Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Уникальная адаптация к миниатюризации: полная редукция вспомогательных клеток сенсилл у имаго Megaphragma viggianii (Hymenoptera, Trichogrammatidae)
1. Bang, A. G., & Posakony, J. W. (1992). The Drosophila gene Hairless encodes a novel basic protein that controls alternative cell fates m adult sensory organ development.
2. Berger, D. R., Seung, H. S., & Lichtman, J. W. (2018). VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Frontiers in Neural Circuits, 12, 88. https://doi.org/10.3389/FNCIR.2018.00088
3. Blöchl, R., & Selzer, R. (1988). Embryogenesis of the connective chordotonal organ in the pedicel of the American cockroach: Cell lineage and morphological differentiation. Cell and Tissue Research, 252(3), 669–678. https://doi.org/10.1007/BF00216655
4. Chiappini, E., Solinas, C., & Solinas, M. (2001). Antennal sensilla of Anagrus atomus (L.) (Hymenoptera: Mymaridae) female and their possible behavioural significance. Entomologica, 35, 51–76.
5. Diakova, A. V., Makarova, A. A., Pang, S., Xu, C. S., Hess, H., & Polilov, A. A. (2022). The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-24390-4
6. Diakova, A. V., Makarova, A. A., & Polilov, A. A. (2018). Between extreme simplification and ideal optimization: antennal sensilla morphology of miniaturized Megaphragma wasps (Hymenoptera: Trichogrammatidae). PeerJ, 6, e6005. https://doi.org/10.7717/peerj.6005
7. Hartenstein, V. (2005). Development of Insect Sensilla. In L. I. Gilbert (Ed.), Comprehensive Molecular Insect Science (pp. 379–419). Elsevier. https://doi.org/10.1016/B0-44-451924-6/00012-0
8. Kuhbandner, B. (1985). Ultrastructure and ontogeny of the double-walled sensilla on the funicle of Calliphora erythrocephala Meigen (Diptera : Calliphoridae). International Journal of Insect Morphology and Embryology, 14(4), 227–242. https://doi.org/10.1016/0020-7322(85)90056-X
9. Makarova, A. A., Veko, E. N., & Polilov, A. A. (2022). Metamorphosis and denucleation of the brain in the miniature wasp Megaphragma viggianii (Hymenoptera: Trichogrammatidae). Arthropod Structure and Development, 70. https://doi.org/10.1016/j.asd.2022.101200
10. Polilov, A. A., Makarova, A. A., Pang, S., Shan Xu, C., & Hess, H. (2021). Protocol for preparation of heterogeneous biological samples for 3D electron microscopy: a case study for insects. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-83936-0
11. Shanbhag, S. R., Müller, B., & Steinbrecht, R. A. (2000). Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Structure and Development, 29(3), 211–229. https://doi.org/10.1016/S1467-8039(00)00028-1
12. Urbanek, A., & Kapusta, M. (2016). Atypical mechanoreceptors in larvae of biting midges Forcipomyia nigra (Diptera: Ceratopogonidae). Micron, 88, 68–76. https://doi.org/10.1016/j.micron.2016.06.006
13. Xu, C. S., Hayworth, K. J., Lu, Z., Grob, P., Hassan, A. M., García-Cerdán, J. G., Niyogi, K. K., Nogales, E., Weinberg, R. J., & Hess, H. F. (2017). Enhanced FIB-SEM systems for large-volume 3D imaging. ELife, 6. https://doi.org/10.7554/ELIFE.25916
14. Иванов, В. П. (2000). Органы чувств насекомых и других членистоногих (ред. Орлова Г.М.) Наука.