Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Microdisc HgCdTe lasers operating at 22-25 μm under optical pumping
1. Loghmari, Z., Bahriz, M., Meguekam, A., Teissier, R., Baranov, A. N., “InAs-based quantum cascade lasers emitting close to 25 μm”, Electronics Letters 55 (3), 144-146 (2019).
2. Olariu, T., Senica, U., Faist, J., “Single-mode, surface-emitting quantum cascade laser at 26 μm”, Appl. Phys. Lett. 124 (4), 041109 (2024).
3. Ohtani, K., Beck, M., Süess, M. J., Faist, J., Andrews, A. M., Zederbauer, T., Detz, H., Schrenk, W., Strasser, G., “Far-infrared quantum cascade lasers operating in the AlAs phonon reststrahlen band”, ACS Photonics 3 (12), 2280-2284 (2016).
4. Terashima, W., Hirayama, H., “GaN-based terahertz quantum cascade lasers”, Proceedings Terahertz Physics, Devices, and Systems IX: Advanced Applications in Industry and Defense 9483, 948304 (2015).
5. Shahili, M., Addamane, S. J., Kim, A. D., Curwen, C. A., Kawamura, J. H., Williams, B. S., “Continuous-wave GaAs/AlGaAs quantum cascade laser at 5.7 THz”, Nanophotonics 13 (10), 1735-1743 (2024).
6. Dimmock, J. O., Melngailis, I., Strauss, A. J., “Band structure and laser action in PbxSn1-xTe”, Physical Review Letters 16 (26), 1193-1196 (1966).
7. Maremyanin, K. V., Ikonnikov, A. V., Bovkun, L. S., Rumyantsev, V. V., Chizhevskii, E. G., Zasavitskii, I. I., Gavrilenko, V. I., “Terahertz Injection Lasers Based on a PbSnSe Solid Solution with an Emission Wavelength up to 50 μm and Their Application in the Magnetospectroscopy of Semiconductors”, Semiconductors 52 (12), 1590-1594 (2018).
8. Bernevig, B. A., Hughes, T. L., Zhang, S. C., “Quantum spin Hall effect and topological phase transition in HgTe quantum wells”, Science 314 (5806), 1757-1761 (2006).
9. Rumyantsev, V. V., Dubinov, A. A., Utochkin, V. V., Fadeev, M. A., Aleshkin, V. Ya., Razova, A. A., Mikhailov, N. N., Dvoretsky, S. A., Gavrilenko, V. I., Morozov, S. V., “Stimulated emission in 24–31 μm range and «Reststrahlen» waveguide in HgCdTe structures grown on GaAs”, Applied Physics Letters 121 (18), 182103-1-182103-5 (2022).
10. Talwar, D. N., Vandevyver, M., “Vibrational properties of HgCdTe system”, Journal of Applied Physics 56 (6), 1601-1607 (1984).
11. Menon, V. M., Ram-Mohan, L. R., Vurgaftman, I., Meyer, J. R., “TE- and TM-polarized optoelectronic properties of HgCdTe quantum wells”, Journal of Electronic Materials 29 (6), 865-868 (2000).
12. Alymov, G., Rumyantsev, V., Morozov, S., Gavrilenko, V., Aleshkin, V., Svintsov, D., “Fundamental Limits to Far-Infrared Lasing in Auger-Suppressed HgCdTe Quantum Wells”, ACS Photonics 7 (1), 98-104 (2020).
13. Apretna, T., Nilforoushan, N., Tignon, J., Dhillon, S., Carosella, F., Ferreira, R., Lhuillier, E., Mangeney, J., “Coherent THz wave emission from HgTe quantum dots”, Applied Physics Letters 121 (25), 251101 (2022).
14. Gréboval, C., Chu, A., Goubet, N., Livache, C., Ithurria, S., Lhuillier, E., “Mercury chalcogenide quantum dots: material perspective for device integration”, Chemical Reviews 121 (7), 3627 (2021).
15. Geiregat, P., Houtepen, A. J., Sagar, L. K., Infante, I., Zapata, F., Grigel. V., Allan, G., Delerue, C., Van Thourhout, D., Hens, Z., “Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots”, Nature Materials 17 (1), 35 (2017).
16. Utochkin, V., Kudryavtsev, K., Rumyantsev, V., Fadeev, M., Razova, A., Mikhailov, N., Shengurov, D., Gusev, S., Gusev, N., Morozov, S., “Mid-IR lasing in HgCdTe multiple quantum well edge-emitting ridges”, Applied Optics 62 (32), 8529-8534 (2023).
17. Razova, A. A., Fadeev, M. A., Rumyantsev, V. V., Utochkin, V. V., Dubinov, A. A., Aleshkin, V. Ya., Mikhailov, N. N., Dvoretsky, S. A., Gusev, N. S., Shengurov, D. V., Morozova, E. E., Gavrilenko, V. I., Morozov, S. V., “Whispering gallery mode HgCdTe laser operating near 4 lm under Peltier cooling”, Applied Physics Letters 123 (16), 161105-1-161105-5 (2023).
18. Rumyantsev, V. V., Mazhukina, K. A., Utochkin, V. V., Kudryavtsev, K. E., Dubinov, A. A., Aleshkin, V. Ya., Razova, A. A., Kuritsin, D. I., Fadeev, M. A., Antonov, A. V., Mikhailov, N. N., Dvoretsky, S. A., Gavrilenko, V. I., Teppe, F., Morozov, S.V., “Optically pumped stimulated emission in HgCdTe-based quantum wells: Toward continuous wave lasing in very long-wavelength infrared range”, Applied Physics Letters 124 (16), 161111-1-161111-6 (2024).
19. Shao, J., Lu, W., Lü, X., Yue, F., Li, Z., Guo, S., Chu, J., “Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer”, Review of Scientific Instruments 77 (6), 063104 (2006).
20. Rayleigh, L., “The problem of the whispering gallery”, Philosophical Magazine Series 620 (120), 1001-1004 (1910).
21. Yang, Sh., Wang, Y., Sun, H., “Advances and Prospects for Whispering Gallery Mode Microcavities”, Advanced Optical Materials 3 (9), 1136-1162 (2015).
22. Morozov, S. V., Rumyantsev, V. V., Zholudev, M. S., Dubinov, A. A., Aleshkin, V. Ya., Utochkin, V. V., Fadeev, M. A., Kudryavtsev, K. E., Mikhailov, N. N., Dvoretskii, S. A., Gavrilenko, V. I., Teppe, F., “Coherent Emission in the Vicinity of 10 THz due to Auger- Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells”, ACS Photonics 8 (12), 3526-3535 (2021).
23. Arias, J. M., Zandian, M., Zucca, R., Singh, J., “HgCdTe infrared diode lasers grown by MBE”, Semiconductor Science and Technology 8 (1S), S255 (1993).
24. Hadji, E., Bleuse, J., Magnea, N., Pautrat, J. L., “Photopumped infrared vertical-cavity surface-emitting laser”, Applied Physics Letters 68 (18), 2480-2482 (1996).