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1 Introduction

The custom computational method is based on the assumption that all the
necessary data can be collected in one computer. Besides, there exist a number
of methods whose implementation can be made within complex computational
systems, however, under the control from a certain central unit. For many recent
applications related to large systems it is standard that the private information
of elements should not be moved. Moreover, constant transmission of information
back and forth between the central unit and other elements is not suitable since
this usually leads to increasing the data noise and mistakes and to very slow
computational procedures due to various transmission data delays. In addition,
the central unit capacity may be smaller essentially than the necessary total
information volume. Then we can apply decentralized procedures within multi-
agent systems, where the information is distributed among agents (units).

In [1, 2], we presented primal-dual methods for finding a solution of multi-
agent convex optimization problems and established their convergence under
different assumptions. In this paper we show that these methods possess stable
convergence properties. More precisely, each limit point of the iteration sequence
belongs to the fixed bounded set and under some additional assumptions coin-
cides with the normal solution point.

2 Auxiliary properties

Let U∗ and V ∗ be some convex and closed sets in the spaces Rl1 and Rl2 ,
respectively, and let W ∗ = U∗ × V ∗ ∈ Rl where l = l1 + l2. We first consider
convergence properties of sequences {wk} where wk = (uk, vk) to a point of the
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set W ∗. A set X ⊆ Rn is called a linear manifold, if for each pair of points
x, y ∈ X and for all α ∈ R we have αx+ (1− α)y ∈ X. Then

X = {x ∈ Rn | Ax = b} ,

where A is an m× n matrix and b ∈ Rm. A set X ⊆ Rn is called a generalized
linear manifold, if for each point x ∈ X there exists a linear manifold X̃ such
that x ∈ X̃ ⊆ X.

Let us also define the matrix

P =

(
B Θ
Θ⊤ C

)
where B and C are l1 × l1 and l2 × l2 symmetric and positive definite matrices,
and Θ is the l1 × l2 zero matrix. Hence, P is a symmetric and positive definite
matrix and

⟨Pw,w⟩ = ⟨Bu, u⟩+ ⟨Cv, v⟩,

i.e.
∥w∥2P = ∥u∥2B + ∥v∥2C

for any w = (u, v). For the starting point w0 = (u0, v0) of the sequence {wk} we
define

u∗
(n) = argmin{∥u− u0∥B | u ∈ U∗}

and
v∗(n) = argmin{∥v − v0∥C | v ∈ V ∗},

hence for w∗
(n) = (u∗

(n), v
∗
(n)) we have

w∗
(n) = argmin{∥w − w0∥P | w ∈ W ∗}.

If W ∗ is a generalized linear manifold, then so are U∗ and V ∗. Given a point
w̄ = (ū, v̄) ∈ W ∗, we set

w̄′ = argmin{∥w − w0∥P | w ∈ W ′},

where W ′ = U ′ × V ′ is a linear manifold such that w̄ ∈ W ′ ⊆ W ∗. Then U ′

is a linear manifold such that ū ∈ U ′ ⊆ U∗, V ′ is a linear manifold such that
v̄ ∈ V ′ ⊆ V ∗, and we have w̄′ = (ū′, v̄′) ∈ W ∗, where

ū′ = argmin{∥u− u0∥B | u ∈ U ′}

and
v̄′ = argmin{∥v − v0∥C | v ∈ V ′}.

Lemma 1. Suppose a sequence {wk} satisfies the conditions:

(i)
∥wk+1 − w∗∥P ≤ ∥wk − w∗∥P , k = 0, 1, . . . , (1)

for any w∗ = (u∗, v∗) ∈ W ∗,
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(ii)
lim
k→∞

wk = w̄ = (ū, v̄) ∈ W ∗. (2)

If V ∗ is a linear manifold, then v̄ = v∗(n). If W ∗ is a linear manifold, then
w̄ = w∗

(n).

Proof. It follows from (1) and (2) that

∥w̄ − w∗∥P ≤ ∥wk − w∗∥P ≤ ∥w0 − w∗∥P , k = 0, 1, . . . , (3)

for any w∗ = (u∗, v∗) ∈ W ∗. Choose any α ∈ R and set w(α) = (ū, v̄ + α(v∗(n) −
v̄)). Since V ∗ is a linear manifold, v̄ + α(v∗(n) − v̄) ∈ V ∗, hence w(α) ∈ W ∗. By

using the definitions and (3), we have

∥w0 − w(α)∥2P = ∥u0 − ū∥2B + ∥v0 − (v̄ + α(v∗(n) − v̄)∥2C
≥ ∥ū− ū∥2B + ∥v̄ − (v̄ + α(v∗(n) − v̄))∥2C = ∥α(v∗(n) − v̄)∥2C
= ∥v̄ − v0 + v0 − (v̄ + α(v∗(n) − v̄))∥2C
= ∥v0 − (v̄ + α(v∗(n) − v̄))∥2C + ∥v̄ − v0∥2C + 2⟨v0 − (v̄ + α(v∗(n) − v̄)), C(v̄ − v0)⟩

= ∥v0 − (v̄ + α(v∗(n) − v̄))∥2C − ∥v̄ − v0∥2C − 2α⟨v∗(n) − v̄, C(v̄ − v0)⟩.

It follows that

∥v̄ − v0∥2C ≥ −∥u0 − ū∥2B − 2α⟨v∗(n) − v̄, C(v̄ − v0)⟩

= −∥u0 − ū∥2B + 2α∥v̄ − v∗(n)∥
2
C + 2α⟨v∗(n) − v̄, C(v0 − v∗(n))⟩.

By definition,
⟨v∗(n) − v̄, C(v0 − v∗(n))⟩ = 0,

hence
∥v̄ − v∗(n)∥

2
C ≤ (2α)−1

{
∥u0 − ū∥2B + ∥v̄ − v0∥2C

}
for any α > 0. Setting α → +∞, we obtain v̄ = v∗(n). The second assertion is
proved similarly. ⊓⊔

We extend the previous results to the case of generalized linear manifolds.

Proposition 1. Suppose a sequence {wk} satisfies conditions (i) and (ii) of
Lemma 1. If V ∗ is a generalized linear manifold, then v̄ = v̄′ for any linear
manifold V ′ such that v̄ ∈ V ′ ⊆ V ∗. If W ∗ is a generalized linear manifold, then
w̄ = w̄′ for any linear manifold W ′ such that w̄ ∈ W ′ ⊆ W ∗.

The proof follows the lines of Lemma 1.
It should be observed that the above properties extend and modify those

from [3, pp.283–285].
In the general case we can evaluate the location of w̄. Set

H(z, w) =
{
w̃ ∈ Rl | ∥z − w̃∥P ≤ ∥z − w∥P

}
.
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Lemma 2. Suppose a sequence {wk} satisfies conditions (i) and (ii) of Lemma
1. Then

w̄ ∈
∩

z∈W∗

H(z, w0) ⊆ H(w∗
(n), w

0). (4)

Clearly, the estimates in (4) follow from (3).
Let us now take a convex optimization problem of the form

min
x∈X

→ µ(x) (5)

where X is a convex and closed set in Rs, µ : Rs → R is a convex function.
The set of its solutions is denoted by X∗. It is well known that the optimization
problem (5) is equivalent to the variational inequality: find x∗ ∈ X such that

∃g∗ ∈ ∂µ(x∗), ⟨g∗, x− x∗⟩ ≥ 0 ∀x ∈ X, (6)

where ∂µ(x) is the sub-differential of the function µ at x. Let

K⋆ = {p ∈ Rs |⟨p, q⟩ ≥ 0 ∀q ∈ K}

denote the conjugate cone for the set K and let

K(X,x) = {q ∈ Rs | ∃λ̄ > 0, x+ λq ∈ X, ∀λ ∈ (0, λ̄)}

denote the cone of feasible directions for the set X at x. We then can observe
that (6) can be equivalently rewritten as

S(x∗) ̸= ∅,

where
S(x) = ∂µ(x)

∩
[K(X,x)]⋆.

We can obtain a useful property of the sets S(x∗) under additional assumptions.

Proposition 2. Suppose that the set X in (5) is polyhedral. Then

S(x∗) = S ∀x∗ ∈ X∗. (7)

Proof. Since the set X is polyhedral, it can be defined as follows:

X = {x ∈ Rs | Ax ≥ b} ,

where A is an m× s matrix, b ∈ Rm. If X∗ ̸= ∅, then the Lagrange function

L(x, y) = µ(x) + ⟨y, b−Ax⟩

has a saddle point w∗ = (x∗, y∗) ∈ Rs × Rm
+ , i.e. it holds that

∀y ∈ Rm
+ , L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ Rs, (8)
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moreover, the set of these saddle points is of the form X∗ ×Y ∗, where Y ∗ is the
set of solutions of the dual problem to (5). Observe that the inequalities in (8)
can be replaced with the following system of relations:

⟨Ax∗ − b, y − y∗⟩ ≥ 0 ∀y ∈ Rm
+ ,

∃g∗ ∈ ∂µ(x∗), g∗ −A⊤y∗ = 0.

Taking into account the equivalence of (5) and (6) and using (8) we now obtain

S(x∗) = {p ∈ Rs | p = A⊤y∗, ∃y∗ ∈ Y ∗}.

It follows that the set S(x∗) is fixed for any x∗ ∈ X∗ and (7) holds true. ⊓⊔

Corollary 1. Suppose that the set X in (5) is polyhedral and the function µ is
differentiable. Then

µ′(x∗) = c ∀x∗ ∈ X∗. (9)

In fact, now ∂µ(x) = {µ′(x)} and (7) gives (9).

Proposition 3. Suppose that the set X in (5) is a linear manifold, i.e.

X = {x ∈ Rs | Ax = b} ,

where A is an m × s matrix, b ∈ Rm. Then the set Y ∗ of solutions of the dual
problem to (5) is a generalized linear manifold. If in addition the function µ is
differentiable, then the set Y ∗ is a linear manifold.

Proof. If X∗ ̸= ∅, then the Lagrange function

L(x, y) = µ(x) + ⟨y, b−Ax⟩

must now have a saddle point w∗ = (x∗, y∗) ∈ Rs × Rm, i.e. it holds that

∀y ∈ Rm, L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ Rs,

and the set of these saddle points is of the form X∗×Y ∗. The above inequalities
can be replaced with the following system of relations:

Ax∗ = b, ∃g∗ ∈ S(x∗), g∗ −A⊤y∗ = 0.

On account of (7) we now obtain

Y ∗ = {y∗ ∈ Rm | g∗ = A⊤y∗, ∃g∗ ∈ S}.

It follows that the set Y ∗ is a generalized linear manifold. If in addition the
function µ is differentiable, then S(x∗) = {µ′(x∗)}, but µ′(x∗) = c for any
x∗ ∈ X∗ due to Corollary 1. We now obtain

Y ∗ = {y∗ ∈ Rm | c = A⊤y∗},

hence Y ∗ is a linear manifold. ⊓⊔
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3 Primal-dual method for multi-agent optimization
problems

We now describe the primal-dual method proposed in [2] for the multi-agent
optimization problems and its general convergence properties. Usually, the multi-
agent optimization problem is defined as follows:

min →

{
m∑
i=1

fi(v)

m∩
i=1

Xi

}
, (10)

where m is the number of agents (units) in the system. That is, the information
about any function fi and set Xi is known only to the i-th agent and may be
unknown even to its neighbours. The agents are joined by some transmission
links for limited information exchange, and the topology of the communication
network may vary from time to time. This decentralized system has to find a
concordant solution defined by (10).

For this reason, we replace (10) with the family of optimization problems of
the form

min
x∈XI

→ f(x) =
m∑
i=1

fi(xi), (11)

where x = (xi)i=1,...,m ∈ Rmn, i.e. x⊤ = (x⊤
1 , . . . , x

⊤
m), xi = (xi1, . . . , xin)

⊤ for
i = 1, . . . ,m,

XI = X ′
∩

X ′′
I , X ′ = X1 × . . .×Xm =

m∏
i=1

Xi, Xi ⊆ Rn, i = 1, . . . ,m; (12)

the set X ′′
I describes the information exchange scheme within the current topol-

ogy of the communication network, and I is the index set of arcs of the corre-
sponding oriented graph, i.e.

X ′′
I = {x ∈ Rmn | xs − xt = 0, i = (s, t) ∈ I} . (13)

Taking index sets I, we obtain various constraint sets X ′′
I corresponding to the

oriented graphs GI . This means that the formulation of the problem associates
each pair of vertices (agents) (s, t) to one oriented arc i ∈ I whose direction is
fixed in any communication network. At the same time, the agents can in prin-
ciple use both the directions of each arc for communication. This non-oriented
graph of the real communication network is denoted by FI . Let L = {1, . . . , l}
denote the index set of all the possible oriented arcs for the m agents, so that
I ⊆ L. We will call I ⊆ L a basic index set if the graph FI is connected. Next,
for each arc i = (s, t) we can define the n×mn sub-matrix

Fi = (Fi1 · · ·Fim) , (14)

where

Fij =

 E, if j = s,
−E, if j = t,
Θ, otherwise,

(15)
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E is the n× n unit matrix, Θ is the n× n zero matrix. Then clearly

X ′′
I = {x ∈ Rmn | FIx = 0} , (16)

where
FI =

(
{F⊤

i }i∈I

)⊤
. (17)

Therefore, we can set
XI = {x ∈ X ′ | FIx = 0} .

We denote by X∗
I the solution set of problem (11)–(13). In what follows, we will

use the following basic assumptions.

(A1) For each i = 1, . . . ,m, Xi is a convex and closed set in Rn, fi : Rn → R is a
convex function. Either X ′ is a polyhedral set or riX ′ ∩X ′′

L is nonempty.
(A2) The set X∗ = X∗

L is nonempty.

Now we present a solution method for the multi-agent optimization problem
(11)–(13), where each agent (or unit) receives information only from its neigh-
bours. Given an oriented graph GI and an agent j, we denote by N+

I (j) and
N−

I (j) the sets of incoming and outgoing arcs at j and suppose that agent j is
responsible for calculation of the current values of the primal variable xj and all
the dual variables yi and pi such that i ∈ N−

I (j).
The Lagrange function for problem (11)–(13) is written as follows:

L(x, y) = f(x) + ⟨y,Ax⟩ =
∑
j∈M

fj(xj) +
∑
i∈L

⟨yi, Fix⟩

=
∑
j∈M

fj(xj) +
∑

i∈N−
L (j)

⟨yi, xj⟩ −
∑

i∈N+
L (j)

⟨yi, xj⟩

 .

A pair w∗ = (x∗, y∗) ∈ X ′ × YI is a Lagrangian saddle point for problem (11)–
(13) if

∀y ∈ YI , L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X, (18)

where
YI =

{
y = (yi)i∈L ∈ Rln | yi = 0 ∈ Rn for i /∈ I

}
.

We denote by W ∗
I = X∗

I ×Y ∗
I the set of saddle points in (18) since X∗

I is precisely
the solution set of problem (11)–(13), whereas Y ∗

I is the set of its Lagrange
multipliers. Since X∗

L = X∗, we also set Y ∗ = Y ∗
L and W ∗ = X∗ × Y ∗. We note

that the set of saddle points for the initial problem W ∗
I = X∗

I × Y ∗
I is nonempty

under the assumptions in (A1)–(A2) if I is a basic index set. Then also we have
X∗

I = X∗.
Next, the method involves an auxiliary matrix Bk at each k-th iteration. We

will take it to be block-diagonal, i.e.

Bk =


B1

k Θ . . . Θ
Θ B2

k . . . Θ
. . . . . . . . . . . .
Θ Θ . . . Bm

k
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where Bs
k is an n × n symmetric and positive definite matrix for s ∈ M and Θ

is the n × n zero matrix. For the sake of simplicity we will write Y(k) = YIk ,
F(k) = FIk , etc.

Method (PDM). At the beginning, the agents choose the communication
topology by choosing the active arc index set I0 ⊆ L. Next, each s-th agent
chooses x0

s and y0i for i ∈ N−
(0)(s) and reports these values to its neighbours.

This means that y0i = 0 for i /∈ I0. The agents define a common sequence {λk}
of positive numbers. Separately, each s-th agent chooses a sequence {Bs

k} of n×n
symmetric and positive definite matrices.

At the k-th iteration, k = 1, 2, . . ., each s-th agent has the values xk−1
s and

yk−1
i , i ∈ N−

(k−1)(s), and the same values of its neighbours. The agents choose

the current communication topology by choosing the active arc index set Ik ⊆ L
and determine the stepsize λk. This means that they set yki = 0 for i /∈ Ik.

Step 1: Each s-th agent sets

pki = yk−1
i + λk(x

k−1
s − xk−1

t ) ∀i = (s, t), i ∈ N−
(k)(s).

Then each s-th agent reports these values to its neighbours.
Step 2: Each s-th agent calculates

vks =
∑

i∈N−
(k)

(s)

pki −
∑

i∈N+
(k)

(s)

pki

and
xk
s = arg min

xs∈Xs

{
fs(xs) + ⟨vks , xs⟩+ 0.5λ−1

k ∥xs − xk−1
s ∥2Bs

k

}
and reports this value to its neighbours.

Step 3: Each s-th agent sets

yki = yk−1
i + λk(x

k
s − xk

t ) ∀i = (s, t), i ∈ N−
(k)(s).

Then each s-th agent reports these values to its neighbours. The k-th iteration
is complete.

Definition 1. We say that I ⊆ L is a support index set with respect to the
sequence {wk} if I = Ik for infinitely many k. We say that I ⊆ L is a strongly
support index set with respect to the sequence {wk} if it is a support index set
and

inf
I=Ij ,k<j

sup
I=Ik

(j − k) ≤ d < ∞.

We denote by P (respectively, by P∗) the collection of all support (respec-
tively, strongly support) index sets with respect to the sequence {wk}. Also, we
set

J =
∩
I∈P

I and J∗ =
∩

I∈P∗

I.
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If J ̸= ∅, then

W ∗
J ⊆

∞∩
k=k0

W ∗
(k) for some k0 ≥ 1. (19)

In what follows we will define the matrices

Pk =

(
Bk Θ
Θ⊤ E

)
where E is the ln× ln unit matrix and Θ is the mn× ln zero matrix. Hence,

⟨Pkw,w⟩ = ⟨Bkx, x⟩+ ⟨y, y⟩,

i.e.
∥w∥2Pk

= ∥x∥2Bk
+ ∥y∥2.

We collect some convergence properties of (PDM) from Theorem 1 in [2].

Proposition 4. Suppose that assumptions (A1)–(A2) are fulfilled, J is a basic
index set, J ∈ P or J = J∗, the sequence {λk} and the matrix sequence {Bk}
satisfy the conditions:

(1 + αk)Bk ≽ Bk+1 ≽ B, k = 1, 2, . . . , (20)

for some mn×mn symmetric and positive definite matrix B and

Bk − 2λ2
kF

⊤
(k)F(k) ≽ τE, λk ≥ λ′ > 0, k = 1, 2, . . . , (21)

for some τ > 0 where E is the mn×mn unit matrix, the sequence {αk} satisfies
the conditions:

αk ≥ 0,
∞∑
k=0

αk = α′ < ∞. (22)

Then:

(i)
∥wk − w∗∥2Pk

≤ (1 + αk−1)∥wk−1 − w∗∥2Pk−1
if k ≥ k0,

(ii)
lim
k→∞

wk = w∗ ∈ W ∗
J . (23)

It was also proved in [2] that (20) and (22) imply

lim
k→∞

Bk = B̄ ≽ B,

hence
lim
k→∞

Pk = P̄ ≽ P,

where

P̄ =

(
B̄ Θ
Θ⊤ E

)
and P =

(
B Θ
Θ⊤ E

)
.

Implementation of the conditions of Proposition 4 are discussed in detail in
[2]. We note that these conditions allow for the agents to provide them indepen-
dently even in the varying topology case. The agents can also apply different
strategies if necessary.
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4 Stable convergence in the stationary case

By using the results of the previous sections we can establish stability properties
of (PDM). Let us first take the completely stationary case, where

Ik ≡ I, k = 0, 1, 2, . . . , (24)

and
Bk ≡ B, k = 1, 2, . . . , (25)

where B is an mn×mn symmetric and positive definite matrix, hence

Pk ≡ P, k = 1, 2, . . .

Relation (24) means that the network topology is fixed, whereas (25) means that
we utilize the fixed metric matrix in (PDM). Then the assertion of Proposition
4 is simplified as follows.

Proposition 5. Suppose that assumptions (A1)–(A2) are fulfilled, relations (24)
and (25) hold, I is a basic index set, the sequence {λk} satisfies the condition:

B − 2λ2
kF

⊤
I FI ≽ τE, λk ≥ λ′ > 0, k = 1, 2, . . . , (26)

for some τ > 0. Then:

(i)
∥wk − w∗∥2P ≤ ∥wk−1 − w∗∥2P , k = 1, 2, . . . ,

(ii)
lim
k→∞

wk = w̄ ∈ W ∗
I . (27)

Clearly, rule (26) enables us to choose λk > 0 to be fixed as well. Now we
can utilize the results of Section 2. For the starting point w0 = (x0, y0) we set

x∗
(n) = argmin{∥x− x0∥B | x ∈ X∗}

and
y∗(n) = argmin{∥y − y0∥ | y ∈ Y ∗

I },
hence for w∗

(n) = (x∗
(n), y

∗
(n)) we have

w∗
(n) = argmin{∥w − w0∥P | w ∈ W ∗

I }.

If W ∗
I is a generalized linear manifold, then so are X∗ and Y ∗

I . Given a point
w̄ = (x̄, ȳ) ∈ W ∗

I , we set

w̄′ = argmin{∥w − w0∥P | w ∈ W ′
I},

where W ′
I = X ′ × Y ′

I is a linear manifold such that w̄ ∈ W ′
I ⊆ W ∗

I . Then X ′

is a linear manifold such that x̄ ∈ X ′ ⊆ X∗, Y ′
I is a linear manifold such that

ȳ ∈ Y ′
I ⊆ Y ∗

I , and we have w̄′ = (x̄′, ȳ′) ∈ W ∗, where

x̄′ = argmin{∥x− x0∥B | x ∈ X ′}
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and
ȳ′ = argmin{∥y − y0∥ | y ∈ Y ′

I}.

Also, we now set

H(z, w) =
{
w̃ ∈ R(m+l)n | ∥z − w̃∥P ≤ ∥z − w∥P

}
.

Theorem 1. Suppose that assumptions (A1)–(A2) are fulfilled, relations (24)
and (25) hold, I is a basic index set, the sequence {λk} satisfies condition (26)
for some τ > 0. Then:

(i) Relation (27) holds.
(ii)

w̄ ∈
∩

z∈W∗
I

H(z, w0) ⊆ H(w∗
(n), w

0). (28)

(iii) If X∗ is a generalized linear manifold, then x̄ = ȳ′ for any linear manifold
X ′ such that x̄ ∈ X ′ ⊆ X∗.

(iv) If Y ∗
I is a generalized linear manifold, then ȳ = ȳ′ for any linear manifold

Y ′
I such that ȳ ∈ Y ′

I ⊆ Y ∗
I .

(v) if W ∗
I is a generalized linear manifold, then w̄ = w̄′ for any linear manifold

W ′
I such that w̄ ∈ W ′

I ⊆ W ∗
I .

The assertions follow directly from Lemma 2 and Propositions 1 and 5.

Corollary 2. Suppose that the assumptions of Theorem 1 are fulfilled. Then:

(i) Relations (27) and (28) hold.
(ii) If X∗ is a linear manifold, then x̄ = x∗

(n).

(iii) If Y ∗
I is a linear manifold, then ȳ = y∗(n).

(iv) if W ∗
I is a linear manifold, then w̄ = w∗

(n).

The assertions follow directly from Lemma 1 and Theorem 1.
We conclude that (PDM) provides weak stability of limit points for its iter-

ation sequence {wk} in the general case. That is, each limit point w̄ belongs to
the bounded set due to (28). This property is essential since the solution set W ∗

I

may be unbounded. Moreover, we can obtain stronger stability properties under
certain additional assumptions.

5 Examples of applications

We now illustrate the stability properties of (PDM) obtained in the previous
section. We take several significant examples of applications.

Example 1. (Distributed system of linear equations) We took a system of linear
equations

Av = b,
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where A is an d× n matrix, b is a vector in Rd, or equivalently,

Aiv = bi, i = 1, . . . ,m;

where Ai is an di × n matrix, bi ∈ Rdi , i = 1, . . . ,m, so that

A⊤ =
(
{A⊤

i }i=1,...,m

)
, b⊤ =

(
{b⊤i }i=1,...,m

)
, and d =

m∑
i=1

di.

We can replace this system with its squared gap minimization problem

min
v∈Rn

→ f̃(v) = 0.5
m∑
i=1

∥Aiv − bi∥2,

which corresponds to (10). In the multi-agent setting, the information about any
matrix Ai and vector bi is known only to the i-th agent and may be unknown to
its neighbours. Then we rewrite the above optimization problem in the format
(11)–(13) as follows:

min
x∈XI

→ f(x) =
m∑
i=1

fi(xi), (29)

where
XI = X ′′

I , fi(xi) = 0.5∥Aixi − bi∥2, i = 1, . . . ,m, (30)

x = (xi)i=1,...,m ∈ Rmn, the set X ′′
I describes the communication network topol-

ogy, I is the index set of arcs, i.e.

X ′′
I = {x ∈ Rmn | xs − xt = 0, i = (s, t) ∈ I} ,

or briefly as in (16):
X ′′

I = {x ∈ Rmn | FIx = 0} , (31)

where the matrix FI is defined in (14)–(15) and (17).
Let us apply (PDM) to problem (29)–(31). We observe that the Lagrangian

saddle point problem (18) is now equivalent to the system of linear equations

FIx
∗ = 0, A⊤

j (Ax
∗
j − bj) +

∑
i∈I

F⊤
ij y

∗
i = 0, j = 1, . . . ,m.

This means that the set W ∗
I of Lagrangian saddle points is a linear manifold.

Due to Corollary 2 the sequence {wk} generated by (PDM) converges to the
point w̄ = w∗

(n).

Example 2. (Distributed system of linear inequalities)We took a system of linear
inequalities

Av ≤ b,

where A is an d× n matrix, b is a vector in Rd, or equivalently,

Aiv ≤ bi, i = 1, . . . ,m;
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where Ai is an di × n matrix, bi ∈ Rdi , i = 1, . . . ,m, so that

A⊤ =
(
{A⊤

i }i=1,...,m

)
, b⊤ =

(
{b⊤i }i=1,...,m

)
, and d =

m∑
i=1

di.

We can replace this system with its squared gap minimization problem

min
v∈Rn

→ f̃(v) = 0.5
m∑
i=1

∥[Aiv − bi]+∥2,

which corresponds to (10). Here and below [u]+ denotes the projection of a point
u ∈ Rs onto the non-negative orthant Rs

+. For the multi-agent setting, we rewrite
the above optimization problem as (29) where

XI = X ′′
I , fi(xi) = 0.5∥[Aixi − bi]+∥2, i = 1, . . . ,m, (32)

x = (xi)i=1,...,m ∈ Rmn, the set X ′′
I is defined in (31).

Let us apply (PDM) to problem (29),(31), and (32). We observe that the La-
grangian saddle point problem (18) is now equivalent to the system of equations

FIx
∗ = 0, A⊤

j [Ax
∗
j − bj ]+ +

∑
i∈I

F⊤
ij y

∗
i = 0, j = 1, . . . ,m.

The setW ∗
I = X∗×Y ∗

I of Lagrangian saddle points need not be a linear manifold,
but Y ∗

I is a linear manifold due to Proposition 3. From Theorem 1 and Corollary
2 we obtain that the sequence {wk} generated by (PDM) converges to the point
w̄ = (x̄, ȳ) ∈ W ∗, which belongs to the bounded set indicated in (28), besides,
ȳ = y∗(n).

Example 3. (Decomposable system of linear equations) We took a system of lin-
ear equations

m∑
i=1

Aizi = b,

where Ai is an n × di matrix, zi ∈ Rdi , i = 1, . . . ,m, b is a vector in Rn. As
above, we replace this system with its squared gap minimization problem

min
z∈Rd

→ 0.5

∥∥∥∥∥
m∑
i=1

Aizi − b

∥∥∥∥∥
2

, (33)

where

z = (zi)i=1,...,m and d =
m∑
i=1

di.

However, this formulation is not suitable for the multi-agent setting, where the
information about the sub-matrix Ai is known only to the i-th agent. For this
reason, we take its dual problem

min → {0.5∥x∥2 − ⟨b, x⟩ | A⊤
i x = 0, i = 1, . . . ,m}.
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For the multi-agent setting, it can be rewritten in the format (11)–(13) as follows:

min
x∈XI

→ f(x) =
m∑
i=1

fi(xi), (34)

where
XI = X ′

∩
X ′′

I , X ′ = X1 × . . .×Xm,

Xi = {xi ∈ Rn | A⊤
i xi = 0},

fi(xi) =
(
0.5∥xi∥2 − ⟨b, xi⟩

)
/m, i = 1, . . . ,m,

(35)

x = (xi)i=1,...,m ∈ Rmn, and the set X ′′
I is defined in (31). Problem (34)–(35)

clearly has a unique solution x∗. Let us apply (PDM) to this problem. We observe
that the Lagrangian saddle point problem (18) is now equivalent to the system
of relations

FIx
∗ = 0, ∃z̃j ∈ Rdj , (1/m)(x∗

j − b) +
∑
i∈I

F⊤
ij y

∗
i +Aj z̃j = 0, j = 1, . . . ,m.

This means that the set Y ∗
I of Lagrangian multipliers is a linear manifold. Due

to Corollary 2 the sequence {wk} generated by (PDM) converges to the point
w̄ = w∗

(n), where x̄ = x∗ and ȳ = y∗(n). After calculating the point x∗ we can find

a solution of (33) by using the optimality conditions in (34)–(35) and taking the
extended Lagrangian involving the constraints in X ′ with respect to the dual
variables zj :

(1/m)(x∗
j − b) +

∑
i∈I

F⊤
ij y

∗
i +Ajz

∗
j = 0, j = 1, . . . ,m.

Example 4. (Fermat-Weber optimization problem)We took the well-known Fermat-
Weber optimization problem:

min
v∈Rn

→ f̃(v) =

m∑
i=1

αi∥v − ai∥, αi > 0, i = 1, . . . ,m;

where ai, i = 1, . . . ,m are some given points (anchors). We suppose that the
points ai do not belong to the same straight line. Then the function f̃ is coercive,
strictly convex, and non-smooth; see [4, Ch. V, §2]. Hence, the optimization
problem has unique solution. It can be rewritten in the multi-agent format (11)–
(13) as (29) where

XI = X ′′
I , fi(xi) = αi∥xi − ai∥, i = 1, . . . ,m, (36)

x = (xi)i=1,...,m ∈ Rmn, and the set X ′′
I is defined in (31). Problem (29), (31),

and (36) also has a unique solution x∗. Let us apply (PDM) to this problem.
From Theorem 1 and Corollary 2 we obtain that the sequence {wk} generated by
(PDM) converges to the point w̄ = (x̄, ȳ) ∈ W ∗, which belongs to the bounded
set indicated in (28). If W ∗

I = X∗×Y ∗
I is the set of its Lagrangian saddle points,

then X∗ = {x∗}, hence, x̄ = x∗. Due to Proposition 3, the set Y ∗
I is a linear

manifold if x∗
i ̸= ai, i = 1, . . . ,m since the function f is differentiable at x∗.

Then ȳ = y∗(n). Otherwise, Y ∗
I is a generalized linear manifold. Then ȳ = ȳ′ for

any linear manifold Y ′
I such that ȳ ∈ Y ′

I ⊆ Y ∗
I .
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6 Stable convergence in the non-stationary case

By using the results of Sections 2–3 we can establish somewhat weaker stability
properties of (PDM) in the non-stationary case. Let us first discuss the case
where (25) holds, but the network topology is not stationary, i.e. (24) is not
fulfilled. Hence we still utilize the fixed metric matrix in (PDM). We recall
that the i-th agent is associated with the i-th vertex of the communication
graph. It follows from the results in [1, 2] that we can satisfy the conditions
of Proposition 4 if each i-th agent will evaluate the maximal degree of the i-th
vertex in the varying communication graphs FIk . Then the assertions of Theorem
1 and Corollary 2 will be true, but we have to replace the point w0 = (x0, y0) with
wk0 = (xk0 , yk0) where k0 is defined in (19). Therefore, the stable convergence
will be almost the same in this case.

Let us first discuss the general non-stationary case where neither (24) nor
(25) will be fulfilled. This means that the network topology is non-stationary, and
we utilize the variable metric matrices in (PDM). Then we can apply general
convergence properties. Under the conditions of Proposition 4 we obtain that
(23) holds, besides,

∥w∗ − w̃∥2P ≤ σ∥wk0 − w̃∥2Pk0
, ∀w̃ ∈ W ∗

J ,

where

σ =

∞∏
i=k0

(1 + αi) < +∞

due to (22), and k0 is defined in (19). Set

H̃(z, w̄) =
{
w ∈ R(m+l)n | ∥z − w∥P ≤ σ∥z − w̄∥Pk0

}
,

then
w∗ ∈

∩
z∈W∗

J

H̃(z, wk0) ⊆ H̃(w∗
(n), w

k0).

That is, each limit point w∗ belongs to the bounded set.
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