ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Recently, two research groups [1–3] reported on the observation of ambient pressure superconductivity in a few nanometers thick La3-xPrxNi2O7-d (x = 0.0, 0.15, 1.0) films with the T(c,onset)≅40 K and T(c,zero)≤14 K. Here I have analyzed the reported self-field critical current density, J_c (sf,T), and upper critical field, Bc2 (T), for these films1–3 and showed that La3-xPrxNi2O7-d films exhibit a large in-plane London penetration depth, λab(0)=1.9-6.8 μm, and the Ginzburg-Landau parameter κ(0)=500-1000. Deduced λab(0) values are within uncertainty range for independently reported [2] λab(T=1.8 K)=(3.7±1.9) μm. Such large values of λab(0) explain a wide resistive transition in La3-xPrxNi2O7-d films [1–3], because large λab(0) implies low superfluid density, ρs≡1/(λab)^2 , and therefore large thermal fluctuations. Consequently, I calculated the phase fluctuation temperature, Tfluc, and found that the T(c,zero)<T_fluc. I also found that Jc(sf,T) and Bc2 (T) data are nicely fitted to two-band gap models, from which the preference has been given to two-band (s+s)-wave model (for which the ratios of (2ΔL(0))/(kBT(c,L) )≅3.6-4.0 and (2ΔS(0))/(kBT(c,S) )=1.0-3.0 are for the larger and smaller bands, respectively). Besides I showed that bulk highly compressed Ruddlesden–Popper nickelates Lan+1NinO3n+1 (n = 2,3) and ambient pressure Lan+1NinO2n+2 (n = 5) thin film also demonstrate evidence for two-band superconductivity.
Talantsev E. 2025. Two-band superconductivity and transition temperature limited by thermal fluctuations in ambient pressure La3-xPrxNi2O7-d (x = 0.0, 0.15, 1.0) thin films. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113379
1. Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature (2024) doi:10.1038/s41586-024-08525-3.
2. Zhou, G. et al. Ambient-pressure superconductivity onset above 40 K in bilayer nickelate ultrathin films. (2024).
3. Liu, Y. et al. Superconductivity and normal-state transport in compressively strained La$_2$PrNi$_2$O$_7$ thin films. (2025).
4. Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys Rev B 59, 7901–7906 (1999).
5. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
6. Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
7. Brisi, C., Vallino, M. & Abbattista, F. Composition and structure of two hitherto unidentified phases in the system La2O3-NiO-O. Journal of the Less Common Metals 79, 215–219 (1981).
8. Ram, R. A. M., Ganapathi, L., Ganguly, P. & Rao, C. N. R. Evolution of three-dimensional character across the Lan+1NinO3n+1 homologous series with increase in n. J Solid State Chem 63, 139–147 (1986).
9. Sreedhar, K. et al. Low-Temperature Electronic Properties of the Lan+1NinO3n+1 (n = 2, 3, and ∞) System: Evidence for a Crossover from Fluctuating-Valence to Fermi-Liquid-like Behavior. J Solid State Chem 110, 208–215 (1994).
10. Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, Structure, and Properties of the Layered Perovskite La3Ni2O7-δ. J Solid State Chem 108, 402–409 (1994).
11. Taniguchi, S. et al. Transport, Magnetic and Thermal Properties of La 3 Ni 2 O 7-δ. J Physical Soc Japan 64, 1644–1650 (1995).
12. Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3N2O7 and La4Ni3O10. Phys Rev B 63, 245120 (2001).
13. Burriel, M. et al. Enhanced High-Temperature Electronic Transport Properties in Nanostructured Epitaxial Thin Films of the La n +1 Ni n O 3 n +1 Ruddlesden−Popper Series ( n = 1, 2, 3, ∞). Chemistry of Materials 19, 4056–4062 (2007).
14. Helfand, E. & Werthamer, N. R. Temperature and Purity Dependence of the Superconducting Critical Field, Hc2. II. Physical Review 147, 288–294 (1966).
15. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and Purity Dependence of the Superconducting Critical Field, Hc2. III. Electron Spin and Spin-Orbit Effects. Physical Review 147, 295–302 (1966).
16. Baumgartner, T. et al. Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires. Supercond Sci Technol 27, 015005 (2014).
17. Prozorov, R. & Kogan, V. G. Practically universal representation of the Helfand-Werthamer upper critical field for any transport scattering rate. Phys Rev Appl 22, 064006 (2024).
18. Yan, X. et al. Superconductivity in an ultrathin multilayer nickelate. Sci Adv 11, (2025).
19. Wang, Z.-C. et al. Superconductivity in KCa 2 Fe 4 As 4 F 2 with Separate Double Fe 2 As 2 Layers. J Am Chem Soc 138, 7856–7859 (2016).
20. Honda, F. et al. Pressure-induced Structural Phase Transition and New Superconducting Phase in UTe 2. J Physical Soc Japan 92, (2023).
21. Wang, B. Y. et al. Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Sci Adv 9, (2023).
22. Wang, B. Y. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat Phys 17, 473–477 (2021).
23. Ji, H. et al. Rotational symmetry breaking in superconducting nickelate Nd0.8Sr0.2NiO2 films. Nat Commun 14, 7155 (2023).
24. Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7−δ. Nat Phys (2024) doi:10.1038/s41567-024-02515-y.
25. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
26. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat Mater 21, 877–883 (2022).
27. Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci Adv 10, (2024).
28. Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).
29. Osada, M. et al. A Superconducting Praseodymium Nickelate with Infinite Layer Structure. Nano Lett 20, 5735–5740 (2020).
30. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat Mater 21, 160–164 (2022).
31. Bulaevskii, L. N., Ginzburg, V. L. & Sobyanin, A. A. Macroscopic theory of superconductors with small coherence length. Physica C Supercond 152, 378–388 (1988).
32. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).
33. Talantsev, E. F., Crump, W. P., Storey, J. G. & Tallon, J. L. London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor. Ann Phys 529, 1–5 (2017).
34. Andersson, M. Comment on “Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa”. Phys Rev B 84, 216501 (2011).
35. Wu, L. et al. Record-High <math display="inline"> <msub> <mi>T</mi> <mi>c</mi> </msub> </math> and Dome-Shaped Superconductivity in a Medium-Entropy Alloy TaNbHfZr under Pressure up to 160 GPa. Phys Rev Lett 132, 166002 (2024).
36. Ye, G. et al. Distinct pressure evolution of superconductivity and charge density wave in kagome superconductor <math> <mrow> <msub> <mi>CsV</mi> <mn>3</mn> </msub> <msub> <mi>Sb</mi> <mn>5</mn> </msub> </mrow> </math> thin flakes. Phys Rev B 109, 054501 (2024).
37. Nie, J. Y. et al. On the superconducting gap structure of the miassite Rh17S15: Nodal or nodeless? (2024).
38. Chen, K. Y. et al. Double Superconducting Dome and Triple Enhancement of <math display="inline"> <msub> <mrow> <mi>T</mi> </mrow> <mrow> <mi>c</mi> </mrow> </msub> </math> in the Kagome Superconductor <math display="inline"> <mrow> <msub> <mrow> <mi>CsV</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> <msub> <mrow> <mi>Sb</mi> </mrow> <mrow> <mn>5</mn> </mrow> </msub> </mrow> </math> under High Pressure. Phys Rev Lett 126, 247001 (2021).
39. Huyan, S. et al. Suppression of metal-to-insulator transition and stabilization of superconductivity by pressure in <math> <mrow> <msub> <mi>Re</mi> <mn>3</mn> </msub> <msub> <mi>Ge</mi> <mn>7</mn> </msub> </mrow> </math>. Phys Rev B 109, 174522 (2024).
40. Terashima, T. et al. Anomalous upper critical field in the quasicrystal superconductor Ta$_{1.6}$Te. (2024).
41. Ruan, B.-B. et al. Superconductivity in Mo 4 Ga 20 As with endohedral gallium clusters. Journal of Physics: Condensed Matter 35, 214002 (2023).
42. Zhang, C. L. et al. Superconductivity above 80 K in polyhydrides of hafnium. Materials Today Physics 27, 100826 (2022).
43. Wang, L. S. et al. Nodeless superconducting gap in the topological superconductor candidate <math> <mn>2</mn> <mi>M</mi> <mtext>–</mtext> <mi>WS</mi> <msub> <mrow/> <mn>2</mn> </msub> </math>. Phys Rev B 102, 024523 (2020).
44. Pan, J. et al. Nodal superconductivity and superconducting dome in the layered superconductor <math> <mrow> <msub> <mi>Ta</mi> <mn>4</mn> </msub> <msub> <mi>Pd</mi> <mn>3</mn> </msub> <msub> <mi>Te</mi> <mn>16</mn> </msub> </mrow> </math>. Phys Rev B 92, 180505 (2015).
45. Vedeneev, S. I., Piot, B. A., Maude, D. K. & Sadakov, A. V. Temperature dependence of the upper critical field of FeSe single crystals. Phys Rev B 87, 134512 (2013).
46. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat Commun 12, 3645 (2021).
47. Dong, Q. et al. Strong superconducting pairing strength and pseudogap features in a putative multiphase heavy-fermion superconductor CeRh2As2 by soft point-contact spectroscopy. (2025).
48. Bärtl, F. et al. Evidence of pseudogap and absence of spin magnetism in the time-reversal-symmetry-breaking state of Ba$_{1-x}$K$_x$Fe$_2$As$_2$. (2025).
49. Jangid, S. et al. Superconductivity with a high upper critical field in an equiatomic high-entropy alloy Sc–V–Ti–Hf–Nb. Appl Phys Lett 124, (2024).
50. Jangid, S. et al. High critical field superconductivity in a 3d dominated lightweight equiatomic high entropy alloy. (2025).
51. Sharma, S. et al. Evidence for conventional superconductivity in <math> <msub> <mi>Bi</mi> <mn>2</mn> </msub> <mi mathvariant="normal">PdPt</mi> </math> and prediction of possible topological superconductivity in disorder-free <math> <mrow> <mi>γ</mi> <mtext>−</mtext> <mi>BiPd</mi> </mrow> </math>. Phys Rev B 109, 224509 (2024).
52. Landaeta, J. F. et al. Evidence for vertical line nodes in <math> <msub> <mi mathvariant="normal">Sr</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">RuO</mi> <mn>4</mn> </msub> </math> from nonlocal electrodynamics. Phys Rev B 110, L100503 (2024).
53. Sun, Y. et al. Specific Heat and Upper Critical Field of Sc 5 Ir 4 Si 10 Superconductor. J Physical Soc Japan 82, 074713 (2013).
54. Perkins, G. K. et al. Superconducting critical fields and anisotropy of a MgB2 single crystal. Supercond Sci Technol 15, 330 (2002).
55. Arima, H. et al. Direct Observation of Vortices and Antivortices Generation in Phase-Separated Superconductor Sn-Pb Solder. (2025).
56. Landaeta, J. F. et al. Conventional type-II superconductivity in locally noncentrosymmetric <math> <msub> <mi mathvariant="normal">LaRh</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">As</mi> <mn>2</mn> </msub> </math> single crystals. Phys Rev B 106, 014506 (2022).
57. Watanabe, Y., Miura, A., Moriyoshi, C., Yamashita, A. & Mizuguchi, Y. Observation of superconductivity and enhanced upper critical field of η-carbide-type oxide Zr4Pd2O. Sci Rep 13, 22458 (2023).
58. Ma, K. et al. Superconductivity with High Upper Critical Field in the Cubic Centrosymmetric η-Carbide Nb 4 Rh 2 C 1−δ. ACS Materials Au 1, 55–61 (2021).
59. Michor, H. et al. Superconductivity in layered YB 2 C 2. J Phys Conf Ser 150, 052160 (2009).
60. Anand, V. K. et al. Physical properties of noncentrosymmetric superconductor <math> <msub> <mrow> <mi mathvariant="normal">LaIrSi</mi> </mrow> <mn>3</mn> </msub> </math> : A <math> <mi>μ</mi> </math> SR study. Phys Rev B 90, 014513 (2014).
61. Chajewski, G., Szymański, D., Daszkiewicz, M. & Kaczorowski, D. Horizontal flux growth as an efficient preparation method of CeRh 2 As 2 single crystals. Mater Horiz 11, 855–861 (2024).
62. Li, L. et al. Large upper critical fields and strong coupling superconductivity in the medium-entropy alloy (Ti1/3Hf1/3Ta1/3)1-xNbx. (2025).
63. Du, F. et al. Tunneling Spectroscopy at Megabar Pressures: Determination of the Superconducting Gap in Sulfur. Phys Rev Lett 133, 036002 (2024).
64. Takahashi, H. et al. Superconductivity in a ferroelectric-like topological semimetal SrAuBi. NPJ Quantum Mater 8, 77 (2023).
65. Sundar, S., Chattopadhyay, M. K., Chandra, L. S. S., Rawat, R. & Roy, S. B. Vortex–glass transformation within the surface superconducting state of β-phase Mo(1-x)Rex alloys. Supercond Sci Technol 30, 025003 (2017).
66. Liu, Y. et al. Superconductivity under pressure in a chromium-based kagome metal. Nature 632, 1032–1037 (2024).
67. Zeng, S. W. et al. Observation of perfect diamagnetism and interfacial effect on the electronic structures in infinite layer Nd0.8Sr0.2NiO2 superconductors. Nat Commun 13, 743 (2022).
68. Wang, J. et al. Superconductivity in an Orbital‐Reoriented SnAs Square Lattice: A Case Study of Li 0.6 Sn 2 As 2 and NaSnAs. Angewandte Chemie International Edition 62, (2023).
69. Zhou, N. et al. Disorder-robust high-field superconducting phase of FeSe single crystals. Phys Rev B 104, L140504 (2021).
70. Chow, L. E. et al. Pauli-limit violation in lanthanide infinite-layer nickelate superconductors. (2022).
71. Lee, Y. et al. Synthesis of superconducting freestanding infinite-layer nickelate heterostructures on the millimetre scale. Nature Synthesis (2025) doi:10.1038/s44160-024-00714-2.
72. Ekin, J. W. Experimental Techniques for Low-Temperature Measurements. (Oxford University Press, Oxford, UK, 2006).
73. Talantsev, E. F. & Tallon, J. L. Universal self-field critical current for thin-film superconductors. Nat Commun 6, 7820 (2015).
74. Crump, W. P. & Talantsev, E. F. Software for fitting self-field critical current data. Preprint at (2016).
75. Gross-Alltag, F., Chandrasekhar, B. S., Einzel, D., Hirschfeld, P. J. & Andres, K. London field penetration in heavy fermion superconductors. Zeitschrift f�r Physik B Condensed Matter 82, 243–255 (1991).
76. Gross, F. et al. Anomalous temperature dependence of the magnetic field penetration depth in superconducting UBe13. Zeitschrift f�r Physik B Condensed Matter 64, 175–188 (1986).
77. Talantsev, E., Crump, W. P. & Tallon, J. L. Thermodynamic Parameters of Single- or Multi-Band Superconductors Derived from Self-Field Critical Currents. Ann Phys 529, 1–18 (2017).
78. Talantsev, E. F., Crump, W. P. & Tallon, J. L. Universal scaling of the self-field critical current in superconductors: from sub-nanometre to millimetre size. Sci Rep 7, 10010 (2017).
79. Prohammer, M. & Carbotte, J. P. London penetration depth of d -wave superconductors. Phys Rev B 43, 5370–5374 (1991).
80. Talantsev, E. F. et al. p-wave superconductivity in iron-based superconductors. Sci Rep 9, 14245 (2019).
81. Won, H. & Maki, K. d -wave superconductor as a model of high- <math display="inline"> <mrow> <msub> <mrow> <mi mathvariant="italic">T</mi> </mrow> <mrow> <mi mathvariant="italic">c</mi> </mrow> </msub> </mrow> </math> superconductors. Phys Rev B 49, 1397–1402 (1994).
82. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Physical Review 108, 1175–1204 (1957).
83. Talantsev, E. F. et al. On the origin of critical temperature enhancement in atomically thin superconductors. 2d Mater 4, (2017).
84. Carrington, A. & Manzano, F. Magnetic penetration depth of MgB2. Physica C Supercond 385, 205–214 (2003).
85. Canfield, P. C., Bud’ko, S. L. & Finnemore, D. K. An overview of the basic physical properties of MgB2. Physica C Supercond 385, 1–7 (2003).
86. Buzea, C. & Yamashita, T. Review of the superconducting properties of MgB 2. Supercond Sci Technol 14, R115–R146 (2001).
87. Talantsev, E. F. Solving mystery with the Meissner state in La3Ni2O7-δ. Superconductivity: Fundamental and Applied Research 65–76 (2024) doi:10.62539/2949-5644-2024-0-3-65-76.
88. Talantsev, E. F., Mataira, R. C. & Crump, W. P. Classifying superconductivity in Moiré graphene superlattices. Sci Rep 10, 212 (2020).
89. Talantsev. Classifying Induced Superconductivity in Atomically Thin Dirac-Cone Materials. Condens Matter 4, 83 (2019).
90. Gumeniuk, R., Levytskyi, V., Kundys, B. & Leithe-Jasper, A. Yb3Rh4Sn13: Two-gap superconductor with a complex Fermi surface. Phys Rev B 108, 214515 (2023).
91. Wimbush, S. C. & Strickland, N. M. A Public Database of High-Temperature Superconductor Critical Current Data. IEEE Transactions on Applied Superconductivity 27, 1–5 (2017).
92. Lao, M. et al. High current variable temperature electrical characterization system for superconducting wires and tapes with continuous sample rotation in a split coil magnet. Review of Scientific Instruments 90, (2019).
93. Devitre, A. R. et al. A facility for cryogenic ion irradiation and in situ characterization of rare-earth barium copper oxide superconducting tapes. Review of Scientific Instruments 95, (2024).
94. Zhang, D. et al. Achieving superconductivity in infinite-layer nickelate thin films by aluminum sputtering deposition. (2024).
95. Li, J. et al. Pressure-driven right-triangle shape superconductivity in bilayer nickelate La$_3$Ni$_2$O$_7$. (2024).
96. Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579–584 (2024).
97. Zhu, Y. et al. Superconductivity in pressurized trilayer La4Ni3O10−δ single crystals. Nature 631, 531–536 (2024).
98. Yan, X. et al. Superconductivity in an ultrathin multilayer nickelate. Sci Adv 11, (2025).
99. Chen, X. et al. Non-bulk Superconductivity in Pr$_4$Ni$_3$O$_{10}$ Single Crystals Under Pressure. (2024).
100. Zhang, E. et al. Bulk superconductivity in pressurized trilayer nickelate Pr4Ni3O10 single crystals. (2025).
101. Storey, J. G. Incoherent superconductivity well above ${T}_{{\rm{c}}}$ in high-${T}_{{\rm{c}}}$ cuprates—harmonizing the spectroscopic and thermodynamic data. New J Phys 19, 073026 (2017).
102. Tallon, J. L., Storey, J. G. & Loram, J. W. Fluctuations and critical temperature reduction in cuprate superconductors. Phys Rev B 83, 092502 (2011).
103. Stewart, G. R. Superconductivity in iron compounds. Rev Mod Phys 83, 1589–1652 (2011).
104. Chiao, M. Are we there yet? Nat Phys 3, 148–150 (2007).
105. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
106. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
107. Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat Commun 12, 5075 (2021).
108. Somayazulu, M. et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys Rev Lett 122, 027001 (2019).
109. Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73–79 (2024).
110. Troyan, I. A. et al. Anomalous High‐Temperature Superconductivity in YH6. Advanced Materials 33, 2006832 (2021).
111. Semenok, D. Computational design of new superconducting materials and their targeted experimental synthesis. PhD Thesis; Skolkovo Institute of Science and Technology (2023) doi:10.13140/RG.2.2.28212.12161.
112. Minkov, V. S., Ksenofontov, V., Bud’ko, S. L., Talantsev, E. F. & Eremets, M. I. Magnetic flux trapping in hydrogen-rich high-temperature superconductors. Nat Phys 19, 1293–1300 (2023).
113. Minkov, V. S. et al. Revaluation of the lower critical field in superconducting H$_3$S and LaH$_{10}$ (Nature Comm. 13, 3194, 2022). (2024).
114. Minkov, V. S. et al. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat Commun 13, 3194 (2022).
115. Tallon, J. L. & Talantsev, E. F. Compressed H3S, superfluid density and the quest for room-temperature superconductivity. J Supercond Nov Magn 31, 619–624 (2018).