ПРЕПРИНТ
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Качество аргументации на протяжении последних десятилетий в среднем снизилось; все труднее отличать достоверные публикации от недостоверных. Наблюдается маркетинг лекарственных препаратов и методов лечения с недоказанной эффективностью. В данных обстоятельствах возрастает значение теоретических аргументов. Стволовые клетки и клеточная терапия – одна из популярных тем в медико-биологической литературе. Обсуждается дифференцировка стволовых клеток в направлении различных специализированных тканей, замена стареющих и патологически измененных тканевых элементов. Некоторые публикации преувеличивают целительные свойства, не уделяя достаточного внимания побочным эффектам, в том числе, онкологическим и иммунным. Длинный список положительных результатов, полученный в экспериментах сомнительной достоверности, не является бесспорным доказательством эффективности и безопасности. Клиническое использование стволовых клеток имеет смысл в том случае, если с их участием формируется адекватно функционирующая ткань или происходит замена поврежденных тканевых элементов. При этом должны отсутствовать существенные побочные эффекты. На сегодняшний день доказательства соблюдения этих условий отсутствуют. Альтернативные механизмы действия клеточной терапии (паракринный, трофический, иммуномодулирующий) теоретически малопонятны, поскольку нет оснований ожидать от морфологически примитивных стволовых клеток более выраженных специализированных функций по сравнению со зрелыми клетками. Основным предназначением стволовых клеток является митоз, а не синтез биологически активных веществ. В настоящем обзоре кратко рассматриваются теоретические и практические аспекты использования стволовых клеток при заболеваниях сердца, суставов, печени и центральной нервной системы. Возможно, некоторые методы клеточной терапии являются перспективными направлениями исследований. То же самое можно сказать о зрелых клетках и бесклеточных препаратах, обладающих паракринным или иными эффектами клеточной терапии. Вероятно, некоторые направления окажутся тупиковыми. Финансирование таких исследований отвлекает средства от перспективных направлений.
Яргин С. В. 2025. Стволовые клетки и клеточная терапия: критический обзор. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113700
1. Jargin S.V. Scientific papers and patents on substances with unproven effects. Part 2. Recent Pat Drug Deliv Formul. 2019; 13(3): 160-173. doi: 10.2174/1872211313666190819124752.
2. Neves J., Sousa-Victor P., Jasper H. Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell. 2017; 20(2): 161-175. doi: 10.1016/j.stem.2017.01.008.
3. Zakrzewski W., Dobrzyński M., Szymonowicz M., Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019; 10: 68. doi: 10.1186/s13287-019-1165-5.
4. Blum B., Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle. 2009; 8(23): 3822-3830. doi: 10.4161/cc.8.23.10067.
5. Lee H.Y., Hong I.S. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci. 2017; 108(10): 1939-1946. doi: 10.1111/cas.13334.
6. Анисимов С.В. Клеточная терапия болезни Паркинсона. СПб: Н.-Л., 2014. Anisimov S.V. Cell therapy of Parkinson's disease. St. Petersburg: N.-L.; 2014.
7. Deblandre G.A., Scheers I., Sokal E.M. Stem- and progenitor cells for liver regenerative medicine. In: Stoltz J.-F., ed. Regenerative medicine and cell therapy. Amsterdam: IOS Press; 2012; 390-402.
8. Price J. The future of brain repair: a realist's guide to stem cell therapy. London: MIT Press; 2020.
9. Ciervo Y., Ning K., Jun X., et al. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener. 2017; 12(1): 85. doi: 10.1186/s13024-017-0227-3.
10. Ullah M., Sun Z. Stem cells and anti-aging genes: double-edged sword-do the same job of life extension. Stem Cell Res Ther. 2018; 9: 3. doi: 10.1186/s13287-017-0746-4.
11. Terzic A., Behfar A. Posology for regenerative therapy. Circ Res. 2017; 121: 1213-1215. doi: 10.1161/CIRCRESAHA.117.312074.
12. Zelinka A., Roelofs A.J., Kandel R.A., De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage. 2022; 30: 1547-1560.
13. Hoogduijn M.J., Lombardo E. Mesenchymal stromal cells anno 2019: Dawn of the therapeutic era? Concise Review. Stem Cells Transl Med. 2019; 8: 1126-1134.
14. Jaquet K., Krause K.T., Denschel J., et al. Reduction of myocardial scar size after implantation of mesenchymal stem cells in rats: what is the mechanism? Stem Cells Dev. 2005; 14(3): 299-309. doi: 10.1089/scd.2005.14.299.
15. Le T., Chong J. Cardiac progenitor cells for heart repair. Cell Death Discov. 2016; 2: 16052. doi: 10.1038/cddiscovery.2016.52.
16. Martin-Rendon E., Brunskill S.J., Hyde C.J., et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008; 29(15): 1807-1818. doi: 10.1093/eurheartj/ehn220.
17. Ghiroldi A., Piccoli M., Cirillo F., et al. Cell-based therapies for cardiac regeneration: a comprehensive review of past and ongoing strategies. Int J Mol Sci. 2018; 19: E3194. doi: 10.3390/ijms19103194.
18. Wernly B., Mirna M., Rezar R., et al. Regenerative cardiovascular therapies: stem cells and beyond. Int J Mol Sci. 2019; 20: E1420. doi: 10.3390/ijms20061420.
19. Christ G.J., Andersson K.-E. Introduction to regenerative pharmacology. In: Christ G.J., Andersson K.-E., eds. Regenerative pharmacology. Cambridge: Cambridge University Press; 2013; 3-15.
20. Nagy J.A., Dvorak A.M., Dvorak H.F. VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med. 2003; 13(5): 169-175. doi: 10.1016/s1050-1738(03)00056-2.
21. Schaper W., Buschmann I. VEGF and therapeutic opportunities in cardiovascular diseases. Curr Opin Biotechnol. 1999; 10(6): 541-543. doi: 10.1016/s0958-1669(99)00032-4.
22. Purdon S., Patete C.L., Glassberg M.K. Multipotent mesenchymal stromal cells for pulmonary fibrosis? Am J Med Sci. 2019; 357: 390-393. doi: 10.1016/j.amjms.2019.02.007.
23. Fisher S.A., Zhang H., Doree C., et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2015; (9): CD006536. doi: 10.1002/14651858.CD006536.pub4.
24. Fisher S.A., Doree C., Mathur A., et al. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2016; (12): CD007888. doi: 10.1002/14651858.CD007888.pub3.
25. Bardelli S., Moccetti M. Stem and progenitor cells in human cardio-pulmonary development and regeneration. Stem Cells Int. 2017; 2017: 2653142. doi: 10.1155/2017/2653142.
26. Toyserkani N.M., Jørgensen M.G., Tabatabaeifar S., et al. Concise review: a safety assessment of adipose-derived cell therapy in clinical trials: a systematic review of reported adverse events. Stem Cells Transl Med. 2017; 6: 1786-1794. doi: 10.1002/sctm.17-0031.
27. Carbone R.G., Monselise A., Bottino G., et al. Stem cells therapy in acute myocardial infarction: a new era? Clin Exp Med. 2021; 21(2): 231-237. doi: 10.1007/s10238-021-00682-3.
28. Editorial. A futile cycle in cell therapy. Should a cell therapy for heart disease with scant evidence of efficacy continue to be tested in humans? Nat Biotechnol. 2017; 35: 291. doi: 10.1038/nbt.3857.
29. Tsai I.T., Sun C.K. Stem Cell Therapy against Ischemic Heart Disease. Int J Mol Sci. 2024; 25(7): 3778. doi: 10.3390/ijms25073778.
30. Herberts C., Kwa M., Hermsen H. Risk factors in the development of stem cell therapy. J Transl Med. 2011; 9: 114. doi: 10.1186/1479-5876-9-29.
31. Яргин С.В. Некоторые аспекты применения стволовых клеток в кардиологии. Цитология. 2019; 61(6): 500-503. Jargin S.V. Some aspects of stem cell use in cardiology. Tsitologiia 2019; 61(6): 500-503. doi: 10.1134/S0041377119060099.
32. Jargin SV. Some aspects of stem cell therapy. Cyprus J Med Sci. 2020;5(2):183-185. doi: 10.5152/cjms.2020.812.
33. Шомина Е.А., Ярыгин Н.В., Ярыгин К.Н. Способ лечения ишемической ангиопатии сосудов нижних конечностей. Пат. РФ № RU2649498C1; опубл. 03.04.2018. Shomina E.A., Yarygin N.V., Yarygin K.N. Method of treatment of ischemic angiopathy of lower extremity vessels. Patent RF № RU2649498C1; published 03.04.2018.
34. Николаенко Н.С. Восстановление хрящевой ткани с помощью клеточных технологий. В кн.: Пинаев Г.П., Богданова М.С., Кольцова А.М., ред. Клеточные технологии для регенеративной медицины. РедСПб: Политехн. ун-т, 2011; 162-176. Nikolaenko N.S. Cartilage restoration with the help of cell technologies. In: Pinaev G.P., Bogdanova M.S., Koltsova A.M., eds. Cellular technologies for regenerative medicine. St. Petersburg: Polytechnic University; 2011; 162-176.
35. Mancuso P., Raman S., Glynn A., et al. Mesenchymal stem cell therapy for osteoarthritis: The critical role of the cell secretome. Front Bioeng Biotechnol. 2019; 7: 9. doi: 10.3389/fbioe.2019.00009.
36. Castro-Viñuelas R., Sanjurjo-Rodríguez C., Piñeiro-Ramil M., et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater. 2018; 36: 96-109. doi: 10.22203/eCM.v036a08.
37. Jevotovsky D.S., Alfonso A.R, Einhorn T.A., Chiu E.S. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthritis Cartilage 2018; 26: 711-729. doi: 10.1016/j.joca.2018.02.906.
38. Wiggers T.G., Winters M., Van den Boom N.A., et al. Autologous stem cell therapy in knee osteoarthritis: a systematic review of randomised controlled trials. Br J Sports Med. 2021; 55(20): 1161-1169.
39. Яргин С.В. К вопросу о роли хондропротекторов в лечении артроза: на пути к доказательной медицине Травматология и ортопедия России. 2010; 3(57):179-182. Jargin S.V. On the role of chondroprotective agents in osteoarthritis: on the way to evidence-based medicine. Traumatology and Orthopedics of Russia. 2010; 3(57):179-182. doi: 10.21823/2311-2905-2010-0-3-179-182.
40. Lukomska B., Stanaszek L., Zuba-Surma E., et al. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019; 2019: 9628536. doi:10.1155/2019/9628536.
41. Rashid H., Kwoh C.K. Should platelet-rich plasma or stem cell therapy be used to treat osteoarthritis? Rheum Dis Clin North Am. 2019; 45: 417-438. doi: 10.1016/j.rdc.2019.04.010.
42. Whittle S.L., Johnston R.V., McDonald S., et al. Stem cell injections for osteoarthritis of the knee. Cochrane Database Syst Rev. 2025; 4(4): CD013342. doi: 10.1002/14651858.CD013342.pub2.
43. Evenbratt H., Andreasson L., Bicknell V., et al. Insights into the present and future of cartilage regeneration and joint repair. Cell Regen. 2022; 11(1): 3. doi: 10.1186/s13619-021-00104-5.
44. Torrecillas-Baena B., Pulido-Escribano V., Dorado G., et al. Clinical potential of mesenchymal stem cell-derived exosomes in bone regeneration. J Clin Med. 2023; 12(13): 4385.
45. Grogan S., Kopcow J., D'Lima D. Challenges facing the translation of embryonic stem cell therapy for the treatment of cartilage lesions. Stem Cells Transl Med. 2022; 11: 1186-1195.
46. Shang Z., Wanyan P., Zhang B., et al. A systematic review, umbrella review, and quality assessment on clinical translation of stem cell therapy for knee osteoarthritis: Are we there yet? Stem Cell Res Ther. 2023; 14(1): 91.
47. Huang Z., Zhang S., Cao M., et al. What is the optimal dose of adipose-derived mesenchymal stem cells treatment for knee osteoarthritis? A conventional and network meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2023; 14(1): 245. doi: 10.1186/s13287-023-03475-5.
48. Kang S.H., Kim M.Y., Eom Y.W., Baik S.K. Mesenchymal stem cells for the treatment of liver disease: Present and perspectives. Gut Liver. 2020; 14(3): 306-315. doi: 10.5009/gnl18412.
49. Guo Y., Chen B., Chen L.-J., et al. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis. J Zhejiang Univ Sci B. 2016; 17: 831-841. doi: 10.1631/jzus.B1600101.
50. Mishra P.J., Mishra P.J., Humeniuk R., et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008; 68(11): 4331-4339. doi: 10.1158/0008-5472.CAN-08-0943.
51. Nicolas C., Wang Y., Luebke-Wheeler J., Nyberg S.L. Stem cell therapies for treatment of liver disease. Biomedicines. 2016; 4: E2. doi: 10.3390/biomedicines4010002.
52. Donzelli E., Scuteri A. Mesenchymal stem cells: a trump card for the treatment of diabetes? Biomedicines. 2020; 8(5): 112. doi: 10.3390/biomedicines8050112.
53. Shapiro A.M.J. Gearing up for stem cell-derived beta cells-are we ready? Transplantation. 2018; 102: 1207-1208. doi: 10.1097/TP.0000000000002214.
54. van der Torren C.R., Zaldumbide A., Duinkerken G., et al. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia. 2017; 60: 126-133. doi: 10.1007/s00125-016-4125-y.
55. Cheng S.K., Park E.Y., Pehar A., et al. Current progress of human trials using stem cell therapy as a treatment for diabetes mellitus. Am J Stem Cells. 2016; 5(3): 74-86.
56. Kornicka K., Houston J., Marycz K. Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev Rep. 2018; 14: 337-345. doi: 10.1007/s12015-018-9809-x
57. van de Vyver M. Intrinsic mesenchymal stem cell dysfunction in diabetes mellitus: implications for autologous cell therapy. Stem Cells Dev. 2017; 26: 1042-1053. doi: 10.1089/scd.2017.0025.
58. Inoue R., Nishiyama K., Li J., et al. The feasibility and applicability of stem cell therapy for the cure of type 1 diabetes. Cells. 2021; 10(7): 1589. doi: 10.3390/cells10071589.
59. Ревищин А.В., Павлова Г.В., Охотин В Е., Яковлева К.А. Клеточная терапия при нейродегенеративных заболеваниях. М.: МПГУ, 2017. Revishchin A.B., Pavlova G.V., Okhotin V.E., Iakovleva K.A. Cell therapy for neurodegenerative diseases. Moscow: MPGU; 2017.
60. Cerri S., Greco R., Levandis G., Ghezzi C., Mangione A.S., Fuzzati-Armentero M.T., et al. Intracarotid infusion of mesenchymal stem cells in an animal model of Parkinson's disease, focusing on cell distribution and neuroprotective and behavioral effects. Stem Cells Transl Med. 2015; 4(9): 1073-1085. doi: 10.5966/sctm.2015-0023.
61. Lee N.K., Yang J., Chang E.H., et al. Intra-arterially delivered mesenchymal stem cells are not detected in the brain parenchyma in an Alzheimer's disease mouse model. PLoS One. 2016; 11(5): e0155912. doi:10.1371/journal.pone.0155912.
62. Gugliandolo A., Bramanti P., Mazzon E. Mesenchymal stem cells: a potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int. 2019; 2019: 3675627. doi: 10.1155/2019/3675627.
63. Fleifel D., Rahmoon M.A., Al Okda A., et al. Recent advances in stem cells therapy: a focus on cancer, Parkinson's Disease’s and Alzheimer’s. J Genet Eng Biotechnol. 2018; 16: 427-432. doi: 10.1016/j.jgeb.2018.09.002.
64. Amariglio N., Hirshberg A., Scheithauer B.W., et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009; 6: e1000029. doi: 10.1371/journal.pmed.1000029.
65. Goutman S.A., Savelieff M.G., Sakowski S.A., Feldman E.L. Stem cell treatments for amyotrophic lateral sclerosis: a critical overview of early phase trials. Expert Opin Investig Drugs. 2019; 28: 525-543. doi: 10.1080/13543784.2019.1627324.
66. Marsh S.E., Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int. 2017; 106: 94-100. doi: 10.1016/j.neuint.2017.02.006.
67. Willing A.E., Das M., Howell M., et al. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther. 2020; 26(6): 616-627. doi: 10.1111/cns.13300.
68. Gavasso S., Kråkenes T., Olsen H., Evjenth E.C., Ytterdal M., Haugsøen J.B., Kvistad C.E. The therapeutic mechanisms of mesenchymal stem cells in MS-A review focusing on neuroprotective properties. Int J Mol Sci. 2024; 25(3): 1365. doi: 10.3390/ijms25031365.
69. Henriques D., Moreira R., Schwamborn J., et al. Successes and hurdles in stem cells application and production for brain transplantation. Front Neurosci. 2019; 13: 1194. doi: 10.3389/fnins.2019.01194.
70. Alessandrini M., Preynat-Seauve O., De Bruin K., Pepper M.S. Stem cell therapy for neurological disorders. S Afr Med J. 2019; 109(8b): 70-77. doi: 10.7196/SAMJ.2019.v109i8b.14009.
71. Cuascut F.X., Hutton G.J. Stem Cell-Based Therapies for Multiple Sclerosis: Current Perspectives. Biomedicines. 2019; 7(2): 26. doi: 10.3390/biomedicines7020026.
72. Harris V.K., Stark J., Vyshkina T., et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in prgressive multiple sclerosis. EBioMedicine. 2018; 29: 23-30. doi: 10.1016/j.ebiom.2018.02.002.
73. Osborn T.M., Hallett P.J., Schumacher J.M., Isacson O. Advantages and recent developments of autologous cell therapy for Parkinson's Disease’s disease patients. Front Cell Neurosci. 2020; 14: 58. doi:10.3389/fncel.2020.00058.
74. Мхеидзе Д.М., Гришина В.В., Мелкова К.Н. Заготовка гемопоэтических стволовых клеток: методические рекомендации. М.: Ин-т стволовых клеток человека, 2007. Mkheidze D.M., Grishina V.V., Melkova K.N. Harvesting of hematopoietic stem cells: methodical recommendations. Moscow: Institute of human stem cells; 2007.
75. Новик А.А., Ионова Т.И., Иванов Р.А. Аутологичная трансплантация стволовых кроветворных клеток - новый метод лечения рассеянного склероза. СПб: Береста, 2008. Novik A.A., Ionova T.I., Ivanov R.A. Autotransplantation of hematopoietic stem cells: the new treatment method of multiple sclerosis. St. Petersburg: Beresta; 2008.
76. Christodoulou M.V., Petkou E., Atzemoglou N., Gkorla E., Karamitrou A., Simos Y.V., et al. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Hum Cell. 2024; 37(1): 9-53. doi: 10.1007/s13577-023-01006-1.
77. Scudellari M. How iPS cells changed the world. Nature. 2016; 534: 310-312. doi: 10.1038/534310a.
78. Pappolla M.A., Wu P., Fang X., Poeggeler B., Sambamurti K., Wisniewski T., Perry G. Stem cell interventions in neurology: from bench to bedside. J Alzheimers Dis. 2024; 101(s1): S395-S416. doi: 10.3233/JAD-230897.
79. Emborg M.E., Metzger J.M., D'Amour K., Colwell J.C., Neumann L.C., Zhang A., Federoff H.J. Advantages and challenges of using allogeneic vs. autologous sources for neuronal cell replacement in Parkinson's disease: Insights from non-human primate studies. Brain Res Bull. 2025; 224: 111297. doi: 10.1016/j.brainresbull.2025.111297.
80. Valadez-Barba V., Juárez-Navarro K., Padilla-Camberos E., Díaz N.F., Guerra-Mora J.R., Díaz-Martínez N.E. Parkinson's disease: an update on preclinical studies of induced pluripotent stem cells. Neurologia (Engl Ed). 2023; 38(9): 681-694. doi: 10.1016/j.nrleng.2023.10.004.
81. Tartaglione A.M., Popoli P., Calamandrei G. Regenerative medicine in Huntington’s disease: Strengths and weaknesses of preclinical studies. Neurosci Biobehav Rev. 2017; 77: 32-47. doi: 10.1016/j.neubiorev.2017.02.017.
82. Polgar S., Finkelstein D.I., Karimi L. Overcoming methodological challenges for advancing stem cell therapies in Parkinson's Disease. Cell Transplant. 2024; 33: 9636897241246355. doi: 10.1177/09636897241246355.
83. Oz T., Kaushik A., Kujawska M. Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects. World J Stem Cells. 2023; 15(7): 687-700. doi: 10.4252/wjsc.v15.i7.687.
84. Bruno A., Milillo C., Anaclerio F., Buccolini C., Dell'Elice A., Angilletta I., et al. Perinatal Tissue-derived stem cells: an emerging therapeutic strategy for challenging neurodegenerative diseases. Int J Mol Sci. 2024; 25(2): 976. doi: 10.3390/ijms25020976.
85. Hamadelseed O., Skutella T. Stem cell-based therapeutic strategies for down syndrome and Alzheimer's disease. Stem Cell Res Ther. 2025; 16(1): 420. doi: 10.1186/s13287-025-04556-3.
86. Duncan T., Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017; 8: 111. doi: 10.1186/s13287-017-0567-5.
87. Kim H.J., Seo S.W., Chang J.W., et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimers Dement. 2015; 1: 95-102. doi: 10.1016/j.trci.2015.06.007.
88. Argibay B., Trekker J., Himmelreich U., et al. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep. 2017; 7: 40758. doi:10.1038/srep40758.
89. Kenmuir C.L., Wechsler L.R. Update on cell therapy for stroke. Stroke Vasc Neurol. 2017; 2(2): 59-64. doi: 10.1136/svn-2017-000070.
90. Chrostek M.R., Fellows E.G., Crane A.T., et al. Efficacy of stem cell-based therapies for stroke. Brain Res. 2019; 1722: 146362. doi:10.1016/j.brainres.2019.146362.
91. Krause M., Phan T.G., Ma H., et al. Cell-based therapies for stroke: are we there yet? Front Neurol. 2019; 10: 656. doi:10.3389/fneur.2019.00656.
92. Surugiu R., Olaru A., Hermann D.M., et al. Recent advances in mono- and combined stem cell therapies of stroke in animal models and humans. Int J Mol Sci. 2019; 20(23): 6029. doi: 10.3390/ijms20236029.
93. Detante O., Legris L., Moisan A., Rome C. Cell therapy and functional recovery of stroke. Neuroscience. 2024; 550: 79-88. doi: 10.1016/j.neuroscience.2023.11.027.
94. Brooks B., Ebedes D., Usmani A., Gonzales-Portillo J.V., Gonzales-Portillo D., Borlongan C.V. Mesenchymal stromal cells in ischemic brain injury. Cells. 2022;11(6):1013. doi: 10.3390/cells11061013.
95. Borlongan C.V. Concise review: stem cell therapy for stroke patients: are we there yet? Stem Cells Transl Med. 2019; 8(9): 983-988. doi:10.1002/sctm.19-0076.
96. Steinberg G.K., Kondziolka D., Wechsler L.R., et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J Neurosurg. 2018; 1-11. doi:10.3171/2018.5.JNS173147.
97. Fernández-Susavila H., Bugallo-Casal A., Castillo J., Campos F. Adult stem cells and induced pluripotent stem cells for stroke treatment. Front Neurol. 2019; 10: 908. doi:10.3389/fneur.2019.00908.
98. Yamazaki K., Kawabori M., Seki T., Houkin K. Clinical trials of stem cell treatment for spinal cord injury. Int J Mol Sci. 2020; 21(11): 3994. doi:10.3390/ijms21113994.
99. Troiani Z., Chipman D.E., Ryan T.J., Haider M.N., Kowalski D., Hasanspahic B., et al. Efficacy of mesenchymal and embryonic stem cell therapy for the treatment of spinal cord injury: a systematic review and meta-analysis of human studies. Global Spine J. 2025; 21925682251345450. doi: 10.1177/21925682251345450.
100. Tiwari S., Khan S., Kumar S.V., Rajak R., Sultana A., Pasha S.A., et al. Efficacy and safety of neural stem cell therapy for spinal cord injury: A systematic literature review. Therapie. 2021; 76(3): 201-210. doi: 10.1016/j.therap.2020.06.011.
101. Kvistad C.E., Kråkenes T., Gjerde C., Mustafa K., Rekand T., Bø L. Safety and clinical efficacy of mesenchymal stem cell treatment in traumatic spinal cord injury, multiple sclerosis and ischemic stroke - a systematic review and meta-analysis. Front Neurol. 2022; 13: 891514. doi: 10.3389/fneur.2022.891514.
102. Frawley L., Taylor N.T., Sivills O., et al. Stem cell therapy for the treatment of amyotrophic lateral sclerosis: comparison of the efficacy of mesenchymal stem cells, neural stem cells, and induced pluripotent stem cells. Biomedicines. 2024; 13(1): 35. doi: 10.3390/biomedicines13010035.
103. Cofano F., Boido M., Monticelli M., et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019; 20(11): 2698.
104. Beers G.J. Biological effects of weak electromagnetic fields from 0 Hz to 200 MHz: a survey of the literature with special emphasis on possible magnetic resonance effects. Magn Reson Imaging. 1989; 7: 309-331. doi: 10.1016/0730-725x(89)90556-0.
105. Cucurachi S., Tamis W.L., Vijver M.G., et al. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int. 2013; 51: 116-40. doi: 10.1016/j.envint.2012.10.009.
106. Яргин С.В. О термоалгометрии и измерении сопротивления кожи в акупунктурных точках с позиций физики. Молодой ученый. 2013; 2 (49): 14-17. Jargin S.V. On the thermoalgometry and skin conductance measurements in the acupuncture points from the viewpoint of physics. Milodoi Uchenyi. 2013; 2 (49): 14-17.
107. Tiwari S.S., Desai P.N. Unproven stem cell therapies in India: regulatory challenges and proposed paths forward. Cell Stem Cell. 2018; 23: 649-652. doi: 10.1016/j.stem.2018.10.007.
108. Woodhead M. 80% of China's clinical trial data are fraudulent, investigation finds. BMJ. 2016; 355: 5396.
109. Rota C., Morigi M., Imberti B. Stem cell therapies in kidney diseases: progress and challenges. Int J Mol Sci. 2019; 20(11): 2790. doi:10.3390/ijms20112790.
110. Krimsky S. Stem cell dialogues: a philosophical and scientific inquiry into medical frontiers. New York: Columbia University Press; 2015.
111. Пинаев Г.П. Проблемы и перспективы развития клеточных технологий. В кн.: Пинаев Г.П., Богданова М.С., Кольцова А.М., ред. Клеточные технологии для регенеративной медицины. РедСПб: Политехн. ун-т, 2011; 162-176. Nikolaenko N.S. Cartilage restoration with the help of cell technologies. In: Pinaev G.P., Bogdanova M.S., Koltsova A.M., eds. Cellular technologies for regenerative medicine. St. Petersburg: Polytechnic University; 2011; 8-24.
112. Knoepfler P. Stem cells: an insider’s guide. Singapore: World scientific; 2014.
113. Lyons S., Salgaonkar S., Flaherty G.T. International stem cell tourism: a critical literature review and evidence-based recommendations. Int Health. 2022; 14(2): 132-141.
114. Berkowitz A.L., Miller M.B., Mir S.A., et al. Glioproliferative lesion of the spinal cord as a complication of "Stem-Cell Tourism". N Engl J Med. 2016; 375(2): 196-198.
115. Konomi K., Tobita M., Kimura K., Sato D. New Japanese initiatives on stem cell therapies. Cell Stem Cell. 2015; 16(4): 350-352.
116. Zarzeczny A., Clark M. Unproven stem cell-based interventions & physicians' professional obligations; a qualitative study with medical regulatory authorities in Canada. BMC Med Ethics. 2014; 15: 75.
117. Dlouhy B.J., Awe O., Rao R.C., et al. Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: Case report. J. Neurosurg. Spine. 2014; 21(4): 618-622. doi: 10.3171/2014.5.SPINE13992.
118. Heslop J., Hammond T., Santeramo I., et al. Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med. 2015; 4(4): 389-400. doi: 10.5966/sctm.2014-0110.
119. Devolder K. The ethics of embryonic stem cell research. Oxford University Press; 2015.
120. Jiang L., Dong B.H. Fraudsters operate and officialdom turns a blind eye: a proposal for controlling stem cell therapy in China. Med Health Care Philos. 2016; 19: 403-410. doi: 10.1007/s11019-016-9692-7.
121. Fujita M., Hatta T., Ozeki R., Akabayashi A. The current status of clinics providing private practice cell therapy in Japan. Regen Med. 2016; 11: 23-32. doi: 10.2217/rme.15.64.
122. Rheault-Henry M., White I., Grover D., Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells. 2021; 13(4): 236-259. doi: 10.4252/wjsc.v13.i4.236.
123. Amezcua L., Nelson F. Ethical considerations of patient-funded research for multiple sclerosis therapeutics. Neurotherapeutics. 2017; 14: 945-951. doi: 10.1007/s13311-017-0560-9.
124. Zhang Y., Zhuang H., Ren X., et al. Therapeutic effects of different intervention forms of human umbilical cord mesenchymal stem cells in the treatment of osteoarthritis. Front Cell Dev Biol. 2023; 11: 1246504.