Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Анализ метаболического потенциала кишечного микробома у пациентов с язвенным колитом в Республике Татарстан
1. Radziszewska M., Smarkusz-Zarzecka J., Ostrowska L., Pogodziński D. Nutrition and Supplementation in Ulcerative Colitis // Nutrients. ‒ 2022. ‒ T. 14, № 12.
2. Thomas J. P., Modos D., Rushbrook S. M., Powell N., Korcsmaros T. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease // Front Immunol. ‒ 2022. ‒ T. 13. ‒ C. 829525.
3. Dąbek-Drobny A., Kaczmarczyk O., Woźniakiewicz M., Paśko P., Dobrowolska-Iwanek J., Woźniakiewicz A., Piątek-Guziewicz A., Zagrodzki P., Zwolińska-Wcisło M. Association between Fecal Short-Chain Fatty Acid Levels, Diet, and Body Mass Index in Patients with Inflammatory Bowel Disease // Biology (Basel). ‒ 2022. ‒ T. 11, № 1.
4. Sinha S. R., Haileselassie Y., Nguyen L. P., Tropini C., Wang M., Becker L. S., Sim D., Jarr K., Spear E. T., Singh G., Namkoong H., Bittinger K., Fischbach M. A., Sonnenburg J. L., Habtezion A. Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation // Cell Host Microbe. ‒ 2020. ‒ T. 27, № 4. ‒ C. 659-670.e5.
5. Rao J. N., Xiao L., Wang J. Y. Polyamines in Gut Epithelial Renewal and Barrier Function // Physiology (Bethesda). ‒ 2020. ‒ T. 35, № 5. ‒ C. 328-337.
6. Chen L. M., Bao C. H., Wu Y., Liang S. H., Wang D., Wu L. Y., Huang Y., Liu H. R., Wu H. G. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease // J Neuroinflammation. ‒ 2021. ‒ T. 18, № 1. ‒ C. 135.
7. Nyangale E. P., Mottram D. S., Gibson G. R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis // J Proteome Res. ‒ 2012. ‒ T. 11, № 12. ‒ C. 5573-85.
8. Dann S., Kelly H., Suarez D., Hoppe D., Banks M., Peniche A. Luminal-GABA promotes inflammation in mouse models of colitis (MUC5P. 756) // The Journal of Immunology. ‒ 2015. ‒ T. 194, № 1_Supplement. ‒ C. 138.14-138.14.
9. Korpela K. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation // Annu Rev Food Sci Technol. ‒ 2018. ‒ T. 9. ‒ C. 65-84.
10. Vatanen T., Kostic A. D., d'Hennezel E., Siljander H., Franzosa E. A., Yassour M., Kolde R., Vlamakis H., Arthur T. D., Hamalainen A. M., Peet A., Tillmann V., Uibo R., Mokurov S., Dorshakova N., Ilonen J., Virtanen S. M., Szabo S. J., Porter J. A., Lahdesmaki H., Huttenhower C., Gevers D., Cullen T. W., Knip M., Group D. S., Xavier R. J. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans // Cell. ‒ 2016. ‒ T. 165, № 4. ‒ C. 842-53.
11. Rizzatti G., Lopetuso L. R., Gibiino G., Binda C., Gasbarrini A. Proteobacteria: A Common Factor in Human Diseases // Biomed Res Int. ‒ 2017. ‒ T. 2017. ‒ C. 9351507.
12. Semova I., Carten J. D., Stombaugh J., Mackey L. C., Knight R., Farber S. A., Rawls J. F. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish // Cell host & microbe. ‒ 2012. ‒ T. 12, № 3. ‒ C. 277-288.
13. Reichardt N., Vollmer M., Holtrop G., Farquharson F. M., Wefers D., Bunzel M., Duncan S. H., Drew J. E., Williams L. M., Milligan G., Preston T., Morrison D., Flint H. J., Louis P. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production // ISME J. ‒ 2018. ‒ T. 12, № 2. ‒ C. 610-622.
14. Shahab R. L., Brethauer S., Davey M. P., Smith A. G., Vignolini S., Luterbacher J. S., Studer M. H. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose // Science. ‒ 2020. ‒ T. 369, № 6507. ‒ C. eabb1214.
15. Killingsworth J., Sawmiller D., Shytle R. D. Propionate and Alzheimer's Disease // Front Aging Neurosci. ‒ 2020. ‒ T. 12. ‒ C. 580001.
16. Silva Y. P., Bernardi A., Frozza R. L. The role of short-chain fatty acids from gut microbiota in gut-brain communication // Frontiers in endocrinology. ‒ 2020. ‒ T. 11. ‒ C. 25.
17. Medina J. M., Fernández-López R., Crespo J., Cruz F. d. l. Propionate fermentative genes of the gut microbiome decrease in inflammatory bowel disease // Journal of clinical medicine. ‒ 2021. ‒ T. 10, № 10. ‒ C. 2176.
18. Ситкин С., Ткаченко Е., Вахитов Т. Филометаболическое ядро микробиоты и метаболический дисбиоз кишечника // Гастроэнтерология Санкт-Петербурга. ‒ 2015. № 3-4. ‒ C. M12-M13.
19. Fiorucci S., Carino A., Baldoni M., Santucci L., Costanzi E., Graziosi L., Distrutti E., Biagioli M. Bile Acid Signaling in Inflammatory Bowel Diseases // Dig Dis Sci. ‒ 2021. ‒ T. 66, № 3. ‒ C. 674-693.
20. Xing P. Y., Pettersson S., Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis // Proteomics. ‒ 2020. ‒ T. 20, № 5-6. ‒ C. e1800419.
21. Pegg A. E. Toxicity of polyamines and their metabolic products // Chem Res Toxicol. ‒ 2013. ‒ T. 26, № 12. ‒ C. 1782-800.
22. Rhee H. J., Kim E. J., Lee J. K. Physiological polyamines: simple primordial stress molecules // J Cell Mol Med. ‒ 2007. ‒ T. 11, № 4. ‒ C. 685-703.
23. Cui Y., Miao K., Niyaphorn S., Qu X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review // International Journal of Molecular Sciences. ‒ 2020. ‒ T. 21, № 3. ‒ C. 995.
24. Auteri M., Zizzo M. G., Serio R. GABA and GABA receptors in the gastrointestinal tract: from motility to inflammation // Pharmacological research. ‒ 2015. ‒ T. 93. ‒ C. 11-21.
25. Altaib H., Kozakai T., Badr Y., Nakao H., El-Nouby M. A., Yanase E., Nomura I., Suzuki T. Cell factory for γ-aminobutyric acid (GABA) production using Bifidobacterium adolescentis // Microbial cell factories. ‒ 2022. ‒ T. 21, № 1. ‒ C. 33.
26. Zhang H., Wang Y., Gao F., Liu R., Chen W., Zhao X., Sun Q., Sun X., Li J., Liu C. GABA increases susceptibility to DSS-induced colitis in mice // Journal of Functional Foods. ‒ 2022. ‒ T. 99. ‒ C. 105339.
27. Ma X., Sun Q., Sun X., Chen D., Wei C., Yu X., Liu C., Li Y., Li J. Activation of GABAA receptors in colon epithelium exacerbates acute colitis // Frontiers in immunology. ‒ 2018. ‒ T. 9. ‒ C. 987.
28. Pan M., Barua N., Ip M. Mucin-degrading gut commensals isolated from healthy faecal donor suppress intestinal epithelial inflammation and regulate tight junction barrier function // Front Immunol. ‒ 2022. ‒ T. 13. ‒ C. 1021094.
29. Gan L., Wang J., Guo Y. Polysaccharides influence human health via microbiota-dependent and-independent pathways // Frontiers in Nutrition. ‒ 2022. ‒ T. 9. ‒ C. 1030063.
30. Ahmadi S., Mainali R., Nagpal R., Sheikh-Zeinoddin M., Soleimanian-Zad S., Wang S., Deep G., Mishra S. K., Yadav H. Dietary polysaccharides in the amelioration of gut microbiome dysbiosis and metabolic diseases // Obesity & control therapies: open access. ‒ 2017. ‒ T. 4, № 3.
31. Hou J. J., Ding L., Yang T., Yang Y. F., Jin Y. P., Zhang X. P., Ma A. H., Qin Y. H. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota // Microb Pathog. ‒ 2024. ‒ T. 188. ‒ C. 106560.
32. Rondeau L. E., Da Luz B. B., Santiago A., Bermudez-Brito M., Hann A., De Palma G., Jury J., Wang X., Verdu E. F., Galipeau H. J., Rolland C., Deraison C., Ruf W., Bercik P., Vergnolle N., Caminero A. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2 // Gut Microbes. ‒ 2024. ‒ T. 16, № 1. ‒ C. 2387857.
33. Galipeau H. J., Caminero A., Turpin W., Bermudez-Brito M., Santiago A., Libertucci J., Constante M., Raygoza Garay J. A., Rueda G., Armstrong S., Clarizio A., Smith M. I., Surette M. G., Bercik P., Ccc Genetics E. M. P. R. C., Croitoru K., Verdu E. F. Novel Fecal Biomarkers That Precede Clinical Diagnosis of Ulcerative Colitis // Gastroenterology. ‒ 2021. ‒ T. 160, № 5. ‒ C. 1532-1545.
34. Vidal-Lletjós S., Beaumont M., Tomé D., Benamouzig R., Blachier F., Lan A. Dietary protein and amino acid supplementation in inflammatory bowel disease course: what impact on the colonic mucosa? // Nutrients. ‒ 2017. ‒ T. 9, № 3. ‒ C. 310.
35. Davenport M., Poles J., Leung J. M., Wolff M. J., Abidi W. M., Ullman T., Mayer L., Cho I., Loke P. n. Metabolic alterations to the mucosal microbiota in inflammatory bowel disease // Inflammatory bowel diseases. ‒ 2014. ‒ T. 20, № 4. ‒ C. 723-731.
36. Курмангулов А. А., Дороднева Е. Ф., Исакова Д. Н. Функциональная активность микробиоты кишечника при метаболическом синдроме // Ожирение и метаболизм. ‒ 2016. ‒ T. 13, № 1. ‒ C. 16-19.
37. Wang W., Chen L., Zhou R., Wang X., Song L., Huang S., Wang G., Xia B. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease // Journal of clinical microbiology. ‒ 2014. ‒ T. 52, № 2. ‒ C. 398-406.