ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
В эпоху информационных технологий управление данными — основа информационных технологий — остается трудоемким, неэффективным, в значительной степени недоступным, далеким от своего потенциала. Средства для значительного скачка вперед в управлении данными уже здесь. Стремительное развитие искусственного интеллекта представляет собой возможность смены парадигмы в цифровом хранении и управлении данными. В этой статье рассматривается, как системы агентного (искусственного интеллектa) ИИ могут революционизировать способы хранения, организации и извлечения данных организациями и людьми. Мы предлагаем ИИ для управления всеми потребностями людей в хранении и извлечении данных. Используя передовые возможности машинного обучения и автономного принятия решений, управление данными на основе ИИ обещает превратить управление данными из неэффективного, требующего много времени процесса в интеллектуальную персонализированную услугу, доступную каждому.
Лукьяненко Р. 2025. Искусственный интеллект для управления всеми человеческими данными. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113532
1. Aaltonen, A. et al.: What is Missing from Research on Data in Information Systems? Insights from the Inaugural Workshop on Data Research. Communications of the Association for Information Systems. 53, 1, 17 (2023).
2. Aaltonen, A., Stelmaszak, M.: Data Innovation Lens: A New Way to Approach Data Design as Value Creation. Available at SSRN 4574855. (2024).
3. Abbasi, A. et al.: Text Analytics to Support Sense-Making in Social Media: A Language-Action Perspective. MIS Quarterly. 42, 2, 1–38 (2018).
4. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access. 6, 52138–52160 (2018).
5. Adebayo, J.A.: FairML: ToolBox for diagnosing bias in predictive modeling. (2016).
6. Agichtein, E. et al.: Finding high-quality content in social media. In: Proceedings of the international conference on Web search and web data mining. pp. 183–194 ACM, Palo Alto, California, USA (2008).
7. Alaimo, C., Kallinikos, J.: Data rules: Reinventing the market economy. MIT Press, Cambridge, MA (2024).
8. Alavi, M. et al.: A Knowledge Management Perspective of Generative Artificial Intelligence. Journal of the Association for Information Systems. 25, 1, 1–12 (2024).
9. Anderson, J.R.: Cognitive psychology and its implications. WH Freeman/Times Books/Henry Holt & Co (1985).
10. Arazy, O. et al.: A theory-driven design framework for social recommender systems. Journal of the Association for Information Systems. 11, 9, 455–490 (2010).
11. Archambault, A. et al.: A natural bias for the basic level? Twenty-Second Annual Conference of the Cognitive Science Society. 585-590 1075 (2000).
12. Arora, L. et al.: A comprehensive review on NUI, multi-sensory interfaces and UX design for applications and devices for visually impaired users. Frontiers in Public Health. 12, 1357160 (2024).
13. Arrieta, A.B. et al.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. 58, 82–115 (2020).
14. Baird, A., Maruping, L.M.: The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS quarterly. 45, 1, (2021).
15. Barad, K.: Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Duke University Press, Durham, North Carolina (2007).
16. Batini, C., Scannapieca, M.: Data quality: concepts, methodologies and techniques. Springer (2006).
17. Beck, K. et al.: Manifesto for agile software development. Agile Alliance. (2001).
18. Benali-Khoudja, M. et al.: Tactile interfaces: a state-of-the-art survey. Presented at the Int. symposium on robotics (2004).
19. Bender, E.M. et al.: On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Presented at the Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (2021).
20. Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature. 549, 7671, 188–194 (2017).
21. von Bertalanffy, L.: General system theory: Foundations, development, applications. Braziller, New York. (1968).
22. Bhuyan, B.P. et al.: Neuro-symbolic artificial intelligence: a survey. Neural Computing and Applications. 36, 21, 12809–12844 (2024).
23. Bird, T.J. et al.: Statistical solutions for error and bias in global citizen science datasets. Biological Conservation. 173, 144–154 (2014).
24. Bolhuis, J.J. et al.: Three reasons why AI doesn’t model human language. Nature. 627, 8004, 489–489 (2024).
25. Bonnie, E.: 110+ of the Latest Data Breach Statistics [Updated 2025], https://secureframe.com/blog/data-breach-statistics, last accessed 2025/04/01.
26. Borenstein, J., Howard, A.: Emerging challenges in AI and the need for AI ethics education. AI and Ethics. 1, 1, 61–65 (2021).
27. Borisov, V. et al.: Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning Systems. (2022).
28. Bornet, P. et al.: Agentic Artificial Intelligence: Harnessing AI Agents to Reinvent Business, Work and Life. Irreplaceable Publishing, NA (2025).
29. Bostrom, N.: How long before superintelligence? International Journal of Futures Studies. 2, 1, 1–9 (1998).
30. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University Press, Oxford, England (2014).
31. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: Artificial intelligence safety and security. pp. 57–69 Chapman and Hall/CRC (2018).
32. Brewer, M.B.: In-group bias in the minimal intergroup situation: A cognitive-motivational analysis. Psychological Bulletin. 86, 2, 307–324 (1979).
33. Briney, K.: Data Management for Researchers: Organize, maintain and share your data for research success. Pelagic Publishing Ltd, Exeter, UK (2015).
34. Buchanan, J. et al.: ChatGPT Hallucinates Non-existent Citations: Evidence from Economics. The American Economist. 69, 1, 80–87 (2024).
35. Buranyi, S.: Rise of the racist robots–how AI is learning all our worst impulses. The Guardian. August. 8, (2017).
36. Burton-Jones, A., Volkoff, O.: How can we develop contextualized theories of effective use? A demonstration in the context of community-care electronic health records. Information Systems Research. 28, 3, 468–489 (2017).
37. Byrne, E. et al.: Cyberbullying and social media: Information and interventions for school nurses working with victims, students, and families. The Journal of School Nursing. 34, 1, 38–50 (2018).
38. Cabral, J.: Is generation Y addicted to social media? The Elon Journal of Undergraduate Research in Communications. 2, 1, 5–14 (2011).
39. Cambria, E. et al.: Xai meets llms: A survey of the relation between explainable ai and large language models. arXiv preprint arXiv:2407.15248. (2024).
40. Cao, Y. et al.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics. 9, 1, 427–438 (2012).
41. Castellanos, A. et al.: Basic Classes in Conceptual Modeling: Theory and Practical Guidelines. Journal of the Association for Information Systems. 21, 4, 1001–1044 (2020).
42. Castellanos, A. et al.: Understanding Benefits and Limitations of Unstructured Data Collection for Repurposing Organizational Data. In: Wrycza, S. and Maślankowski, J. (eds.) Information Systems: Research, Development, Applications, Education: 10th SIGSAND/PLAIS EuroSymposium 2017, Gdansk, Poland, September 22, 2017, Proceedings. pp. 13–24 Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66996-0_2.
43. Chandra Kruse, L. et al.: Making Use of Design Principles. In: LNCS 9661. pp. 37–51 Springer, Berlin / Heidelberg (2016).
44. Chandra Kruse, L., Seidel, S.: Tensions in Design Principle Formulation and Reuse. In: DESRIST 2017. (2017).
45. Chang, Y. et al.: A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology. (2023).
46. Chen, H. et al.: Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly. 36, 4, 1165–1188 (2012).
47. Chipidza, W. et al.: Quantum Computing and IS-Harnessing the Opportunities of Emerging Technologies. Communications of the Association for Information Systems. 52, 1, 7 (2023).
48. Chomsky, N. et al.: Opinion | Noam Chomsky: The False Promise of ChatGPT, https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html, (2023).
49. Chua, C.E.H. et al.: Data Management. MIS Quarterly Online. 1–10 (2022).
50. Church, R.M.: The effective use of secondary data. Learning and motivation. 33, 1, 32–45 (2002).
51. Combi, C. et al.: A modular approach to the specification and management of time duration constraints in BPMN. Information Systems. 84, 111–144 (2019).
52. Cooper, C.: Citizen science: How ordinary people are changing the face of discovery. Abrams, New York NY (2016).
53. DAMA et al.: DAMA-DMBOK: Data Management Body of Knowledge. Technics Publications, Sedona, AZ (2024).
54. Davenport, T. et al.: How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science. 48, 24–42 (2020).
55. Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning. Cambridge University Press, Cambridge, UK (2020).
56. Eriksson, O. et al.: The case for classes and instances-a response to representing instances: the case for reengineering conceptual modelling grammars. European Journal of Information Systems. 28, 6, 681–693 (2019).
57. Faniel, I.M., Zimmerman, A.: Beyond the data deluge: A research agenda for large-scale data sharing and reuse. International Journal of Digital Curation. 6, 1, 58–69 (2011).
58. Floridi, L., Cowls, J.: A unified framework of five principles for AI in society. In: Ethics, Governance, and Policies in Artificial Intelligence. pp. 5–17 Springer (2021).
59. Friedman, B., Nissenbaum, H.: Bias in computer systems. ACM Transactions on information systems (TOIS). 14, 3, 330–347 (1996).
60. Gabernet, A.R., Limburn, J.: Breaking the 80/20 rule: How data catalogs transform data scientists’ productivity, https://www.ibm.com/cloud/blog/ibm-data-catalog-data-scientists-productivity, last accessed 2023/01/01.
61. Garcia, M.: Racist in the machine: The disturbing implications of algorithmic bias. World Policy Journal. 33, 4, 111–117 (2016).
62. George, J.F. et al.: Countering the anchoring and adjustment bias with decision support systems. Decision Support Systems. 29, 2, 195–206 (2000).
63. Gilovich, T. et al.: Heuristics and biases: The psychology of intuitive judgment. Cambridge University Press, Cambridge, UK (2002).
64. Grande, D. et al.: Reducing data costs without sacrificing growth | McKinsey, (2020).
65. Gregor, S., Hovorka, D.: Causality: The elephant in the room in information systems epistemology. In: 19th European Conference on Information Systems. pp. 1–10 , Helsinki, Finland (2011).
66. Hagendorff, T.: The ethics of AI ethics: An evaluation of guidelines. Minds and Machines. 30, 1, 99–120 (2020).
67. Harmon, R.: Admissibility standards for scientific evidence. In: Microbial Forensics. pp. 381–392 Elsevier (2005).
68. Hevner, A. et al.: Transparency in Design Science Research. DSS. 182, 1, 1–19 (2024).
69. Horton, E.L. et al.: A review of principles in design and usability testing of tactile technology for individuals with visual impairments. Assistive technology. 29, 1, 28–36 (2017).
70. Hovorka, D.S., Germonprez, M.: Tinkering, tailoring and bricolage: Implications for theories of design. Proceedings of the 15th Americas Conference on Information Systems. (2009).
71. Hufnagel, E.M., Conca, C.: User Response Data: The Potential for Errors and Biases. Information Systems Research. 5, 1, 48–73 (1994).
72. Hvalshagen, M. et al.: Empowering Users with Narratives: Examining The Efficacy Of Narratives For Understanding Data-Oriented Conceptual Models. Information Systems Research. 34, 3, 890–909 (2023).
73. IEA: Data centres & networks, https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks, last accessed 2024/09/13.
74. Ipeirotis, P.G. et al.: Quality management on amazon mechanical turk. In: Proceedings of the ACM SIGKDD workshop on human computation. pp. 64–67 ACM (2010).
75. Ixmeier, A. et al.: Green Is Everywhere And Nowhere Should Information Systems Scholarship Engage in Sustainability? In: ECIS 2024. (2024).
76. Jennings, N.R.: Commitments and conventions: The foundation of coordination in multi-agent systems. The knowledge engineering review. 8, 3, 223–250 (1993).
77. Ji, Z. et al.: Survey of hallucination in natural language generation. ACM Computing Surveys. 55, 12, 1–38 (2023).
78. Jobin, A. et al.: The global landscape of AI ethics guidelines. Nature Machine Intelligence. 1, 9, 389–399 (2019).
79. Jussim, L. et al.: Prejudice, stereotypes, and labeling effects: Sources of bias in person perception. Journal of personality and social psychology. 68, 2, 228–246 (1995).
80. Kahneman, D.: Thinking, fast and slow. Macmillan Publishing Co., London, UK (2011).
81. Kar, A.K. et al.: How could quantum computing shape information systems research–An editorial perspective and future research directions. International Journal of Information Management. 102776 (2024).
82. Khan, A., Khusro, S.: An insight into smartphone-based assistive solutions for visually impaired and blind people: issues, challenges and opportunities. Universal Access in the Information Society. 20, 2, 265–298 (2021).
83. Kim, H.K. et al.: The interaction experiences of visually impaired people with assistive technology: A case study of smartphones. International Journal of Industrial Ergonomics. 55, 22–33 (2016).
84. Kim, H.N. et al.: Accessible haptic user interface design approach for users with visual impairments. Universal access in the information society. 13, 415–437 (2014).
85. Kitchens, B. et al.: Understanding Echo Chambers and Filter Bubbles: The Impact of Social Media on Diversification and Partisan Shifts in News Consumption. MIS Quarterly. 44, 4, (2020).
86. Kurtz, J.E., Pintarelli, E.M.: The Daubert standards for admissibility of evidence based on the Personality Assessment Inventory. Psychological Injury and Law. 17, 2, 105–116 (2024).
87. Kushner, A.M., Guan, Z.: Modular design in natural and biomimetic soft materials. Angewandte Chemie International Edition. 50, 39, 9026–9057 (2011).
88. Larsen, K.R. et al.: Understanding the Elephant: The Discourse Approach to Boundary Identification and Corpus Construction for Theory Review Articles. Journal of the Association for Information Systems. 20, 7, 15 (2019).
89. Larsen, K.R. et al.: Validity in Design Science. MIS Quarterly. 1–40 (2025).
90. Larsen, K.R., Becker, D.S.: Automated Machine Learning for Business:An Introduction to Accurate, Easy, and Fast Analytics. Oxford, UK, New York NY (2020).
91. Lavie, N. et al.: Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General. 133, 3, 339 (2004).
92. Law, M.: Reduce, reuse, recycle: Issues in the secondary use of research data. IASSIST Quarterly. 29, 1, 5–5 (2006).
93. Lee, Y.W.: Crafting Rules: Context-Reflective Data Quality Problem Solving. Journal of Management Information Systems. 20, 3, 93–119 (2003).
94. Leroux, O.: Legal admissibility of electronic evidence. International Review of Law, Computers & Technology. 18, 2, 193–220 (2004).
95. Li, J. et al.: TheoryOn: Designing a Construct-Based Search Engine to Reduce Information Overload for Behavioral Science Research. MIS quarterly. 44, 4, 1733–1772 (2020).
96. Lidar, D.A., Brun, T.A.: Quantum error correction. Cambridge university press, Cambridge (2013).
97. Lohr, S.L.: Sampling: Design and Analysis. Cengage Learning (2009).
98. Loos, P. et al.: Green IT: a matter of business and information systems engineering? Business & Information Systems Engineering. 3, 4, 245–252 (2011).
99. Lukyanenko, R. et al.: Artifact Sampling: Using Multiple Information Technology Artifacts to Increase Research Rigor. In: Proceedings of the 51st Hawaii International Conference on System Sciences (HICSS 2018). pp. 1–12 , Big Island, Hawaii (2018).
100. Lukyanenko, R. et al.: Datish: A Universal Conceptual Modeling Language to Model Anything by Anyone. In: ER Forum 2023. pp. 1–14 Springer, Lisbon, Portugal (2023).
101. Lukyanenko, R. et al.: Expecting the Unexpected: Effects of Data Collection Design Choices on the Quality of Crowdsourced User-generated Content. MISQ. 43, 2, 634–647 (2019).
102. Lukyanenko, R. et al.: Guidelines for Establishing Instantiation Validity in IT Artifacts: A Survey of IS Research. In: DESRIST 2015, LNCS 9073. Springer, Berlin / Heidelberg (2015).
103. Lukyanenko, R. et al.: Inclusive Conceptual Modeling: Diversity, Equity, Involvement, and Belonging in Conceptual Modeling. In: ER Forum 2023. pp. 1–4 Springer, Lisbon, Portugal (2023).
104. Lukyanenko, R.: Information Quality Research Challenge: Information Quality in the Age of Ubiquitous Digital Intermediation. J. Data and Information Quality. 7, 1–2, 3:1-3:3 (2016). https://doi.org/10.1145/2856038.
105. Lukyanenko, R. et al.: Instantiation Validity in IS Design Research. In: DESRIST 2014, LNCS 8463. pp. 321–328 Springer (2014).
106. Lukyanenko, R.: Quantum Data Management to Reduce Environmental Impact of IT. In: SIG GREEN 2024. pp. 1–5 , Bangkok, Thailand (2025).
107. Lukyanenko, R. et al.: Representing Instances: The Case for Reengineering Conceptual Modeling Grammars. European Journal of Information Systems. 28, 1, 68–90 (2019).
108. Lukyanenko, R. et al.: Superimposition: Augmenting Machine Learning Outputs with Conceptual Models for Explainable AI. In: 1st International Workshop on Conceptual Modeling Meets Artificial Intelligence and Data-Driven Decision Making. pp. 1–12 Springer, Vienna, Austria (2020).
109. Lukyanenko, R. et al.: The Impact of Conceptual Modeling on Dataset Completeness: A Field Experiment. In: Proceedings of the International Conference on Information Systems (ICIS). pp. 1–18 (2014).
110. Lukyanenko, R.: The MAGIC of Data Management: Understanding the Value and Activities of Data Management. arXiv preprint arXiv:2408.07607. (2024).
111. Lukyanenko, R. et al.: Universal Conceptual Modeling: Principles, Benefits, and an Agenda for Conceptual Modeling Research. Software & Systems Modeling. 1–35 (2024).
112. Lukyanenko, R., Parsons, J.: Design Theory Indeterminacy: What is it, how can it be reduced, and why did the polar bear drown? Journal of the Association for Information Systems. 21, 5, 1–30 (2020).
113. Lukyanenko, R., Weber, R.: A Realist Ontology of Digital Objects and Digitalized Systems. In: “Digital First” Era — A Joint AIS SIGSAND/SIGPrag Workshop. pp. 1–5 , Virtual Workshop (2022).
114. Luo, H., Specia, L.: From understanding to utilization: A survey on explainability for large language models. arXiv preprint arXiv:2401.12874. (2024).
115. Mayer-Schönberger, V., Cukier, K.: Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt (2013).
116. McAfee, A., Brynjolfsson, E.: Machine, platform, crowd: Harnessing our digital future. WW Norton & Company, New York, NY (2017).
117. Mehrabi, N. et al.: A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR). 54, 6, 1–35 (2021).
118. Metatla, O. et al.: Voice user interfaces in schools: Co-designing for inclusion with visually-impaired and sighted pupils. Presented at the Proceedings of the 2019 CHI conference on human factors in computing systems (2019).
119. Miller, G.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The psychological review. 63, 81–97 (1956).
120. Morgan, S.: Cybercrime To Cost The World $10.5 Trillion Annually By 2025, https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/, (2018).
121. Mumuni, F., Mumuni, A.: Explainable artificial intelligence (XAI): from inherent explainability to large language models. arXiv preprint arXiv:2501.09967. (2025).
122. Murphy, E. et al.: An empirical investigation into the difficulties experienced by visually impaired Internet users. Universal Access in the Information Society. 7, 79–91 (2008).
123. Murphy, H.: She Helped Crack the Golden State Killer Case. Here’s What She’s Going to Do Next., https://www.nytimes.com/2018/08/29/science/barbara-rae-venter-gsk.html, (2018).
124. Nelson, R.R. et al.: Antecedents of information and system quality: an empirical examination within the context of data warehousing. Journal of Management Information Systems. 21, 4, 199–235 (2005).
125. Norman, D.A.: The design of everyday things. Bsic Books, New York, NY (2002).
126. Obrist, M. et al.: Touch, taste, & smell user interfaces: The future of multisensory HCI. Presented at the Proceedings of the 2016 CHI conference extended abstracts on human factors in computing systems (2016).
127. Ogunseye, S. et al.: Do Crowds Go Stale? Exploring the Effects of Crowd Reuse on Data Diversity. In: WITS 2017. , Seoul, South Korea (2017).
128. Ogunseye, S., Parsons, J.: Can Expertise Impair the Quality of Crowdsourced Data? In: SIGOPEN Developmental Workshop at ICIS 2016. (2016).
129. Oh, S.J. et al.: Towards reverse-engineering black-box neural networks. Explainable AI: interpreting, explaining and visualizing deep learning. 121–144 (2019).
130. O’Neil, C.: Weapons of math destruction: How big data increases inequality and threatens democracy. Broadway Books, New York NY (2016).
131. Paas, F. et al.: Cognitive load theory and instructional design: Recent developments. Educational psychologist. 38, 1, 1–4 (2003).
132. Pang, M.-S. et al.: DIGITAL TECHNOLOGIES AND THE ADVANCEMENT OF SOCIAL JUSTICE: A FRAMEWORK AND AGENDA. MIS Quarterly. 48, 4, (2024).
133. Park, J. et al.: Green cloud? An empirical analysis of cloud computing and energy efficiency. Management Science. 69, 3, 1639–1664 (2023).
134. Pateria, S. et al.: Hierarchical reinforcement learning: A comprehensive survey. ACM Computing Surveys (CSUR). 54, 5, 1–35 (2021).
135. Pitron, G.: The Dark Cloud: how the digital world is costing the earth. Scribe Publications Pty Limited, London, UK (2023).
136. Plaat, A. et al.: Reasoning with large language models, a survey. arXiv preprint arXiv:2407.11511. (2024).
137. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum. 2, 79 (2018).
138. Rachels, J., Rachels, S.: The elements of moral philosophy 7e. McGraw Hill, New York NY (2012).
139. Rai, A.: Explainable AI: From black box to glass box. Journal of the Academy of Marketing Science. 48, 1, 137–141 (2020).
140. Redman, T.C.: Bad data costs the US $3 trillion per year. Harvard Business Review. 22, 11–18 (2016).
141. Redman, T.C.: Data quality for the information age. Artech House, Norwood, MA (1996).
142. Rietsche, R. et al.: Quantum computing. Electronic Markets. 32, 4, 2525–2536 (2022).
143. Robert Jr, L.P. et al.: Introduction to the special issue on AI fairness, trust, and ethics. AIS Transactions on Human-Computer Interaction. 12, 4, 172–178 (2020).
144. Rodriguez, J.: Some AI Lessons from Watson’s Failure at MD Anderson, https://jrodthoughts.medium.com/some-ai-lessons-from-watsons-failure-at-md-anderson-9b895cf70840, last accessed 2024/07/28.
145. Roelens, B., Bork, D.: An evaluation of the intuitiveness of the PGA modeling language notation. In: Enterprise, Business-Process and Information Systems Modeling. pp. 395–410 Springer (2020).
146. Rosenblum, B., Kuttner, F.: Quantum enigma: Physics encounters consciousness. Oxford University Press (2011).
147. Russell, S.: Human compatible: AI and the problem of control. Penguin UK, London England (2019).
148. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Pearson Education Limited, Malaysia (2016).
149. Salk, C.F. et al.: Assessing quality of volunteer crowdsourcing contributions: lessons from the Cropland Capture game. International Journal of Digital Earth. 1, 1–17 (2015).
150. Samuel, B.M. et al.: Exploring the Effects of Extensional Versus Intentional Representations on Domain Understanding. MIS Quarterly. 42, 4, 1187–1209 (2018).
151. Sanderson, K.: AI science search engines explode in number. Nature. 616, 639–640 (2023).
152. Sarioglu, A. et al.: How Inclusive is Conceptual Modeling? A Systematic Review of Literature and Tools for Disability-aware Conceptual Modeling. In: 42nd International Conference on Conceptual Modeling (ER 2023). pp. 1–15 (2023).
153. Sernadas, C. et al.: Modular construction of logic knowledge bases: An algebraic approach. Information Systems. 15, 1, 37–59 (1990).
154. Sheng, V.S. et al.: Get another label? improving data quality and data mining using multiple, noisy labelers. In: ACM SIG KDD. pp. 614–622 (2008).
155. Shneiderman, B.: Designing the user interface. Pearson Education, Boston, MA (2003).
156. Shneiderman, B.: Human-centered AI. Oxford University Press, Oxford, UK (2022).
157. Singh, H.: Managing the Quantum Cybersecurity Threat: Harvest Now, Decrypt Later. In: Quantum Computing. pp. 142–158 CRC Press, New York NY (2024).
158. Skyttner, L.: General systems theory: origin and hallmarks. Kybernetes. 26, 6, 16–22 (1996).
159. Smith, C.U.M.: Biology of sensory systems. John Wiley & Sons, Hoboken, NJ (2008).
160. Someh, I. et al.: Ethical issues in big data analytics: A stakeholder perspective. Communications of the Association for Information Systems. 44, 1, 34 (2019).
161. Storey, V.C. et al.: Explainable AI: Opening the Black Box or Pandora’s Box? Communications of the ACM. 66, 4, 1–6 (2022).
162. Storey, V.C. et al.: Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Research. Information Systems Frontiers. (2025).
163. Strengholt, P.: Data Management at scale. O’Reilly Media, Inc, New York (2020).
164. Strong, D.M. et al.: Data quality in context. Communications of the ACM. 40, 5, 103–110 (1997).
165. Sullivan, T., Adler, S.: Work, stress, and disability. International journal of law and psychiatry. 22, 5–6, 417–424 (1999).
166. Tams, S.: Helping older workers realize their full organizational potential: a moderated mediation model of age and IT-enabled task performance. MIS Q. 46, 1, 1–30 (2022).
167. Tams, S. et al.: Worker Stress in the Age of Mobile Technology: The Combined Effects of Perceived Interruption Overload and Worker Control. Journal of Strategic Information Systems. 1–40 (2020).
168. Tegarden, D. et al.: Systems Analysis and Design: An Object-Oriented Approach with UML. Wiley, Hoboken, NJ (2025).
169. Thiesen, J. et al.: Rebound effects of price differences. The International Journal of Life Cycle Assessment. 13, 104–114 (2008).
170. Tremblay, M.C. et al.: Using data mining techniques to discover bias patterns in missing data. Journal of Data and Information Quality (JDIQ). 2, 1, 2 (2010).
171. Tsamados, A. et al.: The ethics of algorithms: key problems and solutions. AI & SOCIETY. (2021). https://doi.org/10.1007/s00146-021-01154-8.
172. Tversky, A. et al.: Judgment under uncertainty: Heuristics and biases. Rationality in action: Contemporary approaches. 171–188 (1990).
173. Vaswani, A. et al.: Attention is all you need. Advances in neural information processing systems. 30, (2017).
174. Vi, C.T. et al.: Gustatory interface: The challenges of ‘how’to stimulate the sense of taste. Presented at the Proceedings of the 2nd acm sigchi international workshop on multisensory approaches to human-food interaction (2017).
175. Wagner, G. et al.: Artificial intelligence and the conduct of literature reviews. Journal of Information Technology. 37, 2, 209–226 (2022).
176. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM. 39, 11, 86–95 (1996).
177. Wang, A. et al.: Against predictive optimization: On the legitimacy of decision-making algorithms that optimize predictive accuracy. ACM Journal on Responsible Computing. (2023).
178. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems. 12, 4, 5–33 (1996).
179. Wilson, E.O.: The meaning of human existence. WW Norton & Company, New York NY (2014).
180. Wood, A.W.: Kantian ethics. Cambridge University Press Cambridge (2008).
181. Yoon, J. et al.: Bayesian model-agnostic meta-learning. Advances in neural information processing systems. 31, (2018).
182. Zäschke, T. et al.: Optimising conceptual data models through profiling in object databases. Presented at the International Conference on Conceptual Modeling (2013).
183. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with limited communication. Presented at the Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems (2013).
184. Zhang, R. et al.: Discovering data quality problems. Business & Information Systems Engineering. 61, 5, 575–593 (2019).
185. Zhang, Y. et al.: Siren’s song in the AI ocean: a survey on hallucination in large language models. arXiv preprint arXiv:2309.01219. (2023).
186. Zhao, H. et al.: Explainability for large language models: A survey. ACM Transactions on Intelligent Systems and Technology. 15, 2, 1–38 (2024).
187. Zhu, T., Yang, Y.: Research on immersive interaction design based on visual and tactile feature analysis of visually impaired children. Heliyon. 10, 1, (2024).
188. Živković, S., Karagiannis, D.: Towards metamodelling-in-the-large: Interface-based composition for modular metamodel development. In: Enterprise, Business-Process and Information Systems Modeling. pp. 413–428 Springer (2015).