Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Однонуклеотидные полиморфизмы генов (SNP) как маркеры повышенного риска развития нарушений здоровья, связанных с воздействием производственного шума (Обзор)
1. Бухтияров И.В. ред. Актуальные проблемы медицины труда: Сборник трудов института. Саратов: ООО «Амирит», 2018. – 614 с.
2. Ponomarenko M., Rasskazov D., Chadaeva I., Sharypova E., Ponomarenko P., Arkova O. et al. SNP_TATA_Comparator: genomewide landmarks for preventive personalized medicine. Frontiers in bioscience (Scholar edition). 2017; 9(2): 276-306. https://doi.org/10.2741/s488
3. Посух О.Л., Бады-Хоо М.С., Зыцарь М.В., Михальская В.Ю., Лашин С.А., Барашков Н.А. и др. Роль социально-демографической структуры сообществ глухих людей в распространенности наследуемых форм потери слуха. Журнал генетики и селекции. 2016; 2(1): 7–15. https://doi.org/10.18699/VJ16/098
4. Фунтикова И.С., Смирнова Е.Л., Потеряева Е.Л., Максимов В.Н. Роль молекулярно-биологических особенностей организма в развитии профессиональной нейросенсорной тугоухости. Мед. труда и пром. экол. 2022; 62(5): 322–330. https://doi.org/10.31089/1026-9428-2022-62-5-322-330
5. Kerns E., Masterson E. A., Themann C. L., Calvert, G. M. (2018). Cardiovascular conditions, hearing difficulty, and occupational noise exposure within US industries and occupations. American journal of industrial medicine. 2018; 61(6): 477-491. https://doi.org/10.1002/ajim.22833
6. Teixeira L.R., Pega F., Dzhambov A.M., Bortkiewicz A., da Silva D.T.C., de Andrade C.A.F. et al. The effect of occupational exposure to noise on ischaemic heart disease, stroke and hypertension: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-Related Burden of Disease and Injury. Environment international. 2021; 154: 106387. https://doi.org/10.1016/j.envint.2021.106387
7. Jarosińska D., Héroux M. È., Wilkhu P., Creswick J., Verbeek J., Wothge J., Paunović E. Development of the WHO Environmental Noise Guidelines for the European Region: An Introduction. International journal of environmental research and public health. 2018; 15(4): 813. https://doi.org/10.3390/ijerph15040813
8. Rahimian B., Jambarsang S., Mehrparvar, A.H. The relationship between noise-induced hearing loss and cognitive function. Archives of environmental & occupational health. 2023; 78(5): 283-288. https://doi.org/10.1080/19338244.2023.2174927
9. Yang M., Tan H., Yang Q., Wang F., Yao H., Wei Q. et al. Association of hsp70 polymorphisms with risk of noise-induced hearing loss in Chinese automobile workers. Cell Stress Chaperones. 2006; 11(3): 233-9. https://doi.org/10.1379/csc-192r.1
10. Konings A., Van Laer L., Michel S., Pawelczyk M., Carlsson P.I., Bondeson M.L. et al. Variations in HSP70 genes associated with noise-induced hearing loss in two independent populations. Eur J Hum Genet. 2009; 17(3): 329-35. https://doi.org/10.1038/ejhg.2008.172
11. Li Y.H., Chen G.S., Jiao J., Zhou W.H., Wu H., Gu G.Z. et al. Association between single nucleotide polymorphismsin human heat shock protein 70 gene and susceptibility to noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2016; 34(12): 889-894. (in Chinese).
12. Fortunato G., Marciano E., Zarrilli F., Mazzaccara C., Intrieri M., Calcagno G. et al. Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem. 2004; 50(11): 2012-8. https://doi.org/10.1373/clinchem.2004.037788
13. Li X., Cao J., Wang J., Song H., Ji G., Dong Q. et al. PON2 and ATP2B2 gene polymorphisms with noise-induced hearing loss. J Thorac Dis. 2016; 8(3): 430-8. https://doi.org/10.21037/jtd.2016.02.26
14. Zhou H., Zhou J., Li H., Hui C., Bi J. Paraoxonase 3 gene polymorphisms are associated with occupational noise-induced deafness: A matched case-control study from China. PLoS One. 2020; 15(10): e0240615. https://doi.org/10.1371/journal.pone.0240615
15. Wu S.S., Yu J.N., Jiao J., Chen G.S., Zhang C.Y., Yu S.F. Association between PON2 gene polymorphisms and susceptibility to noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020; 38(2): 128-132. https://doi.org/10.3760/cma.j.issn.1001-9391.2020.02.011 (in Chinese).
16. Sliwinska-Kowalska M., Malgorzata Pawelczyk M. Contribution of genetic factors to noise-induced hearing loss: A human studies review. Mutation Research. 2013; 752(1): 61-65. https://doi.org/10.1016/j.mrrev.2012.11.001.
17. Красицкая В.В., Башмакова Е.Е., Добрецов К.Г., Орлова Н.В., Франк Л.А. Генетические аспекты профессиональной нейросенсорной тугоухости. Вестник оториноларингологии. 2017; 82(5): 71–76. https://doi.org/10.17116/otorino201782571-76
18. Башмакова Е.Е., Красицкая В.В., Юшкова А.Д., Добрецов К.Г., Франк Л.А. К вопросу о генетической предрасположенности к развитию хронической нейросенсорной тугоухости. Вестник оториноларингологии. 2021; 86(1): 15–19. https://doi.org/10.17116/otorino20218601115
19. Carlsson P.-I., Van Laer L., Borg E., Bondeson M.-L., Thys M., Fransen E. et al. The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hearing Research. 2005; 202(1-2): 87-96. https://doi.org/10. 1016/j.heares.2004.09.00530
20. Bhatt I. S., Dias R., Washnik N., Wang J., Guthrie O., Skelton M. et al. Association Analysis of Candidate Gene Polymorphisms and Audiometric Measures of Noise-Induced Hearing Loss in Young Musicians. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2020; 41(5): e538–e547. https://doi.org/10.1097/MAO.0000000000002615
21. Pawelczyk M., Van Laer L., Fransen E., Rajkowska E., Konings A., Carlsson P.-I. et al. Analysis of gene polymorphisms associated with K+ ion circulation in the inner ear of patients susceptible and resistant to noiseinduced hearing loss. Annals of Human Genetics. 2009; 73(4): 411-421. https://doi.org/10.1111/j.1469-1809.2009.00521.x
22. Добрецов К.Г., Красицкая В.В., Башмакова Е.Е., Франк Л.А. Взаимосвязь генетических мутаций и возникновения профессиональной нейросенсорной тугоухости. Клиническая больница. 2017; 4(22): 22-25.
23. Yang M., Tan H., Zheng J.R., Jiang C.Z. Relationship between GSTM1 and GSTT1 gene polymorphisms and noise induced hearing loss in Chinese workers. Journal of hygiene research. 2005; 34(6): 647-649.
24. Rabinowitz P.M., Pierce Wise Sr J., Hur Mobo B., Antonucci P.G., Powell C., Slade M. Antioxidant status and hearing function in noise-exposed workers. Hearing Research. 2002; 173(1-2): 164-171. https://doi.org/10.1016/S0378-5955(02)00350-7
25. Loukzadeh Z., Sani H.E., Sheikhha M.H., Ratki F.M. Association of GST gene polymorphism and noise-induced hearing loss: GST gene polymorphism and NIHL. AIMS public health. 2019; 6(4): 546-553. https://doi.org/10.3934/publichealth.2019.4.546
26. Honkura Y., Matsuo H., Murakami S., Sakiyama M., Mizutari K., Shiotani A. et al. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea. Sci Rep. 2016; 6: 19329. https://doi.org/10.1038/srep19329
27. Miao L., Wang B., Ji J., Wan L., Yin L., Zhu B. et al. CARD8 polymorphism rs2043211 protects against noise-induced hearing loss by causing the dysfunction of CARD8 protein. Environ Sci Pollut Res Int. 2021; 28(7): 8626-8636. https://doi.org/10.1007/s11356-020-11193-1
28. Shen H., Dou J., Han L., Bai Y., Li Q., Hong Z., et al. Genetic variation in APE1 gene promoter is associated with noiseinduced hearing loss in a Chinese population. International Archives of Occupational and Environmental Health. 2016; 89(4): 621–628. https://doi.org/10.1007/s00420-015-1100-8
29. Zhang S., Ding E., Yin H., Zhang H., Zhu B. Research and Discussion on the Relationships between Noise-Induced Hearing Loss and ATP2B2 Gene Polymorphism. Int J Genomics. 2019; 2019: 5048943. https://doi.org/10.1155/2019/5048943
30. Ruan Y., Zhang J., Mai S., Zeng W., Huang L., Gu C. et al. Role of CASP7 polymorphisms in noise-induced hearing loss risk in Han Chinese population. Sci Rep. 2021; 11(1): 1803. https://doi.org/10.1038/s41598-021-81391-5
31. Konings A., Van Laer L., Pawelczyk M., Carlsson P.I., Bondeson M.L., Rajkowska E. et al. Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Hum Mol Genet. 2007; 16(15): 1872-1883. https://doi.org/10.1093/hmg/ddm135
32. Wang S.L., Yu L.G., Liu R.P., Zhu W.Z., Gao W.M., Xue L.P. et al. Gene-gene interaction of GJB2, SOD2, and CAT on occupational noise-induced hearing loss in Chinese han population. Biomedical and Environmental Sciences. 2014; 27(12): 965-968. https://doi.org/10.3967/bes2014.131
33. Jiao J., Gu G.Z., Chen G.S., Zhang H.L., Wu H., Li Y.H. et al. Relationship research among CDH23 gene and the risk of noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020; 38(2): 84-90. (in Chinese).
34. Ding E., Liu J., Shen H., Gong W., Zhang H., Song H. et al. Notch polymorphisms associated with sensitivity of noise induced hearing loss among Chinese textile factory workers. BMC Med Genet. 2018; 19(1): 168. https://doi.org/10.1186/s12881-018-0676-8
35. Bhatt I.S., Dias R., Torkamani A. Association Analysis of Candidate Gene Polymorphisms and Tinnitus in Young Musicians. Otol Neurotol. 2021; 42(9): e1203-e1212. https://doi.org/10.1097/MAO.0000000000003279
36. Phillips S.L., Richter S.J., Teglas S.L., Bhatt I.S., Morehouse R.C., Hauser E.R., et al. Feasibility of a bilateral 4000-6000 Hz notch as a phenotype for genetic association analysis. Int J Audiol. 2015; 54(10): 645-52. https://doi.org/10.3109/14992027.2015.1030512
37. Yang Q.Y., Xu X.R., Jiao J., Zheng Y.X., He L.H., Yu S.F. et al. Association between eye absent homolog 4 gene polymorphisms and occupational noise-induced hearing loss. Zhonghua Yu Fang Yi Xue Za Zhi. 2017; 51(1): 27-33. https://doi.org/10.3760/cma.j.issn.0253-9624.2017.01.007 (in Chinese).
38. Zhang X., Liu Y., Zhang L, Yang Z., Yang L., Wang X. et al. Associations of genetic variations in EYA4, GRHL2 and DFNA5 with noise-induced hearing loss in Chinese population: a case- control study. Environ Health. 2015; 14: 77. https://doi.org/10.1186/s12940-015-0063-2
39. Guo H., Ding E., Bai Y., Zhang H., Shen H., Wang J., et al. Association of genetic variations in FOXO3 gene with susceptibility to noise induced hearing loss in a Chinese population. PloS one. 2017; 12(12): e0189186. https://doi.org/10.1371/journal.pone.0189186
40. Li J.Y., Jiao J., Chen G.S., Gu G.Z., Zhang H.L., Yu S.F. Association between GPX1 gene polymorphisms and noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020; 38(2): 116-120. https://doi.org/10.3760/cma.j.issn.1001-9391.2020.02.008 (in Chinese).
41. Yang Q.Y., Xu X.R., Jiao J., He L.H., Yu S.F., Gu G.Z. et al. Association between grainyhead-like 2 gene polymorphisms and noise-induced hearing loss. Beijing Da Xue Xue Bao Yi Xue Ban. 2016; 48(3): 409-13. (in Chinese).
42. Yuan L.L., Chen G.S., Jiao J., Zhou W.H., Wu H., Gu G.Z. et al. Association between GSTP1 gene polymorphisms and susceptibility to noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020; 38(2): 101-107. (in Chinese).
43. Shen H., Cao J., Hong Z., Liu K., Shi J., Ding L., et al. A functional Ser326Cys polymorphism in hOGG1 is associated with noise-induced hearing loss in a Chinese population. PLoS One. 2014; 9(3): e89662. https://doi.org/10.1371/journal.pone.0089662
44. Van Laer L., Carlsson P.I., Ottschytsch N., Bondeson M.L., Konings A., Vandevelde A., et al. The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat. 2006; 27(8): 786-95. https://doi.org/10.1002/humu.20360
45. Zhou W.H., Gu G.Z., Wu H., Li Y.H., Chen G.S., Zhang H.L., et al. Prediction of KCNQ4gene polymorphism varies with CNE or noise exposure duration on the Risk of NIHL-Cox model analysis based on cohort study. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020; 38(2): 111-116. https://doi.org/10.3760/cma.j.issn.1001-9391.2020.02.007 (in Chinese)
46. Liu S.Y., Song W.Q., Xin J.R., Li Z., Lei S., Chen Y.Q. et al. NRN1 and CAT Gene Polymorphisms, Complex Noise, and Lifestyles interactively Affect the Risk of Noise-induced Hearing Loss. Biomed Environ Sci. 2021; 34(9): 705-718.
47. Zhang X., Liu Y., Zhang L., Yang Z., Shao Y., Jiang C. et al. Genetic variations in protocadherin 15 and their interactions with noise exposure associated with noise-induced hearing loss in Chinese population. Environmental research. 2014; 135: 247-252. https://doi.org/10.1016/j.envres.2014.09.021
48. Zhang X., Ni Y., Liu Y., Zhang L., Zhang M., Fang X. et al. Screening of noise-induced hearing loss (NIHL)-associated SNPs and the assessment of its genetic susceptibility. Environmental health: a global access science source. 2019; 18(1): 30. https://doi.org/10.1186/s12940-019-0471-9
49. Li X.D., Chen J.X., Liu Y.M., Su S.B., Guo X. Association between SNPs in SOD1 and noise-induced hearing loss in Chinese Han population. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2011; 29(12): 921-4. (in Chinese)
50. Gao D.F., Wang B.S., Sun D.W., Wang N., Guo J.D., Zhu B.L. Targeted binding of rs1053005 locus of STAT3 with miR-452-3p and the association between STAT3 gene polymorphism and noise-induced hearing loss. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2021; 39(6): 412-417. (in Chinese).
51. Wang N., Wang B., Guo J., Zhang S., Han L., Zhang J., et al. Single-Nucleotide Polymorphisms in XPO5 are Associated with Noise-Induced Hearing Loss in a Chinese Population. Biochem Res Int. 2020; 9589310. https://doi.org/10.1155/2020/9589310
52. Атаманчук А.А., Кузьмина Л.П., Хотулева А.Г., Коляскина М.М. Полиморфизм генов ренин-ангиотензин-альдостероновой системы в развитии гипертонической болезни у работающих, подвергающихся воздействию физических факторов. Мед. труда и пром. экол. 2019; 59(12): 972-977. http://doi.org/10.31089/1026-9428-2019-59-12-972-977
53. Гимаева З.Ф., Бакиров А.Б., Каримова Л.К., Гимранова Г.Г., Мухаммадиева Г.Ф., Каримов Д.О. Производственные и генетические факторы риска развития сердечно-сосудистых заболеваний у работников нефтехимических производств. Терапевтический архив. 2018; 90(1): 49-53. https:// doi.org/10.26442/terarkh201890149-53
54. Rong S.L., Zhou X.D., Wang Z.K., Wang X.L., Wang Y.C., Xue C.S., et al. Glutathione S-Transferase M1 and T1 polymorphisms and hypertension risk: an updated meta-analysis. J Hum Hypertens. 2019; 33: 454-465. https://doi.org/10.1038/s41371-018-0133-3
55. Шляпников Д.М., Шур П.З., Алексеев В.Б., Ухабов В.М., Новоселов В.Г., Перевалов А.Я. Новые возможности применения вариаций гена MTHFR как маркера индивидуальной чувствительности при оценке профессионального риска гипертензии в условиях воздействия шума. Медицина труда и промышленная экология. 2016; (8): 6-10.
56. Al-Mutawa J. Genetic contribution between APE1 variants in polycystic ovarian syndrome. Saudi journal of biological sciences. 2023; 30(3): 103563. https://doi.org/10.1016/j.sjbs.2023.103563
57. Lai C.Y., Hsieh L.L., Tang R., Santella R.M., Chang-Chieh C.R., Yeh C.C. Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. World journal of gastroenterology. 2016; 22(12): 3372–3380. https://doi.org/10.3748/wjg.v22.i12.3372
58. Smolarz B., Michalska M.M., Samulak D., Wójcik L., Romanowicz, H. Studies of Correlations Between Single Nucleotide Polymorphisms of DNA Repair Genes and Endometrial Cancer in Polish Women. Anticancer research. 2018; 38(9): 5223–5229. https://doi.org/10.21873/anticanres.12846
59. Zhao C., Yang, J., Xu, L. The hOGG1 Ser326Cys polymorphism and esophageal cancer risk: a meta-analysis of 1,875 cancer cases and 3,041 controls. Annals of translational medicine. 2019; 7(18): 438. https://doi.org/10.21037/atm.2019.08.121
60. Nagpal A., Verma S., Shah R., Bhat G.R., Bhat A., Bakshi D. et al. Genetic polymorphism of hOGG1 ser326cys and its association with breast cancer in Jammu and Kashmir. Indian journal of cancer. 2020; 57(2): 187-189. https://doi.org/10.4103/ijc.IJC_676_18
61. Chen M.J., Shen C.J., Wang L., Chen P.M., Chen C.Y., Lee H. Association of hOGG1-Cys variants with occurrence of p53 and EGFR deletion mutations in non-small cell lung cancer. Thoracic cancer. 2021; 12(4): 534-538. https://doi.org/10.1111/1759-7714.13799
62. Corella D., Ramírez-Sabio J.B., Coltell O., Ortega-Azorín C., Estruch R., Martínez-González M.A. et al. Effects of the Ser326Cys Polymorphism in the DNA Repair OGG1 Gene on Cancer, Cardiovascular, and All-Cause Mortality in the PREDIMED Study: Modulation by Diet. Journal of the Academy of Nutrition and Dietetics. 2018; 118(4): 589-605. https://doi.org/10.1016/j.jand.2017.09.025
63. Synowiec E., Blasiak J., Zaras M., Szaflik J., SzaflikmJ. P. Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration. Experimental eye research. 2012; 98: 58-66. https://doi.org/10.1016/j.exer.2012.02.008
64. Chen H., Wang H., Liu J., Cheng Q., Chen X., Ye F. Association of Base Excision Repair Gene hOGG1 Ser326Cys Polymorphism with Susceptibility to Cervical Squamous Cell Carcinoma and High-Risk Human Papilloma Virus Infection in a Chinese Population. Genetic testing and molecular biomarkers. 2019; 23(2): 138-144. https://doi.org/10.1089/gtmb.2018.0150