Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
The Principle of Methodological Transport in Univalent Foundations: A Philosophical Analysis Abdulla Kachkynbaev
1. [1] S. Awodey. Type theory and homotopy. In P. Dybjer, S. Lindström, E. Palmgren,
2. & G. Sundholm (Eds.), Epistemology versus Ontology: Essays on the Philosophy and
3. Foundations of Mathematics in Honour of Per Martin-Löf, pp. 183–201. Springer,
4. [2] P. Benacerraf. What numbers could not be. The Philosophical Review, 74(1): 47–73,
5. [3] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
6. [4] U. Buchholtz, T. de Jong, and E. Rijke. Epimorphisms and acyclic types in uni-
7. valent foundations. The Journal of Symbolic Logic, 2024. (Published online 2024).
8. doi:10.1017/jsl.2024.76.
9. [5] L. E. J. Brouwer. De onbetrouwbaarheid der logische principes (The unreliability of
10. the logical principles). Tijdschrift voor Wijsbegeerte, 2:152–158, 1908.
11. [6] D. Fiorenza, H. Sati, and U. Schreiber. A higher stacky perspective on Chern-Simons
12. theory. In Mathematical Aspects of Quantum Field Theories, pp. 153-211. Springer,
13. [7] H. Freudenthal. Über die Klassen der Sphärenabbildungen. Compositio Mathematica,
14. 5:299–314, 1938.
15. [8] G. Higman. A finitely generated infinite simple group. The Journal of the London
16. Mathematical Society, s1-26(1): 61–64, 1951.
17. [9] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Classics in Mathe-
18. matics. Springer, 2001. (Reprint of the 1977 Edition).
19. [10] S. Mac Lane. Categories for the Working Mathematician, 2nd ed. Graduate Texts in
20. Mathematics, 5. Springer, 1998.
21. [11] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
22. [12] D. Quillen. Higher algebraic K-theory: I. In Algebraic K-Theory, I: Higher K-
23. Theories, volume 341 of Lecture Notes in Mathematics, pp. 85–147. Springer, 1973.
24. [13] F. Waldhausen. Algebraic K-theory of spaces. In Algebraic and Geometric Topology,
25. volume 1126 of Lecture Notes in Mathematics, pp. 318–419. Springer, 1985.
26. [14] J. A. Neisendorfer. Algebraic Methods in Unstable Homotopy Theory. Cambridge
27. University Press, 2010.
28. [15] E. Riehl. Categorical Homotopy Theory. Cambridge University Press, 2014.
29. [16] U. Schreiber. Differential Cohomology in a Cohesive Infinity-Topos. 2013. arXiv:1310.7930 [math-ph].
30. [17] J.-P. Serre. Trees. Springer-Verlag, 1980.
31. [18] S. Shapiro. Thinking about Mathematics: The Philosophy of Mathematics. Oxford
32. University Press, 2000.
33. [19] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
34. of Mathematics. Institute for Advanced Study, 2013.
35. [20] V. Voevodsky. A very short note on the homotopy λ-calculus. 2006. Available at
36. https://www.math.ias.edu/vladimir/files/hlambda.pdf.
37. [21] D. Wärn. Path spaces of pushouts. 2023. Available at https://dwarn.se/po-paths.pdf.
38. [22] S. Eilenberg and S. Mac Lane. Relations between homology and homotopy groups of
39. spaces. Annals of Mathematics, 46(3): 480–509, 1945.
40. [23] H. Cartan and S. Eilenberg. Homological Algebra. Princeton University Press, 1956.
41. 24] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
42. of Mathematics. Institute for Advanced Study, 2013.
43. [25] N. Steenrod. The Topology of Fibre Bundles. Princeton University Press, 1951.
44. [26] J. Sterling and C. Angiuli. Synthetic Cohomology in Homotopy Type Theory. Journal
45. of the Institute of Mathematics of Jussieu, 20(4): 1239–1287, 2021.
46. [27] C. A. Weibel. The K-Book: An Introduction to Algebraic K-Theory. Graduate Studies
47. in Mathematics, 145. American Mathematical Society, 2013.
48. [28] Milnor, J. Introduction to Algebraic K-Theory. Annals of Mathematics Studies, No.
49. Princeton University Press, 1971.
50. [29] Bass, H. Algebraic K-Theory. W. A. Benjamin, Inc., 1968.
51. [30] Stein, M. R. ”The Bass-Milnor-Serre sequence for certain matrix groups.” In Algebraic
52. K-Theory, volume 854 of Lecture Notes in Mathematics, pp. 396-407. Springer, 1981.
53. [31] Hovey, M. Model Categories. Mathematical Surveys and Monographs, 63. American Mathematical Society, 1999.