Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Derivation of the Local Lorentz Gauge Transformation of a Dirac Spinor Field in Quantum Einstein-Cartan Theory
2024-01-26
I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.
Ссылка для цитирования:
Kuhne R. 2024. Derivation of the Local Lorentz Gauge Transformation of a Dirac Spinor Field in Quantum Einstein-Cartan Theory. PREPRINTS.RU. https://doi.org/10.24108/preprints-3112973
Список литературы
1. \bibitem{1}
2. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, 1950).
3. \bibitem{2}
4. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, New York, 1962).
5. \bibitem{3}
6. C. W. Kilmister, Special Theory of Relativity (Pergamon Press, Oxford, 1970).
7. \bibitem{4}
8. S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, New York, 1972).
9. \bibitem{5}
10. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation (Freeman and Company, San Francisco, 1973).
11. \bibitem{6}
12. F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester, General Relativity with Spin and Torsion: Foundations and Prospects, {\it Reviews of Modern Physics} {\bf 48}, 393-416 (1976).
13. \bibitem{7}
14. A. Messiah, Quantum Mechanics (North-Holland Publishing Company, Amsterdam, 1964).
15. \bibitem{8}
16. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
17. \bibitem{9}
18. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).
19. \bibitem{10}
20. J. C. Taylor, Gauge Theories of Weak Interactions (Cambridge University Press, Cambridge, 1976).
21. \bibitem{11}
22. H. D. Politzer, Asymptotic Freedom: An Approach to Strong Interactions, {\it Physics Reports} {\bf 14}, 129-180 (1974).
23. \bibitem{12}
24. W. Marciano and H. Pagels, Quantum Chromodynamics, {\it Physics Reports} {\bf 36}, 137-276 (1978).
25. \bibitem{13}
26. R. W. K\"uhne, Quantum Field Theory with Electric-Magnetic Duality and Spin-Mass Duality but Without Grand Unification and Supersymmetry, {\it African Review of Physics} {\bf 6}, 165-179 (2011).