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There are many different  approaches [3]  to  Fermat's  last  theorem
(FLT). In this study, we will consider an interesting approach.

Theorem (FLT): For an arbitrary integer n>2, there are no integers a,
b and c (a,b,c>0) [5] satisfying the formula an + bn = cn .

        In other words: the indeterminate equation xn + yn = zn has no integer
solution at n≥3 [6].

       Fermat's theorem can be expressed in a more general way, taking into
account not only natural but also negative values of “n”:

Theorem 1: except for n=2 and n=1 of the equation a^n+b^n=c^, for any
integer value of n (including negative values of n) in integers (i.e. a, b, c in
full values) has no solution (Beylarov E.B.).

This theorem will be formulated in more detail below as Theorem 3.

It is clear that for n=1 and n=2 there is an infinite set of solutions satisfying
the equation an+bn=cn [1]:

 With n=2 we get Pythagorean triples 32+42=52 or  52+ 122 = 132 

 For n=1    51 + 71 = 121 etc. 

As we have already mentioned, integer and positive numbers a, b and c
satisfying the equality an + bn = cn  express Pythagorean triples for n=2 [1].
This also means that the numbers that are solutions to the equation are the
sides of a right triangle. That is, from them one can build a triangle, and this
triangle will be right-angled.

So these numbers satisfy the triangle inequalities:

a+b>c, a+c>b, b+c>a, c-b<a, c-a<b [1]

Theorem 2. Arbitrary positive numbers a, b and c satisfying the equality
an + bn = cn  (for  n>1)  must  satisfy  the  triangle  inequalities,  i.e.:  a+b>c;
a+c>b; b+c>a; c-b<a; The inequalities c-a<b b-a<c must be applied.
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In other words, when n>1, the numbers  a, b, c satisfying the equation
an + bn = cn  must be the sides of any triangle. For 1<n<2 this triangle will
be obtuse, with n=2 it  will  be right-angled, and for n>2 it  will  be acute-
angled.

To prove it, let us consider three possible cases of expressions  a + b
and c for integer and positive numbers a, b and c satisfying the equation
an + bn = cn 

1.  a+b=c     2. a+b<c        3. a+b>c

 1. For a+b=c, raising both sides of the equation to the n-th power, we
get:

an +...+ bn = cn

On the left side of the equation, we get the positive limits of the binom
opening between the first and last limits. If we remove the positive limits of
the  binomial  hole  on  the  left  side,  then  an + bn < cn .  This  situation
contradicts the equation an + bn = cn . That is, if an + bn = cn , then the first
option, i.e. a+b=c is impossible.

2. If a+b<c, then it is clear that (a+b)n < cn və an +...+ bn < cn. Then, when
positive binomial limits appear on the left side of the inequality between the
first and last limits, the expression on the left side will be smaller.

That is, an + bn << cn , which contradicts the case an + bn = cn . 
Therefore, the 2nd case is also impossible.

3. Thus, the 3rd case, i.e. a+b>c, is the only possible one.

For the case 3.1.0<n<1, the triangle inequality is not applied; on the 
contrary, the following inequalities are applied (Fig. 1):

a+b<c; a<c-b və b<c-a 

Example:  (25)1/2 + (49)1/2=(144)1/2      25+ 49 < 144 etc.

Fig. 1

3.2. In the case of n=1, the only possible case is  a+b=c. This is 
expressed by a point located at distances a and b from the end points on 
segment c (Fig. 2);

se

Fig 2.

3.3. With 1<n<2,  a, b, c will be the sides of an isosceles triangle (Fig.3);

2a b

c BA
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Fig. 3

3.4. With n=2, a, b, c will be the sides of a right triangle.

3.5. With 2<n, a, b, c will be the sides of an acute-angled triangle.

Let's consider several theorems and their proofs in the direction of 
proving Fermat's theorem:

Theorem 3: For arbitrary real numbers 0<a<b<c, there always exist
real  numbers n>1 and 0<m<1 such that  the equations an + bn = cn  and
am = bm + cm  are satisfied (Beilarov E.B.) 

Proof: if we divide both sides of the equation by cn, we get ( a
c
)
n

+(
b
c
)
n

=1.

Here, the function y= ( a
c
)
x

 monotonically decreases (Figure 4, graph 1), 

and the function y=1-( b
c
)
x

 monotonically increases (Figure 4, graph 2). 

Since the domain of the functions is (-∞,+∞), their graphs must intersect at 
one point. (See Fig. 4.)

Fig. 4.

For an arbitrary triangle ABC, the abscissa of the intersection point of

the graphs y=1-( b
c
)
n

 and y= ( a
c
)
n

 will satisfy the equation (x) ax+bx=cx.

The part of “Theorem 3” related to the equation am = bm + cm is proved
similarly.

Note that in the case of 0<a<b<c, it is impossible to get a real number
“k” that satisfies the equation bk = ak + ck. This is because a is less than b
and c is greater than b. For an arbitrary value of k in the expression bk = ak

+ ck, one of the expressions ak and ck will be positive numbers greater than
bk, and the other less than bk.
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Thus, Theorem 3 is proved.

This means that there are always corresponding numbers «n» and «m»
satisfying  the  conditions  an + bn = cn  for  the  largest  side  of  an  arbitrary
triangle and am = bm + cm  for smaller sides.

There  is  no  corresponding  number  «k» that  satisfies  the  condition
bk = ak + ck  for the average side "b".

In our view, the truth of this theorem is one of the most important points
complicating the proof of Fermat's theorem as a whole. While attempts are
being made to prove that a, b, c cannot be simultaneously complete or that
they cannot be coprime for natural values of n greater than 2 (n>2).

From "Theorem 3" one can see that the search for such contradictions
about a, b, c in the equation an + bn = cn  , taking "n" as natural, will not give
any results. The presence of a rational or irrational "n" that satisfies the
condition an + bn = cn  for arbitrary a, b, c makes it impossible for there to be
a contradiction in this direction.

Note  that  the  correctness  of  "Theorem 3"  requires  a  change  in  the
direction of the search in relation to the SFT proof. In other words, Theorem
4 can be formulated as follows:

Theorem 4. There is no integer n(2<n) greater than 2 that satisfies the
equation an+bn=cn for arbitrary integers a, b, c (Baylarov E.B).

Theorem 4" fundamentally differs from "Theorem F" in the formulation of
the  problem.  But  the  proof  of  "Theorem  4"  will  also  be  the  proof  of
"Theorem F".

Note.  Finding  a  general  formula  for  "n"  that  satisfies  the  condition
an + bn = cn  for  an arbitrary triangle is  a time-consuming technical  task.
Finding a general formula for "n" is related to the problem of finding the
formula for the "logarithm of the sum" (log(f(x) + g(x)) =?). Finding the first
will contribute to the solution of the second.

For  equilateral  triangles,  the  general  formula  for  n  satisfying  the
condition an + bn = cn  can be obtained as follows:
c
2
:a=sin

C
2
;c=2a sin

C
2
;sin

C
2

=
c
2a
h=acos

C
2
;cos

C
2
=
h
a
;See Fig. 5.

Since a=b in an equilateral triangle, we can write the equation an+bn=cn

as: an+an=cn  

Here we get the following:

2an=¿
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Fig. 5.

We logarithm both sides of this expression to base 2::
1−n
n

= log2sin
C
2
→
1
n
−1=log2sin

C
2
→n=

1

1+ log2sin
C
2

Based on the conducted studies, the following can be noted (see Fig. 6.1 - 
6.4)

6.1. C –for an equilateral triangle when it is hypogonal (Fig. 6.1.)

With a=4; b=4; c=7 , according to formula  
n=

1

1+ log2sin
C
2

 n=1.23861262585 

and an+bn=cn=11.1365097709

6.2. The case of approaching a right triangle (Fig. 6.2.) 

With a=5.74456264656; b=4; c=7 ,  according to formula  
n=

1

1+ log2sin
C
2

 

n=2.00000000002 and  an+bn=cn=49.0000000015

6.3. As the triangle approaches an equilateral one, n tends to infinity 
(Figure 6.3).

With a=6.9;  b=6.9; c=7 , according to formula 
n=

1

1+ log2sin
C
2

 

n= 48.1728979257  and  an+bn=cn=5.1383255777x1040

6.4. When angle C is acute, the value of n is negative (Figure 6.4).

With a=9;  b=9; c=7, according to formula 
n=

1

1+ log2sin
C
2

  

n= -2.75808748945  and  an+bn=cn=0.00466815930687

6.5. with a+b=c  n=1.
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  Fig. 6.1.               Fig. 6.2.            Fig. 6.3                Fig. 6.4.

n=
1

1+ log2sin
C
2

  (B1)

the formula is true for arbitrary equilateral triangles, except for equilateral
triangles. Since sin30o=1\2 in the expression (an+an=an) for an equilateral
triangle, the denominator of the expression becomes "0" and the resulting
uncertainty is 1\0.

In  the  following  analyzes,  we will  show that  the  case  of  an  equilateral
triangle is also a limiting case for Elbe curves (Beilarov E.B.).

For equilateral triangles, we express the general formula "n" with the 
ratio of the sides, with the formula without an angle. If

                       an+an=cn      2an=cn 

If we divide both sides by c, we get:
2¿

If we log both sides to base 2, we get:

1+n log2
a
c
=0n=

−1

log2
a
c

   (B2)

Let’s compare formulas (B1) and (B2):

n=
1

1+ log2sin
C
2

(B1)

n=
−1

log2
a
c

(B2)

1. For equilateral triangles, both formulas are correct (In the Fig. 7.1. 
the degree of "n", calculated by the formula (B2), is marked with "m" 
so as not to create contradictions in the Desmos calculator.).
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If a=8, b=8, c=13,  

n=
1

1+ log2sin
C
2

=1.42767460796
(B1)

n=
−1

log2
a
c

=1.42767460796
(B2)

an+bn = 38.9357584353  
cn  = 38.9357584353
an+bn=cn

2. When a=b and the numbers a, b, c do not form a triangle, since there
is no angle C, formula (B1) cannot be calculated - an uncertainty is 
obtained
But in this case formula (B2) is calculated and an+bn = cn is paid.

(In the figure 7.2. , the degree of "n", calculated by the formula (B2), 
is marked with "m" so as not to create contradictions in the Desmos 
calculator).

When a=5, b=5, c=13

n=
1

1+ log2sin
C
2

=uncertainty
 (B1)

n=
−1

log2
a
c

=−0.725420071279
(B2)

For “n” calculated by formula (B1), we get:

an+bn - uncertainty
cn - uncertainty

For “n” calculated by formula (B2), we get:
an+bn   = 6.42801477055
cn = 6.42801477055

an+bn = cn

3. It is strange that although the formula (B1) is written for equilateral 
triangles, it is also valid for all right triangles - Pythagorean numbers 
(for n=2). 

7



Because with C=90o  sin C
2

=√ 24=2
−1
2   

However, formula (B2) is not applied for non-isosceles right triangles,
(In the figure 7.3.  the degree of "n", calculated by the formula (B2), is
marked with "m" so as not to create contradictions in the Desmos 
calculator).

If a=3, b=4, c=5 then

n=
1

1+ log2sin
C
2

=2
(B1)

n=
−1

log2
a
c

=1.35691544886
(B2)

an+bn = 25   

cn  = 25

an+bn=cn

(B2) düsturuna görə hesablanan n üçün alırıq:

an+bn   = 11.0009233374 
cn    = 8.88061816145   

an+bn ≠ cn

  
Fig. 7.1.     Fig. 7.2.     Fig. 7.3.

As odd as it may sound, it is so and it would be interesting to find out why.

In general, we can formulate "Theorem 5" for triads that can be sides of a 
triangle.

Theorem 5: For an arbitrary triangle with sides a, b, c, there exists a real 
number “n” such that an+bn=cn (Beilarov E.B.)
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Since this proposition is a special case of Theorem 3, it can be proved in a
similar way.

Note that the Pythagorean theorem is a special case of Theorem 5.

Curves of the Elbe

Suppose a, b, c are sides of a triangle and satisfy the condition an+bn=cn

for 1<n<2, then the center of the solution of the equation (a\c)n+(b\c)n=1
with respect to a, b, c within a circle with a uniform radius at the origin, then
on the Elbe curves (Beylarov E.B.) it will look like an ellipse, but not an
ellipse (Fig. 8, graph 2 - ellipse, graph 3 - Elba).

In the case of 1<n<2, the minor semi-axis of Elba curves is less than the
radius of the circle, and the major semi-axis is equal to the radius of the
circle (Fig. 8, graph 3).

In  the  case  of  n=2,  we  get  the  equation  of  the  single  circle  at  the
beginning of the central coordinate (a\c)2+(b\c)2=1 Elba coincides with the
circle (fig. 8, graph 1).

The minor semiaxis of these curves is less than the radius of the circle,
and the major semiaxis is equal to the radius of the circle (Fig. 8).

In the case of 2<n solution of the equation (a\c)n+(b\c)n=1 outside the
circle of uniform radius at the origin of the central coordinate, the minor
semiaxis is equal to the radius of the circle, the major semiaxis is greater
than the radius of the circle, similar to an ellipse, but not an ellipse located
on (Fig. 9, graph 1, 2 are the Elbe curves).

For clarity,  in the future we will  call  these curves the curves of  Elba
(Elkhana Beylarova). In Figure 8, the 1st equation is the Elba equation, the
2nd equation is  the circle  equation,  and the 3rd  equation is  the ellipse
equation.

As we already mentioned,  the Elbe curve -  although it  looks like an
ellipse with equal major and minor axes, in fact it is a different figure. This
can also be seen visually by writing down the corresponding formula of the
ellipse  with  respect  to  the  corresponding  semi-axes  by  observing  the
graphs.

The Elbe curve is also not a circular arc. This can also be proven by
writing the equation of a circle passing through three points.

The angles that subtend the same chord on an arc of a circle are equal,
but the angles that subtend the same chord on the Elbe differ in magnitude.
This is another proof that this is not an arc of a circle.

Note: a) the sides of all right-angled triangles obtained by moving the
large base by the diameter of  the circle,  and the vertices by the circle,
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change the angles adjacent to the base, but the angle at the apex (C=90o)
and n's (n=2) do not change;

b)  the  sides  and  all  angles  of  the  triangles  obtained  by  moving  the
vertex on the Elbe with a large support on the diameter of the circle do not
change n.

For all triangles inside the Elbe, ns are fixed that satisfy the condition (a\
c)n+(b\c)n=1 

For complete clarity, what has been said about Elbe curves can also be 
shown on the coordinate plane.

For example, to build an Elbe curve for n=5\3, we would do the 
following.

Fig. 8.

Expressing the sides of the triangle in terms of the x, y coordinates, we
obtain the Elbe equation and its graph for an arbitrary n in the unit circle.

((1+x )
2
+ y2)

n
2
+( (1−x )

2
+ y2)

n
2
=2n

((1+x )
2
+ y2)1+( (1−x )

2
+ y2)1=22n=2; circle equation, extreme graph (Fig. 8, 

graph 1).

((1+x )
2
+ y2)

5
6
+( (1−x )

2
+ y2)

5
6
=2

5
3      (n=5\3; The Elbe equation will be the 

innermost graph (Fig. 8, graph 3).

The curve in the middle, very close to the Elbe curve, whose semi-major
axis is 1 and whose semi-minor axis is equal to the Elbe's minor semi-axis,
is an ellipse graph. Its equation is shown at the bottom of the figure (Fig. 8,
graph 2).

Figure 9 shows graph 1 for n=100, graph 2, for n=4, graph 3, for n=2
circle, graph 4 for n=5\3 – Elbe graphs are shown.
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Fig.9.

So the circle is also a special case of Elbe with n=2.

Let us show the calculation of the minor axis of the Elbe.

Let's use the known equation (a\c)n+(b\c)n=1.

An Elbe whose major semiaxis is 1 will have c=2. So,

 (a\2)n+(b\2)n=1 

where a=b 

2(a\2)n=1  → (a\2)n=1\2   →  a\2=(1\2)1\n   → a=2(1\2)1\n→a=2(n-1)\n

So, in a circle with the same radius a=b - in the case of an equilateral 
triangle.: 

a=b=2(n-1)\n

In this case, the minor axis of the Elbe:

  yx=0= (a2-12)1\2=(22(n-1)\n-1)1\2(Fig. 9.)

This expression can be obtained faster by taking x=0 from the equation 
a2=(1+x)2+y2:

yx=0
2= a2-12 here yx=0=(22(n-1)\n-1)1\2

In this case, the minor axis of the Elbe is yx=0, and the major axis is xy=0:

yx=0= (a2-12)1\2=(22(n-1)\n-1)1\2

xy=0=1

The minor semiaxis of the Elbe within the unit circle, the following can 
be noted:

1) when n=1 is "0";

2) In the case of 1<n<2, it is less than the radius of the unit circle, i.e. 1;

3) when n=2  it is equal t “1”

4) In the case of 2<n, it will be greater than 1 (Fig. 10).
11
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Fig.10.

Lemma 1. When dividing the sides of triangles by the largest side and
multiplying by 2,  since the largest  side is  2,  the largest  value of  the
semiaxis  on  the  Y  axis  of  the  Elbe  curves  in  the  positive  direction
approaches 31\2 (3 in the square root)  and is approximately  equal  to
1.73205080757 .

Proof: For the largest values of  N, when the sides grow and approach
the base, i.e. 2, we get an equilateral triangle. Its height will be hy

2 = 22-
12=3 or hy = 31\2.

This value can be calculated similarly on an arbitrary circle.

Here are some important facts about Elbe curves:

1. The sides of an equilateral triangle are expressed as irrational 
numbers in cases where n≠2, n≠1 and c=2 in Arbitrary Elbe. 
Because:
an+an=2n → 2an=2n→ an=2n:2→an=2n-1→ a=2(n-1)\n

Therefore, the sides of an equilateral triangle in the Elbe are irrational
in all cases where the side c is complete or rational.

2. This semiaxis is the height of the corresponding equilateral triangle, 
and its area is equal to the difference of the squares of the side and 
half of the base. I mean: 
Y2

x=0= a2-12;  → Yx=0
2=22(n-1)\n-1 → Yx=0=(22(n-1)\n-1)1\2

This means that the vertical semiaxis of an arbitrary elbe is an 
irrational number.

3. The value of the semiaxis along the Y-axis of the Elbe increases and 
decreases depending on n.

Let's clarify the dependence of "n" on the vertical axis in Elba.

It is clear that

 tgα=Yx=0  or tgα=y → tgα=(22(n-1)\n-1)1\2→tg2α=(22(n-1)\n-1) → 22(n-1)\n= tg2α+1 
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Here, if we take the logarithm of both parts to base 2, we get:

log222(n-1)\n= log2(tg2α+1) →2(n-1)\n= log2(tg2α+1) →2-2\n= log2(tg2α+1) → 

2- log2(tg2α+1)=2\n→ n=2\(2- log2(tg2α+1))(və ya n=1\(1+ log2cosα)) 

This shows that in the case of tgα=1, n=2 is obtained, which is the case 
when the Elbe and the circle coincide.

4. The circle is a special case of the Elbe with n=2.

Let us consider some special cases on this issue.

For example, consider the case n=5\3. So: a 5\3+b5\3=c5\3. By dividing the 
sides of the equation by c5\3 and multiplying by 2n, this triangle can be built 
on the diameter of a circle of the same radius.

Fig. 11

Note for the triangle (Fig. 11): for a triangle that satisfies the condition 

a 5\3+b5\3=c5\3  for n=5\3

(a\c)5\3+ (b\c)5\3=1

a2=(1+x)2+y2 (1) → a=((1+x)2+y2))1\2

b2=(1-x)2+y2 (2) → b=((1-x)2+y2))1\2

From the difference of equations (1) and (2) we get that:
a2-b2=4x; 
a2+b2=2+2x2+2y2=2(1+x2+y2)

It would be appropriate to investigate these cases for different values 
of x and y in the circle, ellipse and Elbe.

(a\c)n+(b\c)n=1

C=2 on the Elbe, whose semi-major axis is equal to one. So, (a\2)n+(b\
2)n=1

13



      where a=b we get:

2(a\2)n=1  → (a\2)n=1\2   →  a\2=(1\2)1\n   → a=2(1\2)1\n→a=2(n-1)\n

So, in the case of an equilateral triangle a=b in a circle with a uniform 
radius: 

a=b=2(n-1)\n

In this case, the smaller half of the Elbe:

  yx=0= (a2-12)1\2=(22(n-1)\n-1)1\2

This expression can be obtained faster by taking x=0 from the equation 
a2=(1+x)2+y2 :

y2
x=0= a2-12 here yx=0=(22(n-1)\n-1)1\2

In this case, the minor semiaxis is yx=0, and the major semiaxis is xy=0:

yx=0= (a2-12)1\2=(22(n-1)\n-1)1\2

xy=0=1

For the semi-focal distance f  for a suitable semi-axial ellipse, we get:

f=(1- yx=0
2)1\2

For  simplicity  of  calculations  and  formulations,  here,  without  loss  of
generality,  we  can  take  c  =  2,  so  that  the  radius  of  the  circle  under
consideration  and  the  major  semiaxis  of  the  corresponding  ellipse  are
equal to one (1).

On fig. 12 also shows the graphical differences between the Elbe curve 
(red) and the ellipse (green), in which the major and minor semiaxes 
coincide for the case n=5\3

Fig.12

On fig. 13 also shows the graphical differences between the Elbe curve 
(blue) and the ellipse (blue), the major and minor semiaxes of which 
coincide with it for the case n=10\9.
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Fig.13

From a comparison of these two graphs, it can be seen that as the value
of  n  approaches  unity,  the  difference  between  the  ellipse  and  Elbe
curves is more clearly observed.

As can be seen from Figure 14, as the value of “n” increases (n=20 is
the dark red curve in the figure), one of the numbers a and b, or both of
them(if they are close or equal), approaches "c". Of course, since the
numbers "α" and "b" are less than the number "c" and the number c
remains constant, the graphs will infinitely approach the Elbe (Figure 14,
graph 1) with the largest “n” in the fig (where n=100).

Fig. 14

Here we would like to raise an interesting question. Figure 15 shows the
formulas for transforming Elbe and Ellips into a hyperbola.
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Fig 15

Depending on the coefficients of the limits y2 in the Elba formula, the
direction of the branches of the curve changes. Studying these cases will
reveal interesting facts.

An interesting fact is that a circle is a special case of an ellipse with
equal semiaxes. At the same time, the circle is a special case of Elbe in the
case of n=2. In this case, it is doubtful that there is a connection between
the Elbe and the ellipse. The discovery of this relation would in fact clarify
many  of  the  Elbe  properties  that  would  contribute  to  the  solution  of
Fermat's theorem.

Now let's focus on a few learned facts about the circle, ellipse, and
Elbe.

The study showed that:

1) In the case 1<n<2, the Elbe curve and the ellipse with equal semi-
axes are inside the same sphere, and Elbe is inside the ellipse;

2) in case n=2 Elbe, circle and ellipse overlap each other;

3)  In the case of 2<n, the ellipse is inside the Elbe, and this situation
continues until the value 2<n<4.8... (approximate value).

4)  After  the  value  n=4.8...  (approximate  value),  the  ellipse  again
begins to move away from the Elbe, and after a certain value it
completely goes beyond its limits.

5)  It makes sense to find the logical and geometric explanation of this
situation -  its  meaning,  whether such transitions occur at  higher
values of n. 

Although many issues related to Elbe curves have been investigated,
we consider it expedient to confine ourselves to their interpretation here. In
the following articles we are going to clarify these issues and our research
on the proof of Fermat’s last theorem.
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Note: The problem of proving Fermat's triangle theorem by applying
the sine theorem shows that the equation an+ bn=cn and the equation sinnα+
sinnβ=sinnɣ are equally valid, and makes it possible and necessary to use
the knowledge about triangles. .

Special thanks: I express my deep gratitude to my childhood friend
Gasanov Ilyas Ravan, Ph.D. The studies to be published are the result of
our joint activities. The mathematical expression of the proposed ideas and
approaches and the mathematical solution of many of them are the result
of his great efforts. His dedicated love for science was indispensable in my
return to science and the publication of these studies.

To be continued.
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