor) is dual to itself (2nd rank 

antisymmetric pseudotensor):   

𝑒𝑖⋀𝑒𝑗 = −𝛾𝛦𝑖𝑗𝑘𝑛𝑒
𝑘⋀𝑒𝑛                                                (9.1)  

𝑒𝑖⋀𝑒𝑗 = 𝛾𝐸𝑖𝑗𝑘𝑛𝑒𝑘⋀𝑒𝑛                                                (9.2)  

The formulas (9.1) and (9.2) can be proved the same way as the previous cases, so we will not bother the 

reader with calculations.    

   

   

Results  

Maxwell 's equations.  

To get the unified equation of electromagnetism, we take the gradient of the equation (1):  

∇𝐵 = ∇(∇𝐴)                                                         (10)  

According to Clifford's product, we have 

∇𝐵 = ∇(∇ • 𝐴 + ∇⋀𝐴) = ∇(∇ • 𝐴) + ∇ • (∇⋀𝐴) + ∇⋀∇⋀𝐴 

or  

∇𝐵 = ∇(∇ • 𝐴) + ∇ • (∇⋀𝐴) + ∇⋀∇⋀𝐴                                 (11)  

Equation (11) is the unified equation of electromagnetism.  

   

Homogeneous system of Maxwell 's equations.  

Theorem:  

 – the following statement is true  

∇⋀∇⋀𝐴 = 0                                                         (12)  

and the equation (12) is equivalent to the homogeneous Maxwell equation.    

If we take into account that  

F = ∇⋀𝐴 = 𝑒𝑖⋀𝑒𝑗(𝒟𝑖𝐴𝑗 − 𝒟𝑗𝐴𝑖)                                              (13),  

then from (12) we obtain the classical form of the homogeneous Maxwell equation:  

∇⋀𝐹 = 0                                                          (14)  

Equation (14) is a homogeneous Maxwell equation.  

The proof of statement (14) is given in Appendix 3.  

   



4-dimensional electromagnetic current  

    Taking into account (12), we write equation (11) in the form:  

∇𝐵 = ∇(∇ • 𝐴) + ∇ • (∇⋀𝐴)                                          (15)  

We denote the 4th current as  

𝐽 = ∇(∇ • 𝐴)                                            (16)  

  According to (16), the 4th current has a clear geometric meaning:  

The 4th current is the 4th gradient from the 4th divergence of the potential field. The 4th current exists only 

when the divergence is not constant; i.e., ∇ • 𝐴 ≠ 𝑐𝑜𝑛𝑠𝑡 is the main condition of current existence. The 

space can have so-called "holes" and/or "clumps" (inhomogeneities) if only ∇ • 𝐴 ≠ 𝑐𝑜𝑛𝑠𝑡. Let's call these 

"holes" "outflows" and/or "inflows". So the electric charge is either "outflows" is a positive charge (+), or 

"inflows" is a negative one (-).  

 

Lorenz gauge  

∇ • 𝐴 = 𝑐𝑜𝑛𝑠𝑡(= 0) means there is no 4-current in the research field. In particular, the Coulomb gauge 

𝛁 • 𝑨 = 𝑐𝑜𝑛𝑠𝑡(= 0) also means no three-dimensional current in the magnetostatic problems, where the time 

component A0 is ignored or assumed to be zero.    

   

Gauge invariance  

If we add the 4th gradient of the scalar function u to the potential A  

𝐴′ = 𝐴 + ∇𝑢                                                       (17)  

and require the condition 

∇ • ∇𝑢 = 0                                                        (18),  

then the unified electromagnetism equation (10) will be invariant.   

The transformations (17) are gauge invariance.   

   

Inhomogeneous system of Maxwell equations  

     Taking into account the new definition of 4th currents (16) and the electromagnetic field tensor (13), we 

write the unified equation of electromagnetism (15) in the form:  

∇𝐵 = 𝐽 + ∇ • 𝐹                                                    (19)  

Since the 3rd rank tensor ∇𝐵 in 4-dimensional space is dual to the pseudovector, we can write as 

∇𝐵 = 𝜇𝑇 • 𝐴                                                     (20)  

here T is energy–momentum tensor; μ is constant factor.   

The inner product 𝑇 • 𝐴 is a dual vector to the ∇𝐵.      

   

Then from equation (19) we will get the inhomogeneous Maxwell equation: 

∇ • 𝐹 = 𝜇𝑇 • 𝐴 − 𝐽                                                   (21)  

 If 𝜇𝑇 • 𝐴 ≅ 0, then we will get the classical expression for the inhomogeneous Maxwell equation:  



∇ • 𝐹 = −𝐽                                                         (22)  

If 𝜇𝑇 • 𝐴 ≠ 0, then the classical Maxwell law (22) does not hold. More correctly, it takes more of the 

universal form. According to (21), at high energies, the energy-momentum tensor contributes to the 4th 

current.   

    Denoting the right side of the equation (21) as  

𝑄 = 𝜇𝑇 • 𝐴 − 𝐽                                                    (23)  

we get from (21)  

∇ • 𝐹 = 𝑄                                                       (24)  

Here Q is the effective 4th current (in particular, the effective charge [4]). According to (23), the effective 

current (charge) depends on the energy-momentum and is not a constant value.     

    Thus, we have shown that two independent Maxwell systems (12) and (22) are parts of a single equation 

(10) or (11).  

   

Discussions and Conclusions  

1. Two systems of Maxwell's equations are unified in one single equation (11). In other words, the 

homogeneous (14) and inhomogeneous (24) systems of the Maxwell equations are the parts of a single 

equation (11);   

2. 4-x current J =∇(∇•A) (16) has an explicit geometric meaning: 4-x current J is the gradient from the 

divergence of the potential A, i.e., includes singularities of space. The change in time of "outflow" and/or 

"inflow" in space is a positive and/or negative electric charge.    

3. The imposition of restrictions, such as Lorentz, Coulomb gauges on equations is nothing more than 

ignoring the singularity, i.e., current. The condition (18) in gauge invariance (17) means that oscillations 

and/or waves do not affect the four- current.   

4. A new form of the inhomogeneous Maxwell system (21) means that energy-momentum contributes to the 

4- current. At low energies, 𝜇𝑇 • 𝐴 ≈ 0 (classical case), and can be 𝜇𝑇 • 𝐴 − 𝐽 > 0 at high energies. 

Probably, at high energies, the "running" of the Weinberg angle, predicted in the Standard Model [5] and 

confirmed in experiments [6], and in general, the "running of constants" is maybe related to this contribution. 

It is possible that the confinement [7] in the theory of quarks is explained by the same contribution. For large 

contributions to the 4-current, the difference (µT•A – J) will be so great that the appearance of free single 

quarks will become impossible.    
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Appendix 1  

Proof of formulas (7.1) and (7.2):  

    We expand each vector 𝑒𝑖 of the generalized basis in terms of the canonical basis and write the product 

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 in the form:  

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 = (𝜕𝑖𝑋
𝑝𝜕𝑗𝑋

𝑞𝜕𝑘𝑋
𝑟𝜕𝑛𝑋

𝑠)𝛾𝑝𝛾𝑞𝛾𝑟𝛾𝑠  

Here i, j, k, n (also p, q, r, s) are not equal to each other and take the values 0;1;2;3.  

Simple calculations show that  

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 = |
|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
| 𝛾0𝛾1𝛾2𝛾3 = |

|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
| 𝛾    

  We square this determinant:  

|
|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
|

2

= |
|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
|
|
|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
|

𝑇

  

Simplifying and extracting the last expression from the root and generalizing, we obtain formula (7.1).  

|
|

𝜕𝑖𝑋
0 𝜕𝑖𝑋

1 𝜕𝑖𝑋
2 𝜕𝑖𝑋

3

𝜕𝑗𝑋
0 𝜕𝑗𝑋

1 𝜕𝑗𝑋
2 𝜕𝑗𝑋

3

𝜕𝑘𝑋
0

𝜕𝑛𝑋
0

𝜕𝑘𝑋
1

𝜕𝑛𝑋
1

𝜕𝑘𝑋
2 𝜕𝑘𝑋

3

𝜕𝑛𝑋
2 𝜕𝑛𝑋

3

|
|

2

= −[

𝑔𝑖𝑖 𝑔𝑖𝑗 𝑔𝑖𝑘 𝑔𝑖𝑛

𝑔𝑗𝑖 𝑔𝑗𝑗 𝑔𝑗𝑘 𝑔𝑗𝑛
𝑔𝑘𝑖
𝑔𝑛𝑖

𝑔𝑘𝑗
𝑔𝑛𝑗

𝑔𝑘𝑘 𝑔𝑘𝑛
𝑔𝑛𝑘 𝑔𝑛𝑛

] = −𝑔 

The proof of formula (7.2) is similar.  

We have proved assertions (7.1) and (7.2).    

Appendix 2  

Proof of formulas (8.1) and (8.2):  



It is known that in 4-dimensional space the antisymmetric tensor of the 3rd rank is dual to the pseudovector. 

We write this in the form:  

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘 = Ω𝑒𝑚                                                      (2Α)  

Ω is a yet unknown coefficient.  

We multiply both sides of equality (2A) by 𝑒𝑛 on the right:  

𝑒𝑖⋀𝑒𝑗⋀𝑒𝑘⋀𝑒𝑛 = Ω𝑒𝑚 • 𝑒𝑛 

Simplify:      −𝛾𝐸𝑖𝑗𝑘𝑙 = Ω𝑔𝑚𝑛      

Then:           Ω = −𝛾𝑔𝑚𝑛𝐸𝑖𝑗𝑘𝑙       

Substituting this expression for Ω in equality (2A), we obtain equality (8.1). The proof of equality (8.2) is 

similar.  

    We have proved assertions (8.1) and (8.2).    

Appendix 3  

    Proof of formulas (12) or (14):  

1. Proof of assertion (12), i.e., ∇⋀∇⋀𝐴 = 0.  

Taking into account (8.2), we can write formula (12) in the coordinate form: 

𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 = 0  

Changing the places of the indices i,j,k in this equation and simplifying, we get:   

𝐸𝑘𝑖𝑗𝑛(𝒟𝑘𝒟𝑖𝐴𝑗 + 𝒟𝑗𝒟𝑘𝐴𝑖 + 𝒟𝑖𝒟𝑗𝐴𝑘 − 𝒟𝑖𝒟𝑘𝐴𝑗 −𝒟𝑗𝒟𝑖𝐴𝑘 − 𝒟𝑘𝒟𝑗𝐴𝑖) = 0   

It is known that  𝒟𝑖𝒟𝑗𝐴𝑘 − 𝒟𝑗𝒟𝑖𝐴𝑘 = −𝑅𝑘𝑖𝑗
𝑝 𝐴𝑝; 𝑅𝑘𝑖𝑗

𝑝
 is the Riemann tensor.  

Substituting the Riemann tensor expression into the previous equation, we get  

−𝑅𝑘𝑖𝑗
𝑝 𝐴𝑝 − 𝑅𝑗𝑘𝑖

𝑝 𝐴𝑝 − 𝑅𝑖𝑗𝑘
𝑝 𝐴𝑝 = −𝐴𝑝(𝑅𝑘𝑖𝑗

𝑝 + 𝑅𝑗𝑘𝑖
𝑝 + 𝑅𝑖𝑗𝑘

𝑝 ) = 0 

This equation is indeed equal to zero, since the expression in brackets is identically equal to zero.  

   

2. Proof of equivalence (12) and the homogeneous Maxwell equation.  

We transform the formula 𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 = 0:  

0 = 𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 = 𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 + 𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 = 𝐸𝑘𝑖𝑗𝑛𝒟𝑘𝒟𝑖𝐴𝑗 + 𝐸𝑘𝑗𝑖𝑛𝒟𝑘𝒟𝑗𝐴𝑖 =    

= 𝐸𝑘𝑖𝑗𝑛(𝒟𝑘𝒟𝑖𝐴𝑗 −𝒟𝑘𝒟𝑗𝐴𝑖) = 𝐸𝑘𝑖𝑗𝑛𝒟𝑘(𝒟𝑖𝐴𝑗 − 𝒟𝑗𝐴𝑖)𝐸
𝑘𝑖𝑗𝑛𝒟𝑘𝐹𝑖𝑗 = 0    

 The statements are proven.  

 

Note. This paper is an improved version and partial translation of an author's article in Russian, published in 

a peer-reviewed journal: SCI-ARTICLE (40, December, 2016).  

https://sci-article.ru/stat.php?i=1480330789    

https://sci-article.ru/stat.php?i=1480330789

