Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
О новом методе линейного программирования с использованием нейронных сетей
1. Hartung T. Making Big Sense from Big Data // Frontiers in Big Data. 2018. Vol. 1. P. 5. doi 10.3389/fdata.2018.00005.
2. Соколинская И.М., Соколинский Л.Б. О решении задачи линейного программирования в эпоху больших данных // Параллельные вычислительные технологии (ПаВТ’2017). Короткие статьи и описания плакатов. Челябинск: Издательский центр ЮУрГУ, 2017. C. 471–484. http://omega.sp.susu.ru/pavt2017/short/014.pdf.
3. Branke J. Optimization in Dynamic Environments // Evolutionary Optimization in Dynamic Environments. Genetic Algorithms and Evolutionary Computation, vol. 3. Boston, MA: Springer, 2002. P. 13–29. doi 10.1007/978-1-4615-0911-0_2.
4. Ерёмин И.И., Мазуров В.Д. Нестационарные процессы математического программирования. М.: Наука. Главная редакция физико-математической литературы, 1979. 288 с.
5. Brogaard J., Hendershott T., Riordan R. High-Frequency Trading and Price Discovery // Review of Financial Studies. 2014. Vol. 27, no. 8. P. 2267–2306. doi 10.1093/rfs/hhu032.
6. Deng S., Huang X., Wang J., et al. A Decision Support System for Trading in Apple Futures Market Using Predictions Fusion // IEEE Access. 2021. Vol. 9. P. 1271–1285. doi 10.1109/ACCESS.2020.3047138.
7. Seregin G. Lecture notes on regularity theory for the Navier-Stokes equations. Singapore:World Scientific Publishing Company, 2014. 268 p. doi 10.1142/9314.
8. Demin D.A. Synthesis of optimal control of technological processes based on a multialternative parametric description of the final state // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, 4(87). P. 51–63. doi 10.15587/1729-4061.2017.105294.
9. Kazarinov L.S., Shnayder D.A., Kolesnikova O.V. Heat load control in steam boilers // 2017 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2017 - Proceedings. IEEE, 2017. doi 10.1109/ICIEAM.2017.8076177.
10. Zagoskina E.V., Barbasova T.A., Shnaider D.A. Intelligent Control System of Blast-furnace Melting Ffiency // SIBIRCON 2019 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings. IEEE, 2019. P. 710–713. doi 10.1109/SIBIRCON48586.2019.8958221.
11. Fleming J., Yan X., Allison C., et al. Real-time predictive eco-driving assistance considering road geometry and long-range radar measurements // IET Intelligent Transport Systems. 2021. Vol. 15, no. 4. P. 573–583. doi 10.1049/ITR2.12047.
12. Scholl M., Minnerup K., Reiter C., et al. Optimization of a thermal management system for battery electric vehicles // 14th International Conference on Ecological Vehicles and Renewable Energies, EVER 2019. IEEE, 2019. doi 10.1109/EVER.2019.8813657.
13. Meisel S. Dynamic Vehicle Routing // Anticipatory Optimization for Dynamic Decision Making. Operations Research/Computer Science Interfaces Series, vol. 51. New York, NY: Springer, 2011. P. 77–96. doi 10.1007/978-1-4614-0505-4_6.
14. Kiran D Production Planning and Control: A Comprehensive Approach. Elsevier Inc., 2019. 582 p. doi 10.1016/C2018-0-03856-6.
15. Mall R. Real-Time Systems: Theory and Practice. Delhi, India: Pearson Education, 2007. 242 p.
16. Dantzig G.B. Linear programming and extensions. Princeton, N.J.: Princeton university press, 1998. 656 p.
17. Hall J., McKinnon K. Hyper-sparsity in the revised simplex method and how to exploit it // Computational Optimization and Applications. 2005. Vol. 32, no. 3. P. 259–283. doi 10.1007/s10589-005-4802-0.
18. Klee V., Minty G. How good is the simplex algorithm? // Inequalities - III. Proceedings of the Third Symposium on Inequalities Held at the University of California, Los Angeles, Sept. 1-9, 1969 / ed. by O. Shisha. New York-London: Academic Press, 1972. P. 159–175.
19. Bartels R., Stoer J., Zenger C. A Realization of the Simplex Method Based on Triangular Decompositions // Handbook for Automatic Computation. Volume II: Linear Algebra. Berlin, Heidelberg: Springer, 1971. P. 152–190. doi 10.1007/978-3-642-86940-2_11.
20. Tolla P. A Survey of Some Linear Programming Methods // Concepts of Combinatorial Optimization / ed. by V.T. Paschos. 2nd ed. Hoboken, NJ, USA: John Wiley, Sons, 2014. Chap. 7. P. 157–188. doi 10.1002/9781119005216.ch7.
21. Hall J. Towards a practical parallelisation of the simplex method // Computational Management Science. 2010. Vol. 7, no. 2. P. 139–170. doi 10.1007/s10287-008-0080-5.
22. Mamalis B., Pantziou G. Advances in the Parallelization of the Simplex Method // Algorithms, Probability, Networks, and Games. Lecture Notes in Computer Science, vol. 9295 / ed. by C. Zaroliagis, G. Pantziou, S. Kontogiannis. Cham: Springer, 2015. P. 281–307. doi 10.1007/978-3-319-24024-4_17.
23. Зоркальцев В.И., Мокрый И.В. Алгоритмы внутренних точек в линейной оптимизации // Сибирский журнал индустриальной математики. 2018. Т. 21, 1 (73). C. 11–20. doi 10.17377/sibjim.2018.21.102.
24. Дикин И.И. Итеративное решение задач линейного и квадратичного программирования // Доклады Академии наук СССР. 1967. Т. 174, № 4. C. 747–748. https://www.mathnet.ru/rus/dan33112.
25. Gondzio J. Interior point methods 25 years later // European Journal of Operational Research. 2012. Vol. 218, no. 3. P. 587–601. doi 10.1016/j.ejor.2011.09.017.
26. Roos C., Terlaky T., Vial J.-P. Interior Point Methods for Linear Optimization. New York: Springer, 2005. 500 p. doi 10.1007/b100325.
27. Sokolinskaya I.M. Parallel Method of Pseudoprojection for Linear Inequalities // Parallel Computational Technologies. PCT 2018. Communications in Computer and Information Science, vol. 910 / ed. by L. Sokolinsky, M. Zymbler. Cham: Springer, 2018. P. 216–231. doi 10.1007/978-3-319-99673-8_16.
28. Gondzio J., Grothey A. Direct Solution of Linear Systems of Size 109 Arising in Optimization with Interior Point Methods // Parallel Processing and Applied Mathematics. PPAM 2005. Lecture Notes in Computer Science, vol. 3911. 3911 LNCS / ed. by R. Wyrzykowski, J. Dongarra, N. Meyer, J. Wasniewski. Berlin, Heidelberg: Springer, 2006. P. 513–525. doi 10.1007/11752578_62.
29. Prieto A., Prieto B., Ortigosa E.M., et al. Neural networks: An overview of early research, current frameworks and new challenges // Neurocomputing. 2016. Vol. 214. P. 242–268. doi 10.1016/j.neucom.2016.06.014.
30. Tank D.W., Hopfield J.J. Simple ‘neural’ optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit // IEEE transactions on circuits and systems. 1986. Vol. CAS–33, no. 5. P. 533–541. doi 10.1109/TCS.1986.1085953.
31. Kennedy M.P., Chua L.O. Unifying the Tank and Hopfield Linear Programming Circuit and the Canonical Nonlinear Programming Circuit of Chua and Lin // IEEE Transactions on Circuits and Systems. 1987. Vol. 34, no. 2. P. 210–214. doi 10.1109/TCS.1987.1086095.
32. Rodriguez-Vazquez A., Dominguez-Castro R., Rueda A., et al. Nonlinear Switched-Capacitor “Neural” Networks for Optimization Problems // IEEE Transactions on Circuits and Systems. 1990. Vol. 37, no. 3. P. 384–398. doi 10.1109/31.52732.
33. Zak S.H., Upatising V. Solving Linear Programming Problems with Neural Networks: A Comparative Study // IEEE Transactions on Neural Networks. 1995. Vol. 6, no. 1. P. 94–104. doi 10.1109/72.363446.
34. Malek A., Yari A. Primal-dual solution for the linear programming problems using neural networks // Applied Mathematics and Computation. 2005. Vol. 167, no. 1. P. 198–211. doi 10.1016/J.AMC.2004.06.081.
35. Liu X., Zhou M. A one-layer recurrent neural network for non-smooth convex optimization subject to linear inequality constraints // Chaos, Solitons and Fractals. 2016. Vol. 87. P. 39–46. doi 10.1016/j.chaos.2016.03.009.
36. LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521, no. 7553. P. 436–444. doi 10.1038/nature14539.
37. Ольховский Н.А., Соколинский Л.Б. Визуальное представление многомерных задач линейного программирования // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2022. Т. 11, № 1. C. 31–56. doi 10.14529/cmse220103.
38. Raina R., Madhavan A., Ng A.Y. Large-scale deep unsupervised learning using graphics processors // Proceedings of the 26th Annual International Conference on Machine Learning (ICML ’09). New York, NY, USA: ACM Press, 2009. P. 873–880. doi 10.1145/1553374.1553486.
39. Соколинский Л.Б., Соколинская И.М. О новой версии апекс-метода для решения задач линейного программирования // Вестник ЮУрГУ. Серия: Вычислительная математика и информатика. 2023. Т. 12, № 2. С. 5–46. doi 10.14529/cmse230201.