Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
МАГИЯ управления данными: понимание ценности и деятельности по управлению данными
1. Abraham, R. et al.: Data governance: A conceptual framework, structured review, and research agenda. International journal of information management. 49, 424–438 (2019).
2. Ballou, D.P., Pazer, H.L.: Designing Information Systems to Optimize the Accuracy-timeliness Tradeoff. Information Systems Research. 6, 1, 51 (1995).
3. Bugiotti, F. et al.: Database design for NoSQL systems. Presented at the International Conference on Conceptual Modeling (2014).
4. Burton-Jones, A. et al.: Assessing representation theory with a framework for pursuing success and failure. MIS Quarterly. 41, 4, 1307–1333 (2017).
5. Burton-Jones, A. et al.: Guidelines for Empirical Evaluations of Conceptual Modeling Grammars. Journal of the Association for Information Systems. 10, 6, 495–532 (2009).
6. Castellanos, A. et al.: Basic Classes in Conceptual Modeling: Theory and Practical Guidelines. Journal of the Association for Information Systems. 21, 4, 1001–1044 (2020).
7. Castellanos, A. et al.: Improving machine learning performance using conceptual modeling. In: AAAI Symposium on Combining Machine Learning and Knowledge Engineering in Practice. pp. 1–4 , Stanford, CA (2021).
8. Chen, P.: The entity-relationship model - toward a unified view of data. ACM Transactions on Database Systems. 1, 1, 9–36 (1976).
9. Chua, C.E.H. et al.: Data Management. MISQ Quarterly Online. 1–10 (2022).
10. Clegg, B.: The God effect: Quantum entanglement, science’s strangest phenomenon. Macmillan, London, UK (2006).
11. Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM. 13, 6, 377–387 (1970).
12. Compagnucci, I. et al.: Trends on the Usage of BPMN 2.0 from Publicly Available Repositories. Presented at the International Conference on Business Informatics Research (2021).
13. Couger, J.D., Knapp, R.W. eds: System analysis techniques. John Wiley & Sons, New York NY (1974).
14. DAMA et al.: DAMA-DMBOK: Data Management Body of Knowledge. Technics Publications, Sedona, AZ (2017).
15. Davenport, T.H.: Competing on analytics. harvard business review. 84, 1, 98–108 (2006).
16. Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning. Cambridge University Press, Cambridge, UK (2020).
17. Filippouli, E.: AI: The Pinnacle of our Ingenuity, https://www.globalthinkersforum.org/news-and-resources/news/ai-the-pinnacle-of-our-ingenuity, last accessed 2022/09/28.
18. Gill: Whoever leads in artificial intelligence in 2030 will rule the world until 2100, https://www.brookings.edu/blog/future-development/2020/01/17/whoever-leads-in-artificial-intelligence-in-2030-will-rule-the-world-until-2100/, last accessed 2021/09/25.
19. Gopalan, R.: The Cloud Data Lake. OReilly Media, Inc, Sebastopol, CA (2022).
20. Gorelik, A.: The enterprise big data lake: Delivering the promise of big data and data science. O’Reilly Media (2019).
21. Guizzardi, G., Proper, H.A.: On Understanding the Value of Domain Modeling. In: Proceedings of 15th International Workshop on Value Modelling and Business Ontologies (VMBO 2021). (2021).
22. Harrison, G.: Next Generation Databases: NoSQL, NewSQL, and Big Data. Apress, New York, NY, USA (2015).
23. Hewasinghage, M. et al.: Modeling strategies for storing data in distributed heterogeneous NoSQL databases. Presented at the International Conference on Conceptual Modeling (2018).
24. Hvalshagen, M. et al.: Empowering Users with Narratives: Examining The Efficacy Of Narratives For Understanding Data-Oriented Conceptual Models. Information Systems Research. 34, 3, 890–909 (2023).
25. Inmon, B., Srivastava, R.: Rise of the Data Lakehouse. Technics Publications, New York NY (2023).
26. Inmon, W.H. et al.: DW 2.0: The architecture for the next generation of data warehousing. Elsevier, New York NY (2010).
27. Jacobson, I. et al.: The unified software development process. Addison-Wesley, Reading MA (1999).
28. Ji, Z. et al.: Survey of hallucination in natural language generation. ACM Computing Surveys. 55, 12, 1–38 (2023).
29. Kent, W.: Data and reality: basic assumptions in data processing reconsidered. North-Holland Pub. Co., Amsterdam, Netherlands (1978).
30. Klimbie, J.W., Koffeman, K.L.: Data Base Management: Proceedings of the IFIP Working Conference on Data Base Management. North-Holland, London (1974).
31. Lango, L.: The Revolutionary Tech Supercharging Gains In the Age of AI, https://investorplace.com/hypergrowthinvesting/2024/01/putting-ai-on-the-fast-track-to-sure-fire-success/, last accessed 2024/07/27.
32. Lee, Y.W. et al.: AIMQ: A methodology for information quality assessment. Information & Management. 40, 2, 133–146 (2002).
33. Lukyanenko, R. et al.: Expecting the Unexpected: Effects of Data Collection Design Choices on the Quality of Crowdsourced User-generated Content. MISQ. 43, 2, 634–647 (2019).
34. Lukyanenko, R. et al.: Inclusive Conceptual Modeling: Diversity, Equity, Involvement, and Belonging in Conceptual Modeling. In: ER Forum 2023. pp. 1–4 Springer, Lisbon, Portugal (2023).
35. Lukyanenko, R. et al.: Principles of universal conceptual modeling. In: EMMSAD 2023. pp. 1–15 Springer, Saragosa, Spain (2023).
36. Lukyanenko, R. et al.: System: A Core Conceptual Modeling Construct for Capturing Complexity. Data & Knowledge Engineering. 141, 1–29 (2022).
37. Lukyanenko, R. et al.: The IQ of the Crowd: Understanding and Improving Information Quality in Structured User-generated Content. Information Systems Research. 25, 4, 669–689 (2014).
38. Lukyanenko, R., Parsons, J.: Design Theory Indeterminacy: What is it, how can it be reduced, and why did the polar bear drown? Journal of the Association for Information Systems. 21, 5, 1–30 (2020).
39. McDaniel, M., Storey, V.C.: Evaluating Domain Ontologies: Clarification, Classification, and Challenges. ACM Computing Surveys. 53, 1, 1–40 (2019).
40. Norman, D.A.: The design of everyday things. Bsic Books, New York, NY (2002).
41. Olivé, A.: Conceptual modeling of information systems. Springer Science & Business Media, Berlin, Germany (2007).
42. Oracle Inc: What is Data Management?, https://www.oracle.com/database/what-is-data-management/, last accessed 2024/07/28.
43. Rao, A.S., Verweij, G.: Sizing the prize: What’s the real value of AI for your business and how can you capitalise, (2017).
44. Recker, J. et al.: From Representation to Mediation: A New Agenda for Conceptual Modeling Research in A Digital World. MIS Quarterly. 45, 1, 269–300 (2021).
45. Recker, J.: Toward a design theory for green information systems. Presented at the System Sciences (HICSS), 2016 49th Hawaii International Conference on (2016).
46. Rodriguez, J.: Some AI Lessons from Watson’s Failure at MD Anderson, https://jrodthoughts.medium.com/some-ai-lessons-from-watsons-failure-at-md-anderson-9b895cf70840, last accessed 2024/07/28.
47. Sadalage, P.J., Fowler, M.: NoSQL distilled: a brief guide to the emerging world of polyglot persistence. Pearson Education, New York NY (2013).
48. Sambasivan, N. et al.: “Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI. Presented at the proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (2021).
49. SAP: What is data management? | Definition, importance, & processes, https://www.sap.com/products/technology-platform/what-is-data-management.html, last accessed 2024/07/28.
50. Shneiderman, B.: Designing the user interface. Pearson Education, Boston, MA (2003).
51. Storey, V.C. et al.: Conceptual Modeling: Topics, Themes, and Technology Trends. ACM Computing Surveys. 55, 14s, 1–38 (2023).
52. Storey, V.C. et al.: Explainable AI: Opening the Black Box or Pandora’s Box? Communications of the ACM. 1–6 (2022).
53. Strengholt, P.: Data Management at scale. O’Reilly Media, Inc, New York (2020).
54. Strong, D.M. et al.: Data quality in context. Communications of the ACM. 40, 5, 103–110 (1997).
55. Tableau: What Is Data Management? Importance & Challenges | Tableau, https://www.tableau.com/learn/articles/what-is-data-management, last accessed 2024/07/28.
56. Tang, Z. et al.: A self-adaptive Bell–LaPadula model based on model training with historical access logs. IEEE Transactions on Information Forensics and Security. 13, 8, 2047–2061 (2018).
57. Thalheim, B.: Modelology—The New Science, Life and Practice Discipline. In: Information Modelling and Knowledge Bases XXXV. pp. 1–19 IOS Press, Netherlands (2024).
58. Timonera, K.: What is Data Management? A Guide to Systems, Processes, and Tools, https://www.datamation.com/big-data/what-is-data-management/, last accessed 2024/07/28.
59. Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis and design grammars. Information Systems Journal. 3, 4, 217–237 (1993).
60. Wang, R.Y. et al.: A framework for analysis of data quality research. Knowledge and Data Engineering, IEEE Transactions on. 7, 4, 623–640 (1995).
61. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems. 12, 4, 5–33 (1996).
62. Zarraga-Rodriguez, M., Alvarez, M.J.: Experience: information dimensions affecting employees’ perceptions towards being well informed. Journal of Data and Information Quality (JDIQ). 6, 2–3, 1–14 (2015).