Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
1. Li, T., Hutfless, S., Scharfstein, D.O., Daniels, M.J., Hogan, J.W., Little, R.J.A., Roy, J.A., Law, A.H. and Dickersin, K. (2014) Standards Should Be Applied in the Prevention and Handling of Missing Data for Patient-Centered Outcomes Research: A Systematic Review and Expert Consensus, Journal of Clinical Epidemiology, 67, 15–32, doi: 10.1016/J.JCLINEPI.2013.08.013.
2. Josse, J. and Reiter, J.P. (2018) Introduction to the Special Section on Missing Data, https://doi.org/10.1214/18-STS332IN, 33, 139–141, doi: 10.1214/18-STS332IN.
3. Samuelson, D.A. and Spirer, H.F. (2016) Chapter 3. Use of Incomplete and Distorted Data in Inference About Human Rights Violations, Human Rights and Statistics, 62–78, doi: 10.9783/9781512802863-006/HTML.
4. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R.B. (2001) Missing Value Estimation Methods for DNA Microarrays, Bioinformatics, 17, 520–525, doi: 10.1093/BIOINFORMATICS/17.6.520.
5. Liu, Y., Wang, Y., Feng, Y. and Wall, M.M. (2016) Variable Selection and Prediction with Incomplete High-Dimensional Data, https://doi.org/10.1214/15-AOAS899, 10, 418–450, doi: 10.1214/15-AOAS899.
6. Little, R.J.A. and Smith, P.J. (1987) Editing and Imputation for Quantitative Survey Data, Journal of the American Statistical Association, 82, 58, doi: 10.2307/2289125.
7. Jiang, W., Josse, J. and Lavielle, M. (2020) Logistic Regression with Missing Covariates—Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework, Computational Statistics & Data Analysis, 145, 106907, doi: 10.1016/J.CSDA.2019.106907.
8. Chechik, G., Heitz, G., Elidan, G., Abbeel, P. and Koller, D. (2007) Max-Margin Classification of Incomplete Data, NIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems, 233–240, doi: 10.7551/MITPRESS/7503.003.0034.
9. Josse, J., Chen, J.M., Prost, N., Varoquaux, G., Scornet, E., Josse, J. and Scornet, E. (2019) On the Consistency of Supervised Learning with Missing Values, Preprint, https://arxiv.org/abs/1902.06931v5.
10. Lounici, K. and Pacreau, G. (2023) Robust Covariance Estimation with Missing Values and Cell-Wise Contamination, Preprint, https://arxiv.org/abs/2306.00752v3.
11. Karpenko, D.V. and Bigildeev, A.E. (2023) Small Groups in Multidimensional Feature Space: Two Examples of Supervised Two-Group Classification from Biomedicine, Journal of Bioinformatics and Computational Biology, doi: 10.1142/S0219720023500257.
12. Karpenko, D. (2023) DEAr – Differential Expression Analyzer, Preprint, doi: 10.21203/RS.3.RS-2957165/V3.