Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
ГЕОМЕТРИЗИРОВАННАЯ ФИЗИКА ВАКУУМА. ЧАСТЬ 8: ИНЕРЦИОННЫЙ ЭЛЕКТРОМАГНЕТИЗМ ДВИЖУЩИХСЯ «ЧАСТИЦ»
1. [1] Батанов-Гаухман, М. (2023). Геометризованная физика вакуума. Часть I. Алгебра стигнатур. Препринт https://doi.org/10.24108/preprints-3113027 Available in English: Batanov-Gaukhman, M. (2023). Geometrized Vacuum Physics. Part I. Algebra of Stignatures. Avances en Ciencias e Ingeniería, 14 (1), 1-26, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-1-ano-2023-articulo-1/ ; and Preprints, 2023060765. https://doi.org/10.20944/preprints202306.0765.v3, and viXra:2403.0035.
2. [2] Батанов-Гаухман, М. (2023). Геометризованная физика вакуума. Часть II. Алгебра сигнатур. Preprints.ru. https://doi.org/10.24108/preprints-3113028 . Available in English: Batanov-Gaukhman, M. (2023).Geometrized Vacuum Physics. Part II. Algebra of Signatures. Avances en Ciencias e Ingeniería, 14 (1), 27-55, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-1-ano-2023-articulo-2/: and Preprints, 2023070716, https://doi.org/10.20944/preprints202307.0716.v1, and viXra:2403.0034.
3. [3] Батанов-Гаухман, М. (2023). Геометризованная физика вакуума. Часть III. Искривленная область вакуума. Preprints.ru. https://doi.org/10.24108/preprints-3113032. Available in English: Batanov-Gaukhman, M. (2023). Geometrized Vacuum Physics. Part III. Curved Vacuum Area. Avances en Ciencias e Ingeniería Vol. 14 nro 2 año 2023 Articulo 5, https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-2-ano-2023-articulo-5/; and Preprints 2023, 2023080570. https://doi.org/10.20944/preprints202308.0570.v4, and viXra:2403.0033.
4. [4] Батанов-Гаухман, М. (2024). Геометризованная физика вакуума. Часть IV. Динамика вакуумных слоев. Pre-prints.ru. https://doi.org/10.24108/preprints-3113039. Available in English: Batanov-Gaukhman, M. (2024). Ge-ometrized Vacuum Physics. Part IV: Dynamics of Vacuum Layers. Avances en Ciencias e Ingeniería Vol. 14 nro 3 año 2023 Articulo 1 https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-3-ano-2023-articulo-1/, and Preprints.org. https://doi.org/10.20944/preprints202310.1244.v3, and viXra:2403.0032.
5. [5] Батанов-Гаухман, М. (2024). Геометризированная физика вакуума. Часть 5: Стабильные вакуумные образования. Preprints.ru. https://doi.org/10.24108/preprints-3113040 . Available in English: Batanov-Gaukhman, M. (2024). Avances en Ciencias e Ingeniería Vol. 14 nro 3 año 2023 Articulo 2 https://www.executivebs.org/publishing.cl/avances-en-ciencias-e-ingenieria-vol-14-nro-3-ano-2023-articulo-2/, and viXra:2405.0002.
6. [6] Батанов-Гаухман М. (2024). Геометризированная физика вакуума. Часть 6: Иерархическая космологическая модель. PREPRINTS.RU https://doi.org/10.24108/preprints-3113086. Available in English: Batanov-Gaukhman, M. (2024) Geometrized Vacuum Physics Part 6: Hierarchical Cosmological Model, viXra:2408.0010.
7. [7] Батанов-Гаухман М. С. (2024). Геометризированная физика вакуума. Часть 7: «электрон» и «позитрон». PREPRINTS.RU, https://doi.org/10.24108/preprints-3113132. Available in English: Batanov-Gaukhman, M. (2024). Geometrized Vacuum Physics Part 7: "Electron" and "Positron", viXra:2409.0097.
8. [8] Владимиров Ю.С. (2005). Геометрофизика. – М.: Бином.
9. [9] Корн Г, Корн Т. (1984). Справочник по математике, – М.: Наука.
10. [10] Детлаф А. А., Яворский Б. М. (2014) Курс физики, – М.: Academia ISBN: 9785446804702.
11. [11] Догель В.А. (1981). Зоология беспозвоночных. – М.: Высшая школа.
12. [12] Шипов Г.И. (1998). Теория физического вакуума. Москва СТ-Центр, Россия ISBN 5 7273-0011-8. Shipov, G. (1998). The Theory of Physical Vacuum. Moscow ST-Center, Russia ISBN 5 7273-0011-8.
13. [13] Cambier, J. & Micheletti, D. (2000) Theoretical Analysis of the Electron Spiral Toroid Concept// MSE Technolo-gy Applications, Inc., Butte, Montan /NASA/CR-2000-210654.
14. [14] Chen, C.; Pakter, R.; Seward, D. (2001). Equilibrium and Stability Properties of Self-Organized Electron Spiral Toroids// Physics of Plasmas, DOI:10.1063/1.1400792, Corpus ID: 122229306.
15. [15] Consa, O. (2017). G-factor and the Helical Solenoid Electron Model. viXra:1702.0185.
16. [16] Consa, O. (2018). Helical Solenoid Model of the Electron. Progress in Physics, 14, 80-89.
17. [17] Williamson, J. and Van der Mark, M. (1997). Is the Electron a Photon with Toroidal Topology? Annales de la Fondation Louis de Broglie, v. 22, 133–146.
18. [18] Kyriakos, A. (2004). Geometrical Illustration of the Electromagnetic Representation of Dirac’s Electron Theory. ArXiv: quant-ph/0407071v1.
19. [19] Wayte, R. (2010). A Model of the Electron. Progress in Theoretical Physics.
20. [20] Osmera, P. (2012). Fractal Dimension of Electron. Proceedings of MENDEL (Conference: MENDEL 2012).
21. [21] Bowen, D. & Mulkern, R. (2015). An Electron Model Consistent with Electron-Positron Pair Production from High Energy Photons. Journal of Modern Physics, 2015, 6, 1334 -1342.