ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Hilbert spaces provide the fundamental mathematical framework for describing quantum mechanical systems. Their structure, characterized by an inner product and completeness, allows for the representation of quantum states as vectors and physical observables as self-adjoint operators. Key quantum phenomena such as superposition and entanglement find natural expression within this formalism. Superposition, where a quantum system can exist in multiple states simultaneously, is represented by linear combinations of basis vectors in the Hilbert space. Entanglement, a non-classical correlation between quantum systems, is described by non-separable state vectors in a tensor product of Hilbert spaces. These concepts are pivotal in quantum computing, where the unit of information, the qubit, is a two-level quantum system whose state is a vector in a two-dimensional complex Hilbert space (ℂ²). Quantum gates, which perform operations on qubits, are represented by unitary operators acting on these state vectors. The power of quantum computation, particularly in algorithms like Shor's or Grover's, stems from the ability to exploit superposition and entanglement, processes intrinsically described within the Hilbert space framework. Thus, a thorough understanding of Hilbert spaces is indispensable for grasping the principles of quantum mechanics and for advancing the field of quantum information and computation [1, 7]. The transition from classical bits to quantum qubits, and from classical logic gates to quantum unitary operations, is entirely predicated on the mathematical properties endowed by Hilbert spaces.
Keeci M. 2025. Hilbert Space Theory and Its Implementation in Quantum Computing Systems. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113653
1. Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Springer. (English translation: (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press. https://doi.org/10.1515/9781400889921
2. Hilbert, D. (1906). Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. (Erste Mitteilung). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1904, 49-91. (Collected work: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. (1912). Teubner.)
3. Riesz, F. (1907). Sur les systèmes orthogonaux de fonctions. Comptes Rendus de l'Académie des Sciences, 144, 615-619.
4. Fischer, E. (1907). Sur la convergence en moyenne. Comptes Rendus de l'Académie des Sciences, 144, 1022-1024.
5. Stone, M. H. (1932). Linear Transformations in Hilbert Space and Their Applications to Analysis. American Mathematical Society. https://doi.org/10.1090/coll/015
6. Dirac, P. A. M. (1930). The Principles of Quantum Mechanics. Oxford University Press.
7. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
8. Hall, B. C. (2013). Quantum Theory for Mathematicians. Springer. https://doi.org/10.1007/978-1-4614-7116-5
9. Reed, M., & Simon, B. (1980). Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis. Academic Press. ISBN: 978-0125850506
10. Akhiezer, N. I., & Glazman, I. M. (1993). Theory of Linear Operators in Hilbert Space. Dover Publications.
11. Teschl, G. (2009). Mathematical Methods in Quantum Mechanics: With Applications to Schrödinger Operators. American Mathematical Society. https://doi.org/10.1090/gsm/099
12. Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
13. Halmos, P. R. (1951). Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company.
14. Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6), 1049-1070. https://doi.org/10.1103/PhysRev.28.1049
15. Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33(1), 879-893. https://doi.org/10.1007/BF01328377
16. Born, M., & Jordan, P. (1925). Zur Quantenmechanik. Zeitschrift für Physik, 34(1), 858-888. https://doi.org/10.1007/BF01328531
17. Born, M., Heisenberg, W., & Jordan, P. (1926). Zur Quantenmechanik II. Zeitschrift für Physik, 35(8-9), 557-615. https://doi.org/10.1007/BF01379806
18. Weyl, H. (1928). Gruppentheorie und Quantenmechanik. S. Hirzel. (English translation: (1931). The Theory of Groups and Quantum Mechanics. Methuen & Co.)
19. Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7), 467-488. https://doi.org/10.1007/BF02650179
20. Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press. https://doi.org/10.7551/mitpress/4175.001.0001
21. Streater, R. F., & Wightman, A. S. (1989). PCT, Spin and Statistics, and All That. Princeton University Press. ISBN: 9780691070629
22. Haag, R. (1996). Local Quantum Physics: Fields, Particles, Algebras (2nd ed.). Springer. https://doi.org/10.1007/978-3-642-61458-3
23. Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way (3rd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-374370-1.X0001-8
24. Hilbert, D. (1915). Die Grundlagen der Physik. (Erste Mitteilung). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1915, 395-407.
25. Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1), 2-30. https://doi.org/10.1016/S0003-4916(02)00018-0
26. Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045-3067. https://doi.org/10.1103/RevModPhys.82.3045
27. Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
28. Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325), 602-606. https://doi.org/10.1126/science.aag2302
29. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. https://doi.org/10.1038/s41586-019-1666-5
30. Keçeci, M. (2025). Nodal-line semimetals: A geometric advantage in quantum information. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15455271
31. Keçeci, M. (2025). Weyl semimetals: Discovery of exotic electronic states and topological phases. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15447116
32. Keçeci, M. (2025, May 15). The Keçeci binomial square: A reinterpretation of the standard binomial expansion and its potential applications. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15425529
33. Keçeci, M. (2025, May 14). Kececisquares. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15411670
34. Keçeci, M. (2025, May 13). Scalable complexity: Mathematical analysis and potential for physical applications of the Keçeci circle fractal. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15392772
35. Keçeci, M. (2025, May 13). Kececifractals. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15392518
36. Keçeci, M. (2025, May 11). Keçeci numbers and the Keçeci prime number: A potential number theoretic exploratory tool. Zenodo. https://doi.org/10.5281/zenodo.15381697
37. Keçeci, M. (2025, May 10). Kececinumbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15377659
38. Keçeci, M. (2025). From Majorana fermions to quantum devices: The role of nanomaterials in the second quantum era. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15331067
39. Keçeci, M. (2025, May 1). Keçeci Layout. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15314328
40. Keçeci, M. (2025, May 1). Kececilayout. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15313946
41. Keçeci, M. (2020, October 25). Discourse on the second quantum revolution and nanotechnology applications in the midst of the COVID-19 pandemic of inequality. International Journal of Latest Research in Science and Technology, 9(5), 1–7. eISSN: 2278-5299. https://doi.org/10.5281/zenodo.7483395; https://www.mnkjournals.com/journal/ijlrst/Article.php?paper_id=11004
42. Keçeci, M. (2011). 2n-dimensional at Fujii model instanton-like solutions and coupling constant's role between instantons with higher derivatives. Turkish Journal of Physics, 35(2), 173-178. https://doi.org/10.3906/fiz-1012-66
43. Keçeci, M. (2025, May 6). Grikod2. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15352206
44. Keçeci, M. (2025, May 6). Grikod. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.12731345
45. Yaman, M., & Misir, Z. (2022). Finite-Time Behaviour of Solutions to Nonlinear Parabolic equation. New Trends in Mathematical Sciences, 10(4), 47–53. https://doi.org/10.20852/ntmsci.2022.487
46. Domuschiev, I. (2025, May). Quantum Simulation versus Model Prediction in Human Medicine. ResearchGate. https://doi.org/10.13140/RG.2.2.17725.37608
47. de M. Carvalho, A. M., Garcia, G. Q., & Furtado, C. (2025, April). Geometric and Topological Aspects of Quadrupoles of Disclinations: Conformal Metrics and Self-Forces. arXiv: https://doi.org/10.48550/arXiv.2504.21210
48. Yıldız, F., Przybylski, M., & Kirschner, J. (2009). Direct evidence of a nonorthogonal magnetization configuration in single crystalline Fe₁₋ₓCoₓ/Rh/Fe/Rh(001) system. Physical Review Letters, 103(14), 147203. https://doi.org/10.1103/PhysRevLett.103.147203
49. Mikailzade, F., Maksutoglu, M., Khaibullin, R.I., Valeev, V.F., Nuzhdin, V.I., Aliyeva, V.B., & Mammadov, T.G. (2016). Magnetodielectric Effects in Co-implanted TlInS₂ and TlGaSe₂ Crystals. Phase Transitions, 89(6), 568–577. https://doi.org/10.1080/01411594.2015.1080259
50. Yalçın, O., et al. (2023). Crystallographic, structural, optical, and dielectric properties of aniline and aniline halide imprinted hydrogels for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 34(22), 1700. https://doi.org/10.1007/s10854-023-10915-8
51. Veliev, E. V., Günaydın, S., & Sundu, H. (2018). Thermal properties of the exotic X(3872) state via QCD sum rule. The European Physical Journal Plus, 133(3), 139. https://doi.org/10.1140/epjp/i2018-11977-0
52. Rameev, B. (2020). Magnetic Resonance and Microwave Techniques for Security Applications. 2019 Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring). IEEE. https://doi.org/10.1109/PIERS-Spring46901.2019.9017563
53. Bidai, K., Tabeti, A., Mohammed, D. S., Seddik, T., Batouche, M., Özdemir, M., & Bakhti, B. (2020). Carbon substitution enhanced electronic and optical properties of MgSiP₂ chalcopyrite through TB-mBJ approximation. Computational Condensed Matter, 24, e00490. https://doi.org/10.1016/j.cocom.2020.e00490
54. Mustafa, O., & Güvendi, A. (2025). Fermions in a (2+1)-Dimensional Magnetized Spacetime with a Cosmological Constant: Domain Walls and Spinning Magnetic Vortices. Physics Letters B, [Volume placeholder, e.g., 860], 139569. https://doi.org/10.1016/j.physletb.2025.139569
55. Altun, I., Gençtürk, İ., & Erduran, A. (2023). Prešić-type fixed point results via Q-distance on quasimetric space and application to (p, q)-difference equations. Nonlinear Analysis Modelling and Control, 28(6), 1013-1026. https://doi.org/10.15388/namc.2023.28.33436
56. Elzwawy, A., Pişkin, H., Akdoğan, N., et al. (2021). Current trends in planar Hall effect sensors: Evolution, optimization, and applications. Journal of Physics D: Applied Physics, 54(35), 353001. https://doi.org/10.1088/1361-6463/abfbfb
57. Garrett, J., Luis, E., Peng, H.-H., Cera, T., Gobinathj, Borrow, J., Keçeci, M., Splines, Iyer, S., Liu, Y., cjw, & Gasanov, M. (2023). garrettj403/SciencePlots: 2.1.1 (Version 2.1.1). Zenodo. https://doi.org/10.5281/zenodo.10206719
58. Keçeci, M. (2025). Harnessing Geometry for Quantum Computation: Lessons from Nodal-Line Materials. Knowledge Commons. https://doi.org/10.17613/w6vmd-4vb84
59. Keçeci, M. (2025). Quantum Information at the Edge: Topological Opportunities in Nodal-Line Materials. figshare. https://doi.org/10.6084/m9.figshare.29484947
60. Keçeci, M. (2025). Nodal-Line Semimetals: Unlocking Geometric Potential in Quantum Information. WorkflowHub. https://doi.org/10.48546/workflowhub.document.36.1
61. Keçeci, M. (2025). Investigating Layered Structures Containing Weyl and Majorana Fermions via the Stratum Model. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15489074
62. Keçeci, M. (2025). From Weyl Fermions to Topological Matter: The Physics of Weyl Semimetals. Knowledge Commons. https://doi.org/10.17613/p79v7-kje79
63. Keçeci, M. (2025). Weyl Semimetals and Their Unique Electronic and Topological Characteristics. figshare. https://doi.org/10.6084/m9.figshare.29483816
64. Keçeci, M. (2025). Weyl Semimetals: Unveiling Novel Electronic Structures and Topological Properties. WorkflowHub. https://doi.org/10.48546/workflowhub.document.35.1; https://doi.org/10.48546/workflowhub.document.35.2; https://doi.org/10.48546/workflowhub.document.35.3
65. Keçeci, M. (2025). Keçeci's Arithmetical Square. Authorea. https://doi.org/10.22541/au.175070836.63624913/v1
66. Keçeci, M. (2025). kececisquares [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.15.1
67. Keçeci, M. (2025). kececifractals [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.16.3
68. Keçeci, M. (2025). Keçeci Numbers and the Keçeci Prime Number. Authorea. June, 2025. https://doi.org/10.22541/au.174890181.14730464/v1
69. Keçeci, M. (2025). Diversity of Keçeci Numbers and Their Application to Prešić-Type Fixed-Point Iterations: A Numerical Exploration. https://doi.org/10.5281/zenodo.15481711
70. Keçeci, M. (2025). kececinumbers [Data set]. Open Work Flow Articles (OWFAs), WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.14.1; https://doi.org/10.48546/workflowhub.datafile.14.2; https://doi.org/10.48546/workflowhub.datafile.14.3
71. Keçeci, M. (2025). Keçeci Deterministic Zigzag Layout. WorkflowHub. https://doi.org/10.48546/workflowhub.document.31.1
72. Keçeci, M. (2025). Keçeci Zigzag Layout Algorithm. Authorea. https://doi.org/10.22541/au.175087581.16524538/v1
73. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15792684
74. Keçeci, M. (2025). When Nodes Have an Order: The Keçeci Layout for Structured System Visualization. HAL open science. https://hal.science/hal-05143155; https://doi.org/10.13140/RG.2.2.19098.76484
75. Keçeci, M. (2025). The Keçeci Layout: A Cross-Disciplinary Graphical Framework for Structural Analysis of Ordered Systems. Authorea. https://doi.org/10.22541/au.175156702.26421899/v1
76. Keçeci, M. (2025). Beyond Traditional Diagrams: The Keçeci Layout for Structural Thinking. Knowledge Commons. https://doi.org/10.17613/v4w94-ak572
77. Keçeci, M. (2025). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.29468135
78. Keçeci, M. (2025, July 3). The Keçeci Layout: A Structural Approach for Interdisciplinary Scientific Analysis. OSF. https://doi.org/10.17605/OSF.IO/9HTG3
79. Keçeci, M. (2025). Beyond Topology: Deterministic and Order-Preserving Graph Visualization with the Keçeci Layout. WorkflowHub. https://doi.org/10.48546/workflowhub.document.34.4
80. Keçeci, M. (2025). kececilayout [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.17.1
81. Keçeci, M. (2025). Grikod2 [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.13.1
82. Keçeci, M. (2025). Grikod [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.12.2
83. Ermurat, M., Arslan M.A., Erzincanlı F., Uzman, İ. (2013). Process parameters investigation of a laser-generated single clad for minimum size using design of experiments. Rapid Prototyping Journal, 19(6):452-462. https://doi.org/10.1108/RPJ-06-2011-0062
84. Keçeci, M. (2025). The Relationship Between Gravitational Wave Observations and Quantum Computing Technologies. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15524251
85. Keçeci, M. (2025). Kütleçekimsel Dalga Gözlemleri ile Kuantum Bilgisayar Teknolojileri Arasındaki Teknolojik ve Metodolojik Bağlantılar. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15519591
86. Keçeci, M. (2025). Çoklu İşlemci Mimarilerinde Kuantum Algoritma Simülasyonlarının Hızlandırılması: Cython, Numba ve Jax ile Optimizasyon Teknikleri. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15580503
87. Keçeci, M. (2025). Kuantum Hata Düzeltmede Metrik Seçimi ve Algoritmik Optimizasyonun Büyük Ölçekli Yüzey Kodları Üzerindeki Etkileri. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15572200
88. Keçeci, M. (2025). Kuantum Hata Düzeltme Algoritmalarında Özyineleme Optimizasyonu ve Aşırı Gürültü Toleransı: Kuantum Sıçraması Potansiyelinin Değerlendirilmesi. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15570678
89. Keçeci, M. (2025). Yüksek Kübit Sayılı Kuantum Hesaplamada Ölçeklenebilirlik ve Hata Yönetimi: Yüzey Kodları, Topolojik Malzemeler ve Hibrit Algoritmik Yaklaşımlar. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15558153
90. Keçeci, M. (2025). Künneth Teoremi Bağlamında Özdevinimli ve Evrişimli Kuantum Algoritmalarında Yapay Zekâ Entegrasyonu ile Hata Minimizasyonu. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15540875
91. Keçeci, M. (2025). The Relationship Between Gravitational Wave Observations and Quantum Computing Technologies. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15524251
92. Keçeci, M. (2025). Kütleçekimsel Dalga Gözlemleri ile Kuantum Bilgisayar Teknolojileri Arasındaki Teknolojik ve Metodolojik Bağlantılar. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15519591
93. Keçeci, M. (2025). Accuracy, Noise, and Scalability in Quantum Computation: Strategies for the NISQ Era and Beyond. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15515113
94. Keçeci, M. (2025). Quantum Error Correction Codes and Their Impact on Scalable Quantum Computation: Current Approaches and Future Perspectives. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15499657
95. Keçeci, M. (2025). Nanoscale Quantum Computers Fundamentals, Technologies, and Future Perspectives. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15493024
96. Keçeci, M. (2025). Investigating Layered Structures Containing Weyl and Majorana Fermions via the Stratum Model. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15489074
97. Keçeci, M. (2025). Kuantum geometri, topolojik fazlar ve yeni matematiksel yapılar: Disiplinlerarası bir perspektif. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15474957
98. Keçeci, M. (2025). Understanding quantum mechanics through Hilbert spaces: Applications in quantum computing. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15468754
99. Keçeci, M. (2025). The Unifying Role of Hilbert Space in Quantum Field Theory and Information Science. Authorea. https://doi.org/10.22541/au.175449372.28574879/v1; https://doi.org/10.22541/au.175433455.53782703/v1
100. Keçeci, M. (2025). Weyl Semimetals and Their Unique Electronic and Topological Characteristics. figshare. https://doi.org/10.6084/m9.figshare.29483816
101. Keçeci, M. (2025). Hilbert Space: The Mathematical Engine of Quantum Information Processing. Open Science Knowledge Articles (OSKAs), Knowledge Commons. https://doi.org/10.17613/6gagh-4dw41
102. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological Order. HAL open science. https://hal.science/hal-05146435v1
103. Keçeci, M. (2025). Keçeci Numbers and the Keçeci Prime Number: A Potential Number Theoretic Exploratory Tool. https://doi.org/10.5281/zenodo.15381698
104. Keçeci, M. (2025). kececinumbers [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29816414
105. Keçeci, M. (2025). From Abstract Theory to Practical Application: The Journey of Hilbert Space in Quantum Technologies. Preprints. https://doi.org/10.20944/preprints202508.0171.v2; https://doi.org/10.20944/preprints202508.0171.v1; https://www.preprints.org/manuscript/202508.0171
106. Keçeci, M. (2025). Between Chaos and Order: A Behavioural Portrait of Keçeci and Oresme Numbers. preprints.ru. https://doi.org/10.24108/preprints-3113623
107. Keçeci, M. (2025). oresmej [Data set]. ResearchGate. https://doi.org/10.13140/RG.2.2.30518.41284
108. Keçeci, M. (2025). oresmej [Data set]. figshare. https://doi.org/10.6084/m9.figshare.29554532
109. Keçeci, M. (2025). oresmej [Data set]. WorkflowHub. https://doi.org/10.48546/WORKFLOWHUB.DATAFILE.19.1
110. Keçeci, M. (2025). oresmej. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15874178
111. Keçeci, M. (2025). Analysing the Dynamic and Static Structures of Keçeci and Oresme Sequences. Authorea. https://doi.org/10.22541/au.175199926.64529709/v1
112. Keçeci, M. (2025). Dynamic Sequences Versus Static Sequences: Keçeci and Oresme Numbers in Focus. Preprints. https://doi.org/10.20944/preprints202507.0781.v1
113. Keçeci, M. (2025). Mobility and Constancy in Mathematical Sequences: A Study on Keçeci and Oresme Numbers. OSF. https://doi.org/10.17605/osf.io/68r4v
114. Keçeci, Mehmet (2025). Dynamic and Static Approaches in Mathematics: Investigating Keçeci and Oresme Sequences. Knowledge Commons. https://doi.org/10.17613/gbdgx-d8y63
115. Keçeci, Mehmet (2025). Dynamic-Static Properties of Keçeci and Oresme Number Sequences: A Comparative Examination. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.29504960
116. Keçeci, M. (2025). Variability and Stability in Number Sequences: An Analysis of Keçeci and Oresme Numbers. WorkflowHub. https://doi.org/10.48546/workflowhub.document.37.1; https://doi.org/10.48546/workflowhub.document.37.2
117. Keçeci, M. (2025). Dynamic vs Static Number Sequences: The Case of Keçeci and Oresme Numbers. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15833351
118. Keçeci, M. (2025). A Graph-Theoretic Perspective on the Keçeci Layout: Structuring Cross-Disciplinary Inquiry. Preprints. https://doi.org/10.20944/preprints202507.0589.v1
119. Keçeci, M. (2025). Oresme. figshare. https://doi.org/10.6084/m9.figshare.29504708
120. Keçeci, M. (2025). Oresme [Data set]. WorkflowHub. https://doi.org/10.48546/workflowhub.datafile.18.1
121. Keçeci, M. (2025). Oresme (0.1.0). Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.15833238
122. Keçeci, M. (2025). Exploring Weyl Semimetals: Emergence of Exotic Electrons and Topological Order. HAL open science. https://hal.science/hal-05146435; https://doi.org/10.13140/RG.2.2.35594.17606
123. Keçeci, M. (2025). The Rise of Weyl Semimetals: Exotic States and Topological Transitions. Authorea. https://doi.org/10.22541/au.175192231.19609379/v1
124. Keçeci, M. (2025). Geometric Resilience in Quantum Systems: The Case of Nodal-Line Semimetals. Authorea. Authorea. https://doi.org/10.22541/au.175192307.76278430/v1
125. Keçeci, M. (2025). Harnessing Geometry for Quantum Computation: Lessons from Nodal-Line Materials. Knowledge Commons. https://doi.org/10.17613/w6vmd-4vb84
126. Keçeci, M. (2025). Keçeci Sayılarının Nötrosofik ve Hipergerçek Sayılarla Geometrik Yorumlamaları. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16343568
127. Keçeci, M. (2025). Bridging Quantum Theory and Computation: The Role of Hilbert Spaces. WorkflowHub. https://doi.org/10.48546/workflowhub.document.38.1; https://doi.org/10.48546/workflowhub.document.38.2; https://doi.org/10.48546/workflowhub.document.38.3
128. Keçeci, M. (2025). Hilbert Spaces and Quantum Information: Tools for Next-Generation Computing. figshare. https://doi.org/10.6084/m9.figshare.29604011
129. Keçeci, M. (2025). Hilbert Space as the Geometric Foundation of Quantum Mechanics and Computing. OSF. https://doi.org/10.17605/OSF.IO/ZXDBK
130. Noorwali, M., Qawaqneh, H., Tahir, M., Mehmood, A., Abd El-Latif A. M., Aldwoah, K. A., Armada, C. L., Mohammad N. H. M., Hamja J. J. (2025). Triple Fixed-Point Theorems: Generalized Analysis with AI/Crypto Applications. European Journal of Pure and Applied Mathematics, 18(3), 6609. https://doi.org/10.29020/nybg.ejpam.v18i3.6609
131. Keçeci, M. (2025). Keçeci Varsayımının Kuramsal ve Karşılaştırmalı Analizi. ResearchGate. https://dx.doi.org/10.13140/RG.2.2.21825.88165
132. Keçeci, M. (2025). Keçeci Varsayımı'nın Hesaplanabilirliği: Sonlu Adımda Kararlı Yapıya Yakınsama Sorunu. WorkflowHub. https://doi.org/10.48546/workflowhub.document.44.1
133. Keçeci, M. (2025). Keçeci Varsayımı ve Dinamik Sistemler: Farklı Başlangıç Koşullarında Yakınsama ve Döngüler. Open Science Output Articles (OSOAs), OSF. https://doi.org/10.17605/OSF.IO/68AFN
134. Keçeci, M. (2025). Keçeci Varsayımı: Periyodik Çekiciler ve Keçeci Asal Sayısı (KPN) Kavramı. Open Science Knowledge Articles (OSKAs), Knowledge Commons. https://doi.org/10.17613/g60hy-egx74
135. Keçeci, M. (2025). Genelleştirilmiş Keçeci Operatörleri: Collatz Yinelemesinin Nötrosofik ve Hiperreel Sayı Sistemlerinde Uzantıları. Authorea. https://doi.org/10.22541/au.175433544.41244947/v1
136. Keçeci, M. (2025). Keçeci Varsayımı: Collatz Genelleştirmesi Olarak Çoklu Cebirsel Sistemlerde Yinelemeli Dinamikler. Open Science Articles (OSAs), Zenodo. https://doi.org/10.5281/zenodo.16702475
137. Keçeci, M. (2025). Geometric Interpretations of Keçeci Numbers with Neutrosophic and Hyperreal Numbers. Zenodo. https://doi.org/10.5281/zenodo.16344232
138. Connes, A. (1994). Noncommutative Geometry. Academic Press. ISBN: 978-0121858605. https://alainconnes.org/wp-content/uploads/book94bigpdf.pdf
139. Keçeci, M. (2005, September 13–16). 2n-boyutlu Fujii modelinde instanton çözümleri ve bağlantı sabitinin instantonlar arasındaki rolü. Presented at World Year of Physics 2005 Turkish Physical Society 23rd International Physics Congress, Muğla University, Türkiye. https://dx.doi.org/10.13140/RG.2.1.1441.4887
140. Keçeci, M. (2005, May). Konformal invaryant Fujii modelinin instanton tipi tam çözümü. Presented at Geleneksel Erzurum Fizik Günleri-II, Atatürk University, Türkiye. https://dx.doi.org/10.13140/RG.2.1.3538.6408
141. Keçeci, M. (2002, September 16–20). Exact instanton-like solution conformal invariant of Fujii model, construct for four-dimensional and subderivative. Presented at Working Group II, Turkish Nonlinear Science Working Group, Karaburun/Izmir, Türkiye. https://dx.doi.org/10.13140/RG.2.1.1638.0964
142. Keçeci, M. (2001). Konformal Spinör Alan Teorileri (Yüksek Lisans tezi). Gebze Teknik Üniversitesi, Fen Bilimleri Fakültesi, Fizik.
143. Keçeci, M. (2025). oresmen (0.1.0). Zenodo. https://doi.org/10.5281/zenodo.16634186
144. https://github.com/WhiteSymmetry/oresmen
145. https://pypi.org/project/oresmen
146. https://anaconda.org/bilgi/oresmen
147. Keçeci, M. (2025). Hilbert Space Theory and Its Implementation in Quantum Computing Systems. ResearchGate. https://doi.org/10.13140/RG.2.2.19532.12166
148. Keçeci, M. (2025). Understanding Quantum Dynamics through Hilbert Space Frameworks. preprints.ru.