Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
ГЕОМЕТРИЗИРОВАННАЯ ФИЗИКА ВАКУУМА. ЧАСТЬ 9: «НЕЙТРИНО»
1. [1] Батанов-Гаухман М. (2023) Геометризованная физика вакуума. Часть I. Алгебра стигнатур. Препринт https://doi.org/10.24108/preprints-3113027 Available in English: Batanov-Gaukhman, M. (2023). Geometrized Vacuum Physics. Part I. Algebra of Stignatures. Avances en Ciencias e Ingeniería, 14 (1), 1-26, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-1-ano-2023-articulo-1/ ; and Preprints, 2023060765. https://doi.org/10.20944/preprints202306.0765.v3, and viXra:2403.0035.
2. [2] Батанов-Гаухман М. (2023) Геометризованная физика вакуума. Часть II. Алгебра сигнатур. Preprints.ru. https://doi.org/10.24108/preprints-3113028 . Available in English: Batanov-Gaukhman, M. (2023).Geometrized Vacuum Physics. Part II. Algebra of Signatures. Avances en Ciencias e Ingeniería, 14 (1), 27-55, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-1-ano-2023-articulo-2/: and Preprints, 2023070716, https://doi.org/10.20944/preprints202307.0716.v1, and viXra:2403.0034.
3. [3] Батанов-Гаухман М. (2023) Геометризованная физика вакуума. Часть III. Искривленная область вакуума. Preprints.ru. https://doi.org/10.24108/preprints-3113032. Available in English: Batanov-Gaukhman, M. (2023). Geometrized Vacuum Physics. Part III. Curved Vacuum Area. Avances en Ciencias e Ingeniería Vol. 14 nro 2 año 2023 Articulo 5, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-2-ano-2023-articulo-5/; and Preprints 2023, 2023080570. https://doi.org/10.20944/preprints202308.0570.v4, and viXra:2403.0033.
4. [4] Батанов-Гаухман М. (2024) Геометризованная физика вакуума. Часть IV. Динамика вакуумных слоев. Pre-prints.ru. https://doi.org/10.24108/preprints-3113039. Available in English: Batanov-Gaukhman, M., (2024). Ge-ometrized Vacuum Physics. Part IV: Dynamics of Vacuum Layers. Avances en Ciencias e Ingeniería Vol. 14 nro 3 año 2023 Articulo 1 https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-3-ano-2023-articulo-1/, and Preprints.org. https://doi.org/10.20944/preprints202310.1244.v3, and viXra:2403.0032.
5. [5] Батанов-Гаухман М. (2024) Геометризированная физика вакуума. Часть 5: Стабильные вакуумные образо-вания. Preprints.ru. https://doi.org/10.24108/preprints-3113040 . Available in English: Batanov-Gaukhman, M., (2024). Avances en Ciencias e Ingeniería Vol. 14 nro 3 año 2023 Articulo 2 https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-3-ano-2023-articulo-2/, and viXra:2405.0002.
6. [6] Батанов-Гаухман М.(2024) Геометризированная физика вакуума. Часть 6: Иерархическая космологическая модель. PREPRINTS.RU https://doi.org/10.24108/preprints-3113086. Available in English: Batanov-Gaukhman, M. (2024) Geometrized Vacuum Physics Part 6: Hierarchical Cosmological Model, Avances en Ciencias e Inge-niería Vol. 14 nro 4 año 2023 https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-4-ano-2023-articulo-3/ and viXra:2408.0010.
7. [7] Батанов-Гаухман М. С. (2024) Геометризированная физика вакуума. Часть 7: «электрон» и «позитрон». PREPRINTS.RU, https://doi.org/10.24108/preprints-3113132. Available in English: Batanov-Gaukhman, M. (2024). Geometrized Vacuum Physics Part 7: "Electron" and "Positron", viXra:2409.0097.
8. [8] Батанов-Гаухман М. С. (2024) Геометризированная физика вакуума. Часть 8: инерционный электромагнетизм движущихся «частиц». Available in English: Batanov-Gaukhman, M. (2024). Geometrized Vacuum Physics Part 8: Inertial Electromagnetism of Moving "Particles", viXra:2409.0097.
9. [9] Шипов Г.И. (1998). «Теория физического вакуума». Москва СТ-Центр, Россия ISBN 5 7273-0011-8. Available in English: Shipov, G. (1998). ”A Theory of Physical Vacuum”. Moscow ST-Center, Russia ISBN 5 7273-0011-8.
10. [10] Батанов М. С. (2006) Эффект Волкова // Труды конференции «Синергетика том. 8» – М: МГУ им. М.В. Ломоносова.
11. [11] Медведева А.А., Панчелюга В.А. (2014) Эффект Волкова// Метафизика, 2014, № 1 (11).
12. [12] Бобров А.В. (2007). Модельные исследования полевой концепции механизма сознания. Орел: Орловский Государственный технический университет.
13. [13] Marinov, K.; Boardman, A.; Fedotov, V. (2007). Metamaterial Toroidal. New Journal of Physics, v. 9, 324–335.
14. [14] Suematsu, D. (2024). Neutrino models with a zero mass eigenvalue. arXiv:2412.05774.
15. [15] Gui-Jun Ding; Xiang-Gan Liu; Chang-Yuan Yao (2022). A minimal modular invariant neutrino model, arXiv:2211.04546, DOI: 10.48550/arXiv.2211.04546.
16. [16] Wolfenstein, L. (1978). Neutrino Oscillations in Matter. Phys. Rev. D, 17:2369–2374, 1978. https://doi.org/10.1103/PhysRevD.17.2369.
17. [17] Babak, A. et al. (2020). Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology. JINST, 15(08): T08010,. https://doi.org/10.1088/ 1748-0221/15/08/T08010.
18. [18] Babu, K.; Chauhan G.; Dev B. (2020). Neutrino nonstandard interactions via light scalars in the Earth, Sun, su-pernovae, and the early Universe. Phys. Rev. D, 101(9):095029, https://doi.org/10.1103/ PhysRevD.101.095029.
19. [19] Feruglio, F.; Romanino, A. (2021). Lepton flavor symmetries. Rev. Mod. Phys. 93 no. 1, 015007, arXiv:1912.06028.
20. [20] Kobayashi, T.; Tanaka, K.; Tatsuishi, T. (2018). Neutrino mixing from finite modulargroups, Phys. Rev. D 98 no. 1, 016004, arXiv:1803.10391.
21. [21] Criado, J.; Feruglio, F. (2018). Modular Invariance Faces Precision Neutrino Data, SciPost Phys. 5 no. 5, 042, arXiv:1807.01125.
22. [22] Mertens, S. (2016). Direct Neutrino Mass Experiments. arXiv:1605.01579. S2CID 56355240. NuPhys2015, Pro-spects in Physics Barbican Centre, London, UK, December 16–18, 2015.
23. [23] Close, F. (2010). Neutrino. Published in the United States by Oxford University Press Inc., New York ISBN 978-0-19-957459-9.
24. [24] Balantekin, A. (2011). Neutrino. Physics Today 64 (4), 58–60, https://doi.org/10.1063/1.3580495.
25. [25] Winter, K. (2000). Neutrino Physics. Cambridge University Press. ISBN 978-0-521-65003-8.
26. [26] Cooper, K. (2022). What are neutrinos? Space.com.
27. [27] Johnson, C.; Tegen, R. (1999). The little neutral one: An overview of the neutrino. South African Journal of Sci-ence. 95 (95): 13–20. hdl:10520/AJA00382353_7822.
28. [28] Aničin, I. (2005). The neutrino – its past, present, and future. SFIN (Institute of Physics, Belgrade) Year XV. A: Conferences. 2: 3–59. arXiv:physics/0503172.
29. [29] Kostelecký, V.; Mewes, M. (2004). Lorentz and CPT violation in neutrinos. Phys. Rev. D. 69 (1): 016005. arXiv:hep-ph/0309025.
30. [30] Pei-Hong Gu; Ernest Ma; Utpal Sarkar (2016). Connecting Radiative Neutrino Mass, Neutron-Antineutron Oscil-lation, Proton Decay, and Leptogenesis through Dark Matter. Phys. Rev. D, 94(11):111701.
31. [31] King, S. (2017). Unified Models of Neutrinos, Flavour and CP Violation, Prog. Part.Nucl. Phys. 94217–256, arXiv:1701.04413.
32. [32] Alfonso, K.; et al. (CUORE Collaboration) (2015). "Search for Neutrinoless Double-Beta Decay of Te 130 with CUORE-0". Physical Review Letters. 115 (10): 102502. arXiv:1504.02454.
33. [33] Kolbe, E.; Langanke, K.; Fuller, G. (2004). Neutrino-Induced Fission of Neutron-Rich Nuclei. Physical Review Letters. 92 (11): 111101. arXiv:astro-ph/0308350.
34. [34] Bellerive, A; Klein, J.R.; McDonald, A.B.; Noble, A.J.; Poon, A.W.P. (2016) The Sudbury Neutrino Observato-ry. Nuclear Physics B. 908: 30–51. arXiv:1602.02469. doi:10.1016/j.nuclphysb.2016.04.035.
35. [35] Abazajian, K. N.; et al. (2012). Light sterile neutrinos. arXiv:1204.5379.
36. [36] Lasserre, T. (2014). Light sterile neutrinos in particle physics: Experimental status. Physics of the Dark Uni-verse. 4: 81–85. arXiv:1404.7352. doi:10.1016/j.dark.2014.10.001.
37. [37] Adamson, F. (MINOS Collaboration) (2007). Measuring the Speed of Neutrinos with the MINOS Detectors and the NuMI Neutrino Beam (Fermilab and University College London). Phys. Rev. D 76 DOI: 10.1103/PhysRevD.76. 072005.
38. [38] Valentino, E.; Gariazzo, S.; Giar`e, W.; Mena, O. (2023). Impact of the damping tail on neutrino mass con-straints. Phys. Rev. D 108, 083509, arXiv:2305.12989.
39. [39] Nomura, T.: Popov, O. (2024). Extended Scotogenic Model of Neutrino Mass and Proton Decay. arXiv:2406.00651v1.
40. [40] Andrew, G: Cohen, A. G.; Glashow S. L. (2011). New Constraints on Neutrino Velocities. arXiv:1109.6562v1, https://doi.org/10.1103/PhysRevLett.107.181803.
41. [49] Worcester, E. (2023). The Dawn of Collider Neutrino Physics. Physics. 16: 113. doi:10.1103/Physics.16.113.S2CID 260749625.
42. [41] Yue Shao, Guo-Hong Du, Tian-Nuo Li, Xin Zhang (2025). Prospects for measuring neutrino mass with 21-cm forest. arXiv:2501.00769.
43. [42] Lesgourgues, J.; Pastor, S. (2006). Massive neutrinos and cosmology. Phys. Rept. 429, 307, Pages 307-379. arXiv:astro-ph/0603494.