Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Slope--Weight Coincidence Loci in $p$-adic Hodge Theory and Applications to Modularity Lifting
1. J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 59–111.
2. G. Faltings, Crystalline cohomology and p-adic Galois representations, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, 1988), Johns Hopkins University Press, 1989, 25–80.
3. P. Deligne et al., Groupes de monodromie en géométrie algébrique (SGA 7), Lecture Notes in Mathematics, vols. 288 and 340, Springer, 1972–1973.
4. J. S. Milne, Arithmetic Duality Theorems, Academic Press, 1986 (2nd edition available on the author’s website).
5. P. Scholze, p-adic Hodge theory for rigid-analytic varieties, Forum of Mathematics, Pi 1 (2013), e1, 77 pp.
6. O. Brinon and B. Conrad, p-adic Hodge Theory, Notes from the CMI Summer School, available at http://math.stanford.edu/~conrad
7. P. Colmez and J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Inventiones Mathematicae 140 (2000), no. 1, 1–43.
8. O. Hyodo and K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 221–268.
9. B. Mazur, Deforming Galois representations, in Galois Groups over ℚ (Berkeley, 1987), Springer, 1989, 385–437.
10. M. Kisin, Moduli of finite flat group schemes, and modularity, Annals of Mathematics (2) 170 (2009), no. 3, 1085–1180.
11. L. Berger and C. Breuil, Sur quelques représentations potentiellement cristallines de GL₂(ℚₚ), Astérisque 330 (2010), 155–211.
12. K. Kedlaya, J. Pottharst, and L. Xiao, Cohomology of arithmetic families of (φ,Γ)-modules, Journal of the American Mathematical Society 27 (2014), no. 4, 1043–1115.
13. E. Hellmann, Families of trianguline representations and finite slope spaces, Mathematische Annalen 367 (2017), no. 3–4, 859–904.
14. F. Calegari and D. Geraghty, Correction to: Modularity lifting beyond the Taylor–Wiles method, Inventiones Mathematicae 227 (2022), 855–856.
15. N. M. Katz, Slope Filtration of F-Crystals, Astérisque 63 (1979), Modular Functions of One Variable IV, 113–163, Société Mathématique de France.
16. M. Rapoport and M. Richartz, On the Classification and Specialization of F-Isocrystals with Additional Structure, Compositio Mathematica 103 (1996), no. 2, 153–181.
17. F. Diamond, The Taylor–Wiles construction and multiplicity one, Inventiones Mathematicae 128 (1997), 379–391.
18. K. Fujiwara, Deformation rings and Hecke algebras in the totally real case, arXiv:math/0602606 (2006).
19. M. Kisin, Moduli of finite flat group schemes and modularity, Annals of Mathematics 170 (2009), 1085–1180.
20. F. Calegari and D. Geraghty, Modularity lifting beyond the Taylor–Wiles method, Inventiones Mathematicae 211 (2018), no. 1, 297–433.
21. M. Kisin, Potentially semi-stable deformation rings, Journal of the American Mathematical Society 21 (2008), no. 2, 513–546.
22. The Stacks Project Authors, Stacks Project, Tag 01ZW (Flag varieties), https://stacks.math.columbia.edu/tag/01ZW
23. O. Brinon and B. Conrad, p-adic Hodge Theory (2010), available notes; see §§13–14 for families of filtered (φ,N)-modules.
24. W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2, Springer-Verlag, Berlin, 1998.
25. J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009).
26. R. Liu and X. Zhu, Rigidity and a Riemann–Hilbert correspondence for p-adic local systems, Inventiones Mathematicae 207 (2017), no. 1, 291–343.
27. P. Colmez, Représentations triangulines de dimension deux, Astérisque 330 (2010), 213–262.