Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
3D-клеточная модель (3D-сфероид) является более репрезентативной тест-системой для проверки эффектов микроРНК
1. Blanco-Prieto, S., Barcia-Castro, L., Páez de la Cadena, M., Rodríguez-Berrocal, F. J., Vázquez-Iglesias, L., Botana-Rial, M. I., Fernández-Villar, A., & De Chiara, L. (2017). Relevance of matrix metalloproteases in non-small cell lung cancer diagnosis. BMC Cancer, 17(1). https://doi.org/10.1186/s12885-017-3842-z.
2. Yang, L., Zhang, F., Wang, X., Tsai, Y., Chuang, K.-H., Keng, P. C., Lee, S. O., & Chen, Y. (2016). A FASN-TGF-β1-FASN regulatory loop contributes to high EMT/metastatic potential of cisplatin-resistant non-small cell lung cancer. Oncotarget, 7(34), 55543–55554. https://doi.org/10.18632/oncotarget.10837
3. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
4. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30. https://doi.org/10.3322/caac.21387
5. Zhuang, J., Tang, X., Du, Z., Yang, M., & Zhou, Y. (2016). Prediction of biomarkers of therapeutic effects of patients with lung adenocarcinoma treated with gefitinib based on progression-free-survival by metabolomic fingerprinting. Talanta, 160, 636–644. https://doi.org/10.1016/j.talanta.2016.08.007
6. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142. https://doi.org/10.1038/nrm1835
7. Williams, E. D., Gao, D., Redfern, A., & Thompson, E. W. (2019). Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nature Reviews Cancer, 19(12), 716–732. https://doi.org/10.1038/s41568-019-0213-x
8. Zavadil, J., & Böttinger, E. P. (2005). TGF-β and epithelial-to-mesenchymal transitions. Oncogene, 24(37), 5764–5774. https://doi.org/10.1038/sj.onc.1208927
9. Hay, E.D. (1968). Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. Epithelial-Mesenchymal Interactions ; 18th Hahnemann Symposium, 1968. https://cir.nii.ac.jp/crid/export-6533a6e1-0dde-4248-a3c6-81685f17f49f.bib?lang=en
10. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/j.cell.2016.06.028Nieto, M. A., Huang, R. Y.-J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/j.cell.2016.06.028
11. Lim, J., & Thiery, J. P. (2012). Epithelial-mesenchymal transitions: insights from development. Development, 139(19), 3471–3486. https://doi.org/10.1242/dev.071209
12. Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139(5), 871–890. https://doi.org/10.1016/j.cell.2009.11.007
13. Ye, X., & Weinberg, R. A. (2015). Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology, 25(11), 675–686. https://doi.org/10.1016/j.tcb.2015.07.012
14. Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454. https://doi.org/10.1038/nrc822
15. Micalizzi, D. S., Farabaugh, S. M., & Ford, H. L. (2010). Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression. Journal of Mammary Gland Biology and Neoplasia, 15(2), 117–134. https://doi.org/10.1007/s10911-010-9178-9
16. Takeyama, Y., Sato, M., Horio, M., Hase, T., Yoshida, K., Yokoyama, T., Nakashima, H., Hashimoto, N., Sekido, Y., Gazdar, A. F., Minna, J. D., Kondo, M., & Hasegawa, Y. (2010). Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Letters, 296(2), 216–224. https://doi.org/10.1016/j.canlet.2010.04.008
17. Vega, S., Morales, A. V., Ocaña, O. H., Valdés, F., Fabregat, I., & Nieto, M. A. (2004). SNAIL blocks the cell cycle and confers resistance to cell death. Genes & Development, 18(10), 1131–1143. https://doi.org/10.1101/gad.294104
18. Peinado, H., Olmeda, D., & Cano, A. (2007). SNAIL, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7(6), 415–428. https://doi.org/10.1038/nrc2131
19. Cowden Dahl, K. D., Symowicz, J., Ning, Y., Gutierrez, E., Fishman, D. A., Adley, B. P., Stack, M. S., & Hudson, L. G. (2008). Matrix Metalloproteinase 9 Is a Mediator of Epidermal Growth Factor–Dependent Е-Кадгерин Loss in Ovarian Carcinoma Cells. Cancer Research, 68(12), 4606–4613. https://doi.org/10.1158/0008-5472.CAN-07-5046
20. Heuberger, J., & Birchmeier, W. (2010). Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2(2), a002915–a002915. https://doi.org/10.1101/cshperspect.a002915
21. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6(4), 389–395. https://doi.org/10.1038/74651
22. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386(6626), 671–674. https://doi.org/10.1038/386671a0
23. Ward, J. P. T. (2008). Oxygen sensors in context. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777(1), 1–14. https://doi.org/10.1016/j.bbabio.2007.10.010
24. Helmlinger, G., Endo, M., Ferrara, N., Hlatky, L., & Jain, R. K. (2000a). Formation of endothelial cell networks. Nature, 405(6783), 139–141. https://doi.org/10.1038/35012132
25. Hansen-Algenstaedt, N., Stoll, B. R., Padera, T. P., Dolmans, D. E., Hicklin, D. J., Fukumura, D., & Jain, R. K. (2000a). Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Research, 60(16), 4556–4560.
26. Finishing the euchromatic sequence of the human genome. (2004). Nature, 431(7011), 931–945. https://doi.org/10.1038/nature03001
27. An integrated encyclopedia of DNA elements in the human genome. (2012). Nature, 489(7414), 57–74. https://doi.org/10.1038/nature11247
28. Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G. K., Khatun, J., Williams, B. A., Zaleski, C., Rozowsky, J., Röder, M., Kokocinski, F., Abdelhamid, R. F., … Gingeras, T. R. (2012). Landscape of transcription in human cells. Nature, 489(7414), 101–108. https://doi.org/10.1038/nature11233
29. Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002
30. Palazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: what is functional and what is junk? Frontiers in Genetics, 6. https://doi.org/10.3389/fgene.2015.00002
31. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854. https://doi.org/10.1016/0092-8674(93)90529-Y
32. Calin, G. A., & Croce, C. M. (2006b). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866. https://doi.org/10.1038/nrc1997
33. Gross, N., Kropp, J., & Khatib, H. (2017). MicroRNA Signaling in Embryo Development. Biology, 6(4), 34. https://doi.org/10.3390/biology6030034
34. Iorio, M. V., & Croce, C. M. (2012). Causes and Consequences of MicroRNA Dysregulation. The Cancer Journal, 18(3), 215–222. https://doi.org/10.1097/PPO.0b013e318250c001
35. Nieto-Diaz, M., Esteban, F. J., Reigada, D., Muñoz-Galdeano, T., Yunta, M., Caballero-López, M., Navarro-Ruiz, R., Águila, Á. del, & Maza, R. M. (2014). MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Frontiers in Cellular Neuroscience, 8. https://doi.org/10.3389/fncel.2014.00053
36. Tan, L., Yu, J.-T., & Tan, L. (2015). Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Molecular Neurobiology, 51(3), 1249–1262. https://doi.org/10.1007/s12035-014-8803-9
37. Zhang, C. (2008). MicroRNAs: role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706. https://doi.org/10.1042/CS20070211
38. Huntzinger, E., & Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 12(2), 99–110. https://doi.org/10.1038/nrg2936
39. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
40. Ebrahimi, F., Gopalan, V., Smith, R. A., & Lam, A. K.-Y. (2014). miR-126 in human cancers: Clinical roles and current perspectives. Experimental and Molecular Pathology, 96(1), 98–107. https://doi.org/10.1016/j.yexmp.2013.12.004
41. Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., Richardson, J. A., Bassel-Duby, R., & Olson, E. N. (2008). The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15(2), 261–271. https://doi.org/10.1016/j.devcel.2008.07.002
42. DA SILVA, N. D., FERNANDES, T., SOCI, U. P. R., MONTEIRO, A. W. A., PHILLIPS, M. I., & DE OLIVEIRA, E. M. (2012). Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Medicine & Science in Sports & Exercise, 44(8), 1453–1462. https://doi.org/10.1249/MSS.0b013e31824e8a36
43. Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W., & Leal, J. (2008). The PTEN/PI3K/AKT Signalling Pathway in Cancer, Therapeutic Implications. Current Cancer Drug Targets, 8(3), 187–198. https://doi.org/10.2174/156800908784293659
44. Luan, Y., Zuo, L., Zhang, S., Wang, G., & Peng, T. (2015). MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). International Journal of Clinical and Experimental Pathology, 8(9), 10345–10354.
45. Chen, S.-W., Wang, T.-B., Tian, Y.-H., & Zheng, Y.-G. (2015). Down-regulation of microRNA-126 and microRNA-133b acts as novel predictor biomarkers in progression and metastasis of non small cell lung cancer. International Journal of Clinical and Experimental Pathology, 8(11), 14983–14988.
46. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294(5543), 853–858. https://doi.org/10.1126/science.1064921
47. Jiang, X., Hu, C., Arnovitz, S., Bugno, J., Yu, M., Zuo, Z., Chen, P., Huang, H., Ulrich, B., Gurbuxani, S., Weng, H., Strong, J., Wang, Y., Li, Y., Salat, J., Li, S., Elkahloun, A. G., Yang, Y., Neilly, M. B., … Chen, J. (2016). miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nature Communications, 7(1), 11452. https://doi.org/10.1038/ncomms11452
48. Zuo, Q.-F., Cao, L.-Y., Yu, T., Gong, L., Wang, L.-N., Zhao, Y.-L., Xiao, B., & Zou, Q.-M. (2015). MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and SNAIL. Cell Death & Disease, 6(11), e2000–e2000. https://doi.org/10.1038/cddis.2015.297
49. Budd, W. T., Seashols-Williams, S. J., Clark, G. C., Weaver, D., Calvert, V., Petricoin, E., Dragoescu, E. A., O’Hanlon, K., & Zehner, Z. E. (2015). Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis. PLOS ONE, 10(11), e0142373. https://doi.org/10.1371/journal.pone.0142373
50. Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N. J., Yuan, X., Cantley, L. C., Richardson, A. L., & Pandolfi, P. P. (2013). MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell, 154(2), 311–324. https://doi.org/10.1016/j.cell.2013.06.026
51. Zhang K, Li XY, Wang ZM, Han ZF, Zhao YH. MiR-22 inhibits lung cancer cell EMT and invasion through targeting SNAIL. Eur Rev Med Pharmacol Sci. 2017;21(16):3598-3604.
52. Ebrahimi, S. O., & Reiisi, S. (2019). Downregulation of miR-4443 and miR-5195-3p in ovarian cancer tissue contributes to metastasis and tumorigenesis. Archives of Gynecology and Obstetrics, 299(5), 1453–1458. https://doi.org/10.1007/s00404-019-05107-x
53. Meerson, A., & Yehuda, H. (2016). Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer, 16(1), 882. https://doi.org/10.1186/s12885-016-2938-1
54. Chen, X., Zhong, S., Lu, P., Wang, D., Zhou, S., Yang, S., Shen, H., Zhang, L., Zhang, X., Zhao, J., & Tang, J. (2016). miR-4443 Participates in the Malignancy of Breast Cancer. PLOS ONE, 11(8), e0160780. https://doi.org/10.1371/journal.pone.0160780
55. Zuo, X., Sun, H., Fang, H., Wu, Y., Shi, Q., & Yu, Y. (2021). miR‐4443 targets TRIM14 to suppress metastasis and energy metabolism of papillary thyroid carcinoma (PTC) in vitro. Cell Biology International, 45(9), 1917–1925. https://doi.org/10.1002/cbin.11631
56. Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: the ultimate regulator of breast epithelial function. Current Opinion in Cell Biology, 15(6), 753–762. https://doi.org/10.1016/j.ceb.2003.10.016
57. Cukierman, E., Pankov, R., Stevens, D. R., & Yamada, K. M. (2001). Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294(5547), 1708–1712. https://doi.org/10.1126/science.1064829
58. Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3(8), 711–716. https://doi.org/10.1038/nrd1470
59. Pammolli, F., Magazzini, L., & Riccaboni, M. (2011). The productivity crisis in pharmaceutical R&D. Nature Reviews Drug Discovery, 10(6), 428–438. https://doi.org/10.1038/nrd3405
60. Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. L. (2010). How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9(3), 203–214. https://doi.org/10.1038/nrd3078
61. Breslin, S., & O’Driscoll, L. (2013). Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 18(5–6), 240–249. https://doi.org/10.1016/j.drudis.2012.10.003
62. Yamada, K. M., & Cukierman, E. (2007). Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 130(4), 601–610. https://doi.org/10.1016/j.cell.2007.08.006
63. Tsoukalas N. et al. Epithelial–mesenchymal transition in non small-cell lung cancer //Anticancer Research. – 2017. – Т. 37. – №. 4. – С. 1773-1778. https://doi.org/10.21873/anticanres.11510
64. Jia Z. et al. miR-126 suppresses epithelial-to-mesenchymal transition and metastasis by targeting PI3K/AKT/Snail signaling of lung cancer cells //Oncology letters. – 2018. – Т. 15. – №. 5. – С. 7369-7375.