Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
About Therapeutic Action of Silver Ions: A Brief Overview
1. [1.] Alexander JW. History of the medical use of silver. Surg Infect (Larchmt). 2009;10(3): 289-292. doi: 10.1089/sur.2008.9941.
2. [2.] Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer's and Parkinson's diagnostics and treatments. Ibrain. 2023; 9(3): 298-315. doi: 10.1002/ibra.12126.
3. [3.] Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017; 7:42871 https://doi.org/10.1038/srep42871
4. [4.] Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life. 2023;13(2): 466. doi: 10.3390/life13020466.
5. [5.] More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms. 2023; 11(2):369. https://doi.org/10.3390/microorganisms11020369
6. [6.] Das B, Kumar Dash S, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, et al. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry. 2017; 10(6): 862-876. https://doi.org/10.1016/j.arabjc.2015.08.008.
7. [7.] Xu Zh, Zhang C, Wang X, Liu D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Applied Bio Materials. 2021; 4(5). 3985–3999. https://doi.org/10.1021/acsabm.0c01485
8. [8.] Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009; 43(4):1027-32. doi: 10.1016/j.watres.2008.12.002.
9. [9.] Polet M, Laloux L, Cambier S, Ziebel J, Gutleb AC, Schneider Y-J. Soluble silver ions from silver nanoparticles induce a polarised secretion of interleukin-8 in differentiated Caco-2 cells. Toxicology Letters, 2020; 325: 14-24, https://doi.org/10.1016/j.toxlet.2020.02.004.
10. [10.] Khina AG, Krutyakov YA. Similarities and Differences in the Mechanism of Antibacterial Action of Silver Ions and Nanoparticles. Appl. Biochem. Microbiol. 2021; 57: 683-693. https://doi.org/10.1134/S0003683821060053
11. [11.] More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms. 2023; 11(2): 369. doi: 10.3390/microorganisms11020369.
12. [12.] Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res. 2014; 769: 113-118. doi: 10.1016/j.mrfmmm.2014.08.001.
13. [13.] Kawata K., Osawa M., Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009; 43(15): 6046-6051. doi: 10.1021/es900754q
14. [14.] Egorova EM, Krupina NA, Kaba SI, Khlebnikova NN, Shirenova SD, Sviridkina NB, et. al. The Effect of Aqueous Solution of Silver Nanoparticles on Rat Behavior. Nanobiotechnology Reports. 2022; 17. (2): 248-260. DOI: 10.1134/S2635167622020082
15. [15.] Ninsiima HI, Eze ED, Ssekatawa K, Nalugo H, Asekenye C, Onanyang D, et al. Green tea silver nanoparticles improve physiological motor and cognitive function in BALB/c mice during inflammation. Heliyon. 2023; 9(3): e13922. doi: 10.1016/j.heliyon.2023.e13922.
16. [16.] Antsiferova A, Kopaeva M, Kashkarov P. Effects of Prolonged Silver Nanoparticle Exposure on the Contextual Cognition and Behavior of Mammals. Materials. 2018; 11(4): 558. https://doi.org/10.3390/ma11040558
17. [17.] Antsiferova AA, Kopaeva MYu, Kashkarov PK. Effects of Silver Citrate Prolonged Exposure on Behavioral and Cognitive Functions of Mice. Nanobiotechnology Reports. 2024; 19(3):437-445. DOI: 10.1134/S263516762460130X
18. [18.] Selye H. Stress without Distress. Edited by Kreps E.M. Progress Moscow: 1976 (in Russian).
19. [19.] Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J. Physiol. 2017; 595(24): 7275-7309. https://doi.org/10.1113/JP275072.
20. [20.] Flurkey K, Currer JM, Harrison DE. Mouse models in aging research,” in The Mouse in Biomedical Research (Second Edition). Edited by Fox JG, Barthold SW, Davisson MT, Newcomer CE, Quimby FW, Smith AL. Elsevier. New York: 2007; 3:637-672. doi:10.1016/b978-012369454-6/50074-1
21. [21.] Petritskaya EN, Rogatkin DA, Rusanova EV. Comparative characteristics of antibacterial effect of silver and nanosilver in vitro Almanac of Clinical Medicine. 2016; 44 (2): 221–226 (in Russian).
22. [22.] Dziendzikowska K, Węsierska M, Gromadzka-Ostrowska J, Wilczak J, Oczkowski M, et al. Silver Nanoparticles Impair Cognitive Functions and Modify the Hippocampal Level of Neurotransmitters in a Coating-Dependent Manner. Int. J. Mol. Sci. 2021; 22(23): 12706. https://doi.org/10.3390/ijms222312706
23. [23.] Zinicovscaia I, Ivlieva AL, Petritskaya EN, Rogatkin DA. Unexpected Reproductive Effect of Prolonged Oral Administration of Silver Nanoparticles in Laboratory Mice. Human Ecology. 2020; 10: 23-30. DOI: 10.33396/1728-0869-2020-10-23-30 (in Russian).
24. [24.] De Matteis V., Cascione M., Toma C.C., Leporatti S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials. 2018; 8(5): 319. https://doi.org/10.3390/nano8050319
25. [25.] Desai AS, Singh A, Edis Z, Haj Bloukh S, Shah P, Pandey , et al //. J Funct Biomater. 2022; 13(2): 54. doi: 10.3390/jfb13020054.
26. [26.] Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio). J Toxicol. 2011; 2012: 293784. doi: 10.1155/2012/293784.
27. [27.] Mohamed DS, Abd El-Baky RM, Sandle T, Mandour SA, Ahmed EF. Antimicrobial Activity of Silver-Treated Bacteria against other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics. 2020; 9(4): 181. doi: 10.3390/antibiotics9040181.
28. [28.] González-Garibay AS, Vallejo-Cardona AA, Villarreal-Amézquita AA, Sánchez-Hernández IM, Torres-González OR, Padilla-Camberos E. The In Vitro Cytotoxic Potential of Biosynthesized Silver Nanoparticles in MIA PaCa-2 Cells Supported with an In Silico Study. Inorganics. 2024; 12: 317. https://doi.org/10.3390/inorganics12120317
29. [29.] Khan T, Umar A, Waheed A, Saleem Khan M, Wajid M, Ullah H. Assessment of possible potential toxicity risks in albino mice exposed to amine coated silver nanoparticles. Kuwait Journal of Science. 2024; 51(2): 100172. https://doi.org/10.1016/j.kjs.2023.100172.
30. [30.] Masouleh FF, Amiri B., Mirvaghefi A, Hossein Ghafoori, Steffen S. Madsen. Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901). Environ Monit Assess. 2017; 189(9): 448. https://doi.org/10.1007/s10661-017-6156-3
31. [31.] Arab-Bafrani Z, Zabihi E, Hoseini SM, Sepehri H, Khalili M. Silver nanoparticles modify the hypothalamic–pituitary–interrenal axis and block cortisol response to an acute stress in zebrafish, Danio rerio. Toxicol Ind Health. 2022; 38(4): 201. doi: 10.1177/07482337221086128.
32. [32.] Kirmichi A. Psychosomatics. How to recognize and neutralize chronic stress. Exmo. Moscow: 2023 (in Russian).
33. [33.] Shumakova AA, Shipelin VA, Apryatin SA, Gmoshinskii IV. The Content of Essential and Toxic Microelements in the Organs of Mice of Various Lines Receiving a High-Carb High-Fat Diet and Supplemented with Quercetin. Problems of Nutrition. 2020; 89(2): 28-45. DOI: 10.24411/0042-8833-2020-10014 (in Russian).
34. [34.] Mazo VK, Gmoshinskii IV, Shirina LI. New Food Sources of Essential Antioxidant Microelements. Miklosh. Moscow: 2009 (in Russian).