Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Масштабирование и миниатюризация антеннальных долей и гломерул у насекомых
1. Anton, S., & Homberg, U. (1999). Antennal Lobe Structure. Insect Olfaction, 97–124. https://doi.org/10.1007/978-3-662-07911-9_5
2. Arnold, G., Masson, C., & Budharugsa, S. (1985). Comparative study of the antennal lobes and their afferent pathway in the worker bee and the drone (Apis mellifera). Cell and Tissue Research, 242(3), 593–605. https://doi.org/10.1007/BF00225425
3. Berg, B. G., Galizia, C. G., Brandt, R., & Mustaparta, H. (2002). Digital atlases of the antennal lobe in two species of tobacco budworm moths, the oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female). Journal of Comparative Neurology, 446(2), 123–134. https://doi.org/10.1002/cne.10180
4. Berger, D. R., Seung, H. S., & Lichtman, J. W. (2018). VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Frontiers in Neural Circuits, 12, 88. https://doi.org/10.3389/FNCIR.2018.00088
5. Christensen, T. A., & Hildebrand, J. G. (1987). Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 160(5), 553–569. https://doi.org/10.1007/BF00611929
6. Couto, A., Arnold, G., Ai, H., & Sandoz, J. C. (2021). Interspecific variation of antennal lobe composition among four hornet species. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-00280-z
7. Desyatirkina, I. A., Makarova, A. A., Pang, S., Xu, C. S., Hess, H., & Polilov, A. A. (2023). Multiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae). Arthropod Structure and Development, 76, 101299. https://doi.org/10.1016/j.asd.2023.101299
8. Diakova, A. V., Makarova, A. A., Pang, S., Xu, C. S., Hess, H., & Polilov, A. A. (2022). The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-24390-4
9. Diakova, A. V., Makarova, A. A., & Polilov, A. A. (2018). Between extreme simplification and ideal optimization: antennal sensilla morphology of miniaturized Megaphragma wasps (Hymenoptera: Trichogrammatidae). PeerJ, 6, e6005. https://doi.org/10.7717/peerj.6005
10. Diakova, A. V, & Polilov, A. A. (2020). Sensation of the tiniest kind : the antennal sensilla of the smallest free-living insect Scydosella musawasensis ( Coleoptera : Ptiliidae ). 17. https://doi.org/10.7717/peerj.10401
11. Diakova, A. V, & Polilov, A. A. (2021). Porous or non-porous? The challenge of studying unusual placoid sensilla of Megaphragma wasps (Hymenoptera, Trichogrammatidae) with electron microscopy. Journal of Hymenoptera Research, 84, 69–73. https://doi.org/10.3897/jhr.84.68707
12. El Jundi, B., Huetteroth, W., Kurylas, A. E., & Schachtner, J. (2009). Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. Journal of Comparative Neurology, 517(2), 210–225. https://doi.org/10.1002/cne.22150
13. Galizia, C. G., & Rössler, W. (2010). Parallel olfactory systems in insects: Anatomy and function. Annual Review of Entomology, 55, 399–420. https://doi.org/10.1146/annurev-ento-112408-085442
14. Gao, Q., Yuan, B., & Chess, A. (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nature Neuroscience, 3(8), 780–785. https://doi.org/10.1038/77680
15. Grabe, V., Strutz, A., Baschwitz, A., Hansson, B. S., & Sachse, S. (2015). Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. Journal of Comparative Neurology, 523(3), 530–544. https://doi.org/10.1002/cne.23697
16. Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M. C., & Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature, 458(7235), 165–171. https://doi.org/10.1038/nature07810
17. Kazawa, T., Namiki, S., Fukushima, R., Terada, M., Soo, K., & Kanzaki, R. (2009). Constancy and variability of glomerular organization in the antennal lobe of the silkmoth. Cell and Tissue Research, 336(1), 119–136. https://doi.org/10.1007/s00441-009-0756-3
18. Kelber, C., Rössler, W., & Kleineidam, C. J. (2010). Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri). Developmental Neurobiology, 70(4), 222–234. https://doi.org/10.1002/dneu.20782
19. Kleineidam, C. J., Obermayer, M., Halbich, W., & Rössler, W. (2005). A macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance. Chemical Senses, 30(5), 383–392. https://doi.org/10.1093/chemse/bji033
20. Kristoffersen, L., Hansson, B. S., Anderbrant, O., & Larsson, M. C. (2008). Aglomerular hemipteran antennal lobes - Basic neuroanatomy of a small nose. Chemical Senses, 33(9), 771–778. https://doi.org/10.1093/chemse/bjn044
21. Laissue, P. P., Reiter, C., Hiesinger, P. R., Halter, S., Fischbach, K. F., & Stocker, R. F. (1999). Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. Journal of Comparative Neurology, 405(4), 543–552. https://doi.org/10.1002/(SICI)1096-9861(19990322)405:4<543::AID-CNE7>3.0.CO;2-A
22. Makarova, A. A., Diakova, A. A., Chaika, S. Y., & Polilov, A. A. (2022a). Scaling of the Sense Organs of Insects. 1. Introduction. Compound Eyes. Entomological Review, 102(2), 161–181. https://doi.org/10.1134/S0013873822020026
23. Makarova, A. A., Diakova, A. A., Chaika, S. Y., & Polilov, A. A. (2022b). Scaling of the Sense Organs of Insects. 2. Sensilla. Discussion. Conclusion. Entomological Review, 102(3), 323–346. https://doi.org/10.1134/S0013873822030058
24. Makarova, A. A., Meyer-Rochow, V. B., & Polilov, A. A. (2019). Morphology and scaling of compound eyes in the smallest beetles (Coleoptera: Ptiliidae). Arthropod Structure and Development, 48, 83–97. https://doi.org/10.1016/j.asd.2019.01.001
25. Makarova, A. A., Veko, E. N., & Polilov, A. A. (2022). Metamorphosis and denucleation of the brain in the miniature wasp Megaphragma viggianii (Hymenoptera: Trichogrammatidae). Arthropod Structure and Development, 70. https://doi.org/10.1016/j.asd.2022.101200
26. Makarova, A., Polilov, A., & Fischer, S. (2015). Comparative morphological analysis of compound eye miniaturization in minute hymenoptera. Arthropod Structure and Development, 44(1), 21–32. https://doi.org/10.1016/j.asd.2014.11.001
27. Mares, S., Ash, L., & Gronenberg, W. (2005). Brain allometry in bumblebee and honey bee workers. Brain, Behavior and Evolution, 66(1), 50–61. https://doi.org/10.1159/000085047
28. Mitchell, R. F., Hall, L. P., Reagel, P. F., McKenna, D. D., Baker, T. C., & Hildebrand, J. G. (2017). Odorant receptors and antennal lobe morphology offer a new approach to understanding olfaction in the Asian longhorned beetle. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 203(2), 99–109. https://doi.org/10.1007/s00359-016-1138-4
29. Mockford, E. L. (1997). A new species of Dicopomorpha (hymenoptera: mymaridae) with diminutive, apterous males. Annals of the Entomological Society of America, 90(2), 115–120. https://doi.org/10.1093/aesa/90.2.115
30. O’Donnell, S., & Bulova, S. (2017). Development and evolution of brain allometry in wasps (Vespidae): size, ecology and sociality. Current Opinion in Insect Science, 22, 54–61. https://doi.org/10.1016/j.cois.2017.05.014
31. Polilov, A. A. (2015). Small Is Beautiful: Features of the Smallest Insects and Limits to Miniaturization. Annual Review of Entomology, 60(1), 103–121. https://doi.org/10.1146/annurev-ento-010814-020924
32. Polilov, A. A., Makarova, A. A., Pang, S., Shan Xu, C., & Hess, H. (2021). Protocol for preparation of heterogeneous biological samples for 3D electron microscopy: a case study for insects. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-83936-0
33. Rebora, M., Dell’Otto, A., Rybak, J., Piersanti, S., Gaino, E., & Hansson, B. S. (2013). The antennal lobe of Libellula depressa (Odonata, Libellulidae). Zoology, 116(4), 205–214. https://doi.org/10.1016/j.zool.2013.04.001
34. Robertson, H. M., & Wanner, K. W. (2006). The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Research, 16(11), 1395–1403. https://doi.org/10.1101/gr.5057506
35. Roselino, A. C., Hrncir, M., Landim, C. da C., Giurfa, M., & Sandoz, J.-C. (2015). Sexual dimorphism and phenotypic plasticity in the antennal lobe of a stingless bee Melipona scutellaris. Journal of Comparative Neurology, 523(10), 1461–1473. https://doi.org/10.1002/cne
36. Rospars, J. P. (1988). Structure and development of the insect antennodeutocerebral system. International Journal of Insect Morphology and Embryology, 17(3), 243–294. https://doi.org/10.1016/0020-7322(88)90041-4
37. Rospars, J. P., & Hildebrand, J. G. (1992). Anatomical identification of glomeruli in the antennal lobes of the male sphinx moth Manduca sexta. Cell & Tissue Research, 270(2), 205–227. https://doi.org/10.1007/BF00328007
38. Schachtner, J., Schmidt, M., & Homberg, U. (2005). Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Structure and Development, 34(3), 257–299. https://doi.org/10.1016/j.asd.2005.04.003
39. Shankar, S., & McMeniman, C. J. (2020). An updated antennal lobe atlas for the yellow fever mosquito aedes aegypti. In PLoS Neglected Tropical Diseases (Vol. 14, Issue 10). https://doi.org/10.1371/journal.pntd.0008729
40. Smid, H. M., Bleeker, M. A. K., Van Loon, J. J. A., & Vet, L. E. M. (2003). Three-dimensional organization of the glomeruli in the antennal lobe of the parasitoid wasps Cotesia glomerata and C. rubecula. Cell and Tissue Research, 312(2), 237–248. https://doi.org/10.1007/s00441-002-0659-z
41. van der Woude, E., & Smid, H. M. (2016). How to escape from Haller’s rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps. Journal of Comparative Neurology, 524(9), 1876–1891. https://doi.org/10.1002/cne.23927
42. Vosshall, L. B., Wong, A. M., & Axel R. (2000). An Olfactory Sensory Map in the Fly Brain. Cell, 102, 147–159.
43. Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3(2), 257–259. https://doi.org/10.1111/j.2041-210X.2011.00153.x
44. Winnington, A. P., Napper, K. M., & Mercer, A. R. (1996). Structural Plasticity of Identified Glomeruli in the Antennal Lobes of the Adult Worker Honey Bee. In THE JOURNAL OF COMPARATIVE NEUROLOGY (Vol. 365).
45. Xu, C. S., Hayworth, K. J., Lu, Z., Grob, P., Hassan, A. M., García-Cerdán, J. G., Niyogi, K. K., Nogales, E., Weinberg, R. J., & Hess, H. F. (2017). Enhanced FIB-SEM systems for large-volume 3D imaging. ELife, 6. https://doi.org/10.7554/ELIFE.25916
46. Макарова, А. А. (2013). Особенности организации центральной нервной системы насекомых, обусловленные миниатюризацией [МГУ]. https://istina.msu.ru/dissertations/5548658/