Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Сочетанное воздействие поведенческих и профессиональных факторов риска на формирование бронхолёгочной патологии у работников сельского хозяйства (обзор литературы)
1. Onishchenko G.G., Rakitskiy V.N., Sinoda V.A., Trukhina G.M., Lutsenko L.A., Sukhova A.V. the health maintenance of workers under implementation of health- and resource-preserving technology. Zdravookhraneniye Rossiyskoy Federatsii. 2015; 59 (6): 4–8. (In Russian).
2. Popova A.Yu. Issues and trends in occupational morbidity of agricultural workers of the Russian Federation Zdorov'ye naseleniya i sreda obitaniya – ZNiSO. 2016; 9(282): 4–9. (In Russian).
3. Stoleski S., Minov J., Mijakoski D., Karadzinska-Bislimovska J. Chronic Respiratory Symptoms and Lung Function in Agricultural Workers - Influence of Exposure Duration and Smoking. Open Access Maced J Med Sci. 2015; 3(1): 158–165. https://doi.org/10.3889/oamjms.2015.014.
4. Bezrukova G.A., Shalashova M.L., Novikova T.A., Spirin V.F. The influence of working conditions in basic livestock sectors on the nosological structure of occupational morbidity among workers. Sanitarnyy vrach. 2020; 3:38–47. https://doi.org/10.33920/med-08-2003-04 (In Russian).
5. Schenker M.B. Inorganic agricultural dust exposure causes pneumoconiosis among farmworkers. Proc Am Thorac Soc. 2010; 7(2):107–110. https://doi.org/10.1513/pats.200906-036RM.
6. Shabrova E.S., Shkrabak R.V., Vedeneeva A.A. Kosyrev P.I., Shkrabak V.S., Ivanov A.A. Analysis of the main causes of occupational morbidity among livestock workers. Agrarnyy nauchnyy zhurnal. 2021; 12: 130–134. https://doi.org/10.28983/asj.y2021i12pp130-134. (In Russian).
7. Von Essen S.G., Auvermann B.W. Health effects from breathing air near CAFOs for feeder cattle or hogs. J Agromedicine. 2005; 10(4): 55–64. https://doi.org/10.1300/J096v10n04_08
8. Mathisen T., Von Essen S.G., Wyatt T.A., Romberger D.J. Hog barn dust extract augments lymphocyte adhesion to human airway epithelial cells. J Appl Physiol. 2004; 96(5): 1738–1744. https://doi.org/10.1152/japplphysiol.00384.2003
9. Donham K.J., Cumro D., Reynolds S.J., Merchant J.A. Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: recommendations for exposure limits. J Occup Environ Med. 2000; 42(3): 260–269. https://doi.org/10.1097/00043764-200003000-00006.
10. Curl C.L., Spivak M., Phinney R., Montrose L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Environ Health Rep. 2020; 7(1):13–29. https://doi.org/10.1007/s40572-020-00266-5.
11. Mikerov A.N., Bezrukova G.A., Novikova T.A. Occupational non-communicable respiratory diseases in industrial and agricultural workers. Hygiene and Sanitation 2023; 102(10): 1056–1062. https://doi.org/10.47470/0016-9900-2023-102-10-1056-1062 (In Russian).
12. Krekoten O.M., Dereziuk A.V., Ihnaschuk O.V., Holovchanska S.E. Analysis of major risk factors affecting those working in the agrarian sector (based on a sociological survey). Wiadomosci Lekarskie. 2017; 70(5): 925–929.
13. Watanabe-Galloway S., Chasek C., Yoder A.M., Bell J.E. Substance use disorders in the farming population: Scoping review. J Rural Health. 2022; 38(1): 129–150. https://doi.org/10.1111/jrh.12575.
14. Vyalshina A.A. Prevalence of smoking and alcohol consumption among rural population in Russia Social'nye aspekty zdorov'a naselenia / Social aspects of population health [serial online]. 2021; 67(5): 8. https://doi.org/10.21045/2071-5021-2021-67-5-8 (In Russian).
15. Sisson J.H. Alcohol and airways function in health and disease. Alcohol. 2007; 41(5): 293–307. https://doi.org/10.1016/j.alcohol.2007.06.003.
16. Brown L.A., Harris F.L., Ping X.D., Gauthier T.W. Chronic ethanol ingestion and the risk of acute lung injury: A role for glutathione availability? Alcohol. 2004; 33(3): 191–197. https://doi.org/10.1016/j.alcohol.2004.08.002.
17. Molina P.E., Happel K.I., Zhang P., Kolls J.K., Nelson S. Focus on: Alcohol and the immune system. Alcohol Res Health. 2010; 33(1–2): 97–108.
18. Joshi P.C., Guidot D.M. The alcoholic lung: Epidemiology, pathophysiology, and potential therapies. Am J Physiol Lung Cell Mol Physiol. 2007; 292(4): L813–823. https://doi.org/10.1152/ajplung.00348.2006.
19. Gerald C.L., Romberger D.J., DeVasure J.M., Khazanchi R., Nordgren T.M., Heires A.J. et al. Alcohol Decreases Organic Dust-Stimulated Airway Epithelial TNF-Alpha Through a Nitric Oxide and Protein Kinase-Mediated Inhibition of TACE. Alcohol Clin Exp Res. 2016; 40(2): 273-283. https://doi.org/10.1111/acer.12967.
20. McCaskill M.L., Romberger D.J., DeVasure J., Boten J., Sisson J.H., Bailey K.L. et al. Alcohol exposure alters mouse lung inflammation in response to inhaled dust. Nutrients. 2012; 4: 695–710. https://doi.org/10.3390/nu4070695
21. Wyatt T.A., Canady K., Heires A.J., Poole, J.A., Bailey K.L., Nordgren T.M. et al. Alcohol Inhibits Organic Dust-induced ICAM-1 Expression on Bronchial Epithelial Cells. Safety. 2017; 3(1): 5. https://doi.org/10.3390/safety3010005
22. Happel K.I., Nelson S. Alcohol, immunosuppression, and the lung. Proc Am Thorac Soc. 2005; 2(5): 428–432. https://doi.org/10.1513/pats.200507-065JS.
23. Mehta H., Nazzal K., Sadikot R.T. Cigarette smoking and innate immunity. Inflamm Res. 2008; 57: 497–503. https://doi.org/10.1007/s00011-008-8078-6.
24. Nikiforova T.I., Ozerskaya I.V., Geppe N.A., Handy M.V., Chernogradsky A.I. Smoking and the state of the ciliary epithelium of the respiratory tract in adolescents. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2020; 65(4):94–100. https://doi.org/10.21508/1027-4065-2020-65-4-94-100. (In Russian).
25. Liu Z, Chen S, Xu Y, Liu X, Xiong P, Fu Y. Surfactant protein A expression and distribution in human lung samples from smokers with or without chronic obstructive pulmonary disease in China. Medicine (Baltimore). 2020; 99(7): e19118. https://doi.org/10.1097/MD.0000000000019118
26. Lugg S.T., Scott A., Parekh D., Naidu B., Thickett D.R. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022; 77(1): 94–101. https://doi.org/10.1136/thoraxjnl-2020-216296.
27. Asfandiyarova N.S. Nicotine and the immune system. Immunopathology, allergology, infectology. 2018; 3: 6–12. https://doi.org/10.14427/jipai.2018.3.6. (In Russian).
28. Mortaz E., Lazar Z., Koenderman L. Kraneveld A.D., Nijkamp F.P., Folkerts G. Cigarette smoke attenuates the production of cytokines by human plasmacytoid dendritic cells and enhances the release of IL-8 in response to TLR-9 stimulation. Respir Res. 2009; 10: 47 https://doi.org/10.1186/1465-9921-10-47
29. Kotlyarov S.N., Suchkov I.A., Uryas’yev O.M., Yakusheva E.N., Shchul’kin A.V., Kotlyarova A.A. Analysis of Influence of Cigarette Smoke on Signaling Pathways of Innate Immune System in Monocytes of Peripheral Blood. I.P. Pavlov Russian Medical Biological Herald. 2023; 31(3): 391–404. https://doi.org/10.17816/PAVLOVJ306495. (In Russian).
30. Melnikova I.M., Dorovskaya N.L., Dmitrieva A.P., Mizernitskiy Yu.L. Current medical and social aspects of tobacco and nicotine`containing products consumption in adolescents. Permskiy meditsinskiy zhurnal. 2022; 39(3): 90–101 https://doi.org/10.17816/pmj39390-101. (In Russian).
31. Marescaux A., Degano B., Soumagne T., Thaon I., Laplante J.J., Dalphin J.C. Impact of farm modernity on the prevalence of chronic obstructive pulmonary disease in dairy farmers. Occup Environ Med. 2016; 73(2): 127–133. https://doi.org/10.1136/oemed-2014-102697.
32. Wang C., Xu J., Yang L., Xu Y., Zhang X., Bai C. et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018; 391(10131):1706-1717. https://doi.org/10.1016/S0140-6736(18)30841-9.
33. Gao Z., Dosman J.A., Rennie D.C., Schwartz D.A., Yang I.V., Beach J. et al. A. Effects of tumor necrosis factor (TNF) gene polymorphisms on the association between smoking and lung function among workers in swine operations. J Toxicol Environ Health, Part A. 2021; 84(13): 536–552. https://doi.org/10.1080/15287394.2021.1896404.
34. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396(10258): 1223-1249. https://doi.org/10.1016/S0140-6736(20)30752-2.
35. Dorner T., Leitner B., Stadlmann H., Fischer W., Neidhart B., Lawrence K. et al. Prevalence of overweight and obesity in Austrian male and female farmers. Soz Praventivmed. 2004; 49: 243–246. https://doi.org/10.1007/s00038-004-3120-0
36. Bolotova E.V., Samorodskaya I.V., Komissarova I.M. Relationship of body mass index and abdominal obesity in rural population of Krasnodarsky kray taken. Obesity and metabolism. 2016; 13(1): 25–29. https://doi.org/10.14341/omet2016125-29 (In Russian).
37. Noppakun K., Juntarawijit C. Association between pesticide exposure and obesity: A cross-sectional study of 20,295 farmers in Thailand. F1000Res. 2021; 10: 445. https://doi.org/10.12688/f1000research.53261.3.
38. Miranda R.A., Silva B.S., de Moura E.G., Lisboa P.C. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine. 2023; 79: 437–447. https://doi.org/10.1007/s12020-022-03229-y.
39. Hawes N.J., Wiggins A.T., Reed D.B., Hardin-Fanning F. Poor sleep quality is associated with obesity and depression in farmers. Public Health Nurse. 2019; 36(3): 270–275. https://doi.org/10.1111/phn.12587.
40. Komleva N.E., Zaikina I.V., Danilov A.N. Quality of life of agricultural workers with gastroesophageal reflux disease. Russian Journal of Occupational Health and Industrial Ecology. 2019; 59(4): 233–236. https://doi.org/10.31089/1026-9428-2019-59-4-233-236 (In Russian).
41. Shalnova S.A., Maksimov S.A., Balanova Yu.A., Evstifeeva S.E., Imaeva A.E., Kapustina А.V. et al. Adherence to a healthy lifestyle of the Russian population depending on the socio-demographics. Cardiovascular Therapy and Prevention. 2020; 19(2): 2452. https://doi.org/10.15829/1728-8800-2020-2452 (in Russian).
42. Dixon A.E., Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018; 12(9): 755–767. https://doi.org/10.1080/17476348.2018.1506331.
43. Liu J., Xu H., Cupples L.A., O' Connor G.T., Liu C.T. The impact of obesity on lung function measurements and respiratory disease: A Mendelian randomization study. Ann Hum Genet. 2023; 87(4): 174–183. https://doi.org/10.1111/ahg.12506.
44. Boykov V.A., Kobyakova O.S., Deyev I.A., Kulikov Ye.S., Starovoytova Ye.A. State of respiratory function in patients with obesity. Bulletin of Siberian Medicine. 2013; 12(1): 86–92. https://doi.org/10.20538/1682-0363-2013-1-86-92 (in Russian).
45. Brock J.M., Billeter A., Müller-Stich B.P., Herth F. Obesity and the Lung: What We Know Today. Respiration. 2020; 99(10): 856–866. https://doi.org/10.1159/000509735.
46. Kuzmina L.P., Khotuleva A.G. Metabolic syndrome in occupational respiratory diseases. Russian Journal of Occupational Health and Industrial Ecology. 2018; (12): 8–13 https://doi.org/10.31089/1026-9428-2018-12-8-13 (in Russian).
47. Miftakhova A.M., Pestrenin L.D., Gulyaeva I.L. Role of leptin in pathogenesis of hepatic steatosis, steatohepatitis and endothelial dysfunction in obesity: literature review. Perm Medical Journal. 2020; 37(3): 58–65. https://doi.org/10.17816/pmj37358-65 (in Russian).
48. Malli F., Papaioannou A.I., Gourgoulianis K.I., Daniil Z. The role of leptin in the respiratory system: an overview. Respir Res. 2010; 11: 152. https://doi.org/10.1186/1465-9921-11-152.
49. Schulte P.A., Wagner G.R., Ostry A., Blanciforti L.A., Cutlip R.G., Krajnak K.M. et al. Work, obesity, and occupational safety and health. Am J Public Health. 2007; 97(3): 428–436. https://doi.org/10.2105/AJPH.2006.086900.
50. Stallones L., Doenges T., Dik B. J., Valley M.A. Occupation and suicide: Colorado, 2004-2006. Am J Ind Med. 2013; 56(11): 1290–1295. https://doi.org/10.1002/ajim.22228
51. Yazd S.D., Wheeler S.A., Zuo A. Key risk factors affecting farmer’s mental health: a systematic review. Int J Environ Res Public Health. 2019; 16(23): 4849. https://doi.org/10.3390/ijerph16234849
52. Truchot D., Andela M. Burnout and hopelessness among farmers: the farmers stressors inventory. Soc Psychiatry Psychiatr Epidemiol. 2018; 53(8): 859–867. https://doi.org/10.1007/s00127-018-1528-8
53. Cancino J., Soto K., Tapia J., Muñoz-Quezada M.T., Lucero B., Contreras C. et al. Occupational exposure to pesticides and symptoms of depression in agricultural workers. A systematic review. Environ Res. 2023; 231(2): 116190. https://doi.org/10.1016/j.envres.2023.116190
54. Brew B., Inder K., Allen J., Thomas M., Kelly B. The health and wellbeing of Australian farmers: a longitudinal cohort study. BMC Public Health. 2016;16(1):988. https://doi.org/10.1186/s12889-016-3664-y.
55. Isgandarova G.N., Khatamzade E.M. Diagnosis of chronic obstructive pulmonary disease in primary health care. Perm Medical Journal. 2023; 40(4): 31–40. https://doi.org/10.17816/pmj40431-40 (in Russian).
56. Starkova O.Ia. Peculiarities of working conditions in rural areas. Ekonomika sel'skogo hozyajstva Rossii. 2020; 6: 105–108. https://doi.org/10.32651/206-105 (in Russian).
57. Vodyakha S.A., Vodyakha Yu.E. Stress coping strategies and tendency to use psychoactive substances. Pedagogical Education in Russia. 2022; 3: 171–178. (in Russian).
58. Sung E.S., Choi C.K., Jeong J.A., Shin M.H. The relationship between body mass index and poor self-rated health in the South Korean population. PLoS One. 2020; 15(8): e0219647. https://doi.org/10.1371/journal.pone.0219647.
59. Puddephatt J.A., Irizar P., Jones A., Gage S.H., Goodwin L. Associations of common mental disorder with alcohol use in the adult general population: a systematic review and meta-analysis. Addiction. 2022; 117(6): 1543– 572. https://doi.org/10.1111/add.15735.
60. Garey, L., Olofsson, H., Garza, T., Rogers A.H., Kauffman B.Y., Zvolensky M.J. Directional Effects of Anxiety and Depressive Disorders with Substance Use: a Review of Recent Prospective Research. Curr Addict Rep. 2020; 7: 344–355. https://doi.org/10.1007/s40429-020-00321-z.
61. Werchan C.A., Steele A.M., Janssens T., Millard M.W., Ritz T. Towards an assessment of perceived COPD exacerbation triggers: Initial development and validation of a questionnaire. Respirology. 2019; 24(1): 48–54. https://doi.org/10.1111/resp.13368.
62. Liccardi G., Calzetta L., Milanese M., Salzillo A., Manzi F., Ferrari M. et al. Psychological stress, lung function and exacerbation risk in COPD: Is an increase of cholinergic tone a possible link? COPD. 2018; 15(3): 310–311. https://doi.org/10.1080/15412555.2018.1459533
63. Kham-Ai P., Heaton K., Li P. Association Between COPD Symptoms and Psychological Distress Among Farmers. Workplace Health Saf. 2023; 71(2):89-95. https://doi.org/10.1177/21650799221113057
64. Pumar M. I., Gray C. R., Walsh J. R., Yang I. A., Rolls T. A., Ward D. L. Anxiety and depression-Important psychological comorbidities of COPD. J Thorac Dis. 2014; 6(11): 1615–1631. https://doi.org/10.3978/j.issn.2072-1439.2014.09.28.
65. Hirotsu C., Tufik S., Andersen M.L. Interactions between sleep, stress, and metabolism: from physiological to pathological conditions. Sleep Science. 2015; 8(3): 143–152. https://doi.org/10.1016/j.slsci.2015.09.002