Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
The role of long noncoding RNA H19 in the pathogenesis of polycystic ovary syndrome
1. Адамян, Л. В., Андреева, Е. Н., Абсатарова, Ю. С., Григорян, О. Р., Дедов, И. И., Мельниченко, Г. А., ... & Ярмолинская, М. И. (2022). Клинические рекомендации" Синдром поликистозных яичников". Проблемы эндокринологии, 68(2), 112-127.
2. Balen AH, Morley LC, Misso M, et al. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Human Reproduction Update. 2016;22(6):687-708. doi:10.1093/humupd/dmw025
3. Ajmal N, Khan SZ, Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. European Journal of Obstetrics and Gynecology and Reproductive Biology: X. 2019;3. doi:10.1016/j.eurox.2019.100060
4. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nature Reviews Endocrinology. 2011;7(4):219-231. doi:10.1038/nrendo.2010.217
5. Joseph S, Barai RS, Bhujbalrao R, Idicula-Thomas S. PCOSKB: A knowledgebase on genes, diseases, ontology terms and biochemical pathways associated with polycystic ovary syndrome. Nucleic Acids Research. 2016;44(D1):D1032-D1035. doi:10.1093/nar/gkv1146
6. Ali RM, Lomteva S v., Aleksandrova AA, et al. Differential expression of CYP19A1 and lncRNA-CTBP1-AS in the granulosa cells of women with polycystic ovary syndrome. Research Results in Biomedicine. 2024;10(2):292-302. doi:10.18413/2658-6533-2024-10-2-0-9
7. Xu N, Geller DH, Jones MR, Funari VA, Azziz R, Goodarzi MO. Comprehensive assessment of expression of insulin signaling pathway components in subcutaneous adipose tissue of women with and without polycystic ovary syndrome. Journal of Clinical & Translational Endocrinology. 2015;2(3):99-104. doi:10.1016/J.JCTE.2015.06.002
8. Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. Journal of Ovarian Research. 2021;14(1):125. doi:10.1186/s13048-021-00879-w
9. Lin X, Nie X, Deng P, Wang L, Hu C, Jin N. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs. Non-coding RNA Research. 2024a;9(4):1023-1032. doi:10.1016/J.NCRNA.2024.05.003
10. Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology. 2023;24(6):430-447. doi:10.1038/s41580-022-00566-8
11. Adjeroh DA, Zhou X, Paschoal AR, et al. Challenges in LncRNA Biology: Views and Opinions. Non-Coding RNA. 2024;10(4):43. doi:10.3390/ncrna10040043
12. Huang X, Hao C, Bao H, Wang M, Dai H. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients. Journal of Assisted Reproduction and Genetics. 2016;33(1):111-121. doi:10.1007/s10815-015-0630-z
13. Lin X, Lu Y, Zhang C, et al. LncRNADisease v3.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Research. 2024b;52(D1):D1365-D1369. doi:10.1093/nar/gkad828
14. Matouk I, Raveh E, Ohana P, et al. The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention. International Journal of Molecular Sciences. 2013;14(2):4298-4316. doi:10.3390/ijms14024298
15. Fukuhara M, Ma Y, Nagasawa K, Toyoshima F. A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19 transcription. Scientific Reports. 2017;7(1):45815. doi:10.1038/srep45815
16. Xia Y, Pei T, Zhao J, et al. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discovery. 2024;10(1):76. doi:10.1038/s41420-024-01832-8
17. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature. 1991;351(6322):153-155. doi:10.1038/351153a0
18. Smits G, Mungall AJ, Griffiths-Jones S, et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nature Genetics. 2008;40(8):971-976. doi:10.1038/ng.168
19. Bouwland-Both MI, van Mil NH, Stolk L, et al. DNA Methylation of IGF2DMR and H19 Is Associated with Fetal and Infant Growth: The Generation R Study. PLoS ONE. 2013;8(12):e81731. doi:10.1371/journal.pone.0081731
20. Pope C, Mishra S, Russell J, Zhou Q, Zhong XB. Targeting H19, an Imprinted Long Non-Coding RNA, in Hepatic Functions and Liver Diseases. Diseases. 2017;5(1):11. doi:10.3390/diseases501001
21. Ammar M.N., Milutina N.P., Butenko E.V., Ali R.M., Shkurat T.P. Role of LncRNA H19 in developing obesity, and potential regulatory mechanism of its differential expression. Medical Genetics. 2023;22(3):3-9. (In Russ.) https://doi.org/10.25557/2073-7998.2023.03.3-9
22. Peng Y, Guo R, Shi B, Li D. The role of long non-coding RNA H19 in infertility. Cell Death Discovery. 2023;9(1):268. doi:10.1038/s41420-023-01567-y
23. Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes & Development. 1998;12(23):3693-3702. doi:10.1101/gad.12.23.3693
24. Tucci V, Isles AR, Kelsey G, et al. Genomic Imprinting and Physiological Processes in Mammals. Cell. 2019;176(5):952-965. doi:10.1016/j.cell.2019.01.043
25. Kallen AN, Zhou XB, Xu J, et al. The Imprinted H19 LncRNA Antagonizes Let-7 MicroRNAs. Molecular Cell. 2013;52(1):101-112. doi:10.1016/j.molcel.2013.08.027
26. Liao J, Chen B, Zhu Z, et al. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes & Diseases. 2023;10(4):1351-1366. doi:10.1016/j.gendis.2023.02.008
27. Qin L, Huang C can, Yan X min, Wang Y, Li Z yi, Wei X cai. Long non-coding RNA H19 is associated with polycystic ovary syndrome in Chinese women: a preliminary study. Endocrine Journal. 2019;66(7):587-595. doi:10.1507/endocrj.EJ19-0004
28. Li L, Wei J, Hei J, Ren Y, Li H. Long non-coding RNA H19 regulates proliferation of ovarian granulosa cells via STAT3 in polycystic ovarian syndrome. Archives of Medical Science. 2019;17(3):785-791. doi:10.5114/aoms.2019.89254
29. Chen Z, Liu L, Xi X, Burn M, Karakaya C, Kallen AN. Aberrant H19 Expression Disrupts Ovarian Cyp17 and Testosterone Production and Is Associated with Polycystic Ovary Syndrome in Women. Reproductive Sciences. 2022;29(4):1357-1367. doi:10.1007/s43032-021-00700-5
30. Wang L, Fan H, Zou Y, et al. Aberrant Expression of Long Non-coding RNAs in Exosomes in Follicle Fluid From PCOS Patients. Frontiers in Genetics. 2021;11. doi:10.3389/fgene.2020.608178
31. Rashad NM, Elnagar WM, Issa DR, Hussien MHS, Atef RM, Afifi H. The impact of long non-coding RNA H19 on metabolic features and reproductive phenotypes of Egyptian women with polycystic ovary syndrome. Middle East Fertility Society Journal. 2024;29(1):7. doi:10.1186/s43043-024-00167-9
32. Qin C, Xia X, Fan Y, et al. A novel, noncoding-RNA-mediated, post-transcriptional mechanism of anti-Mullerian hormone regulation by the H19/let-7 axis†. Biology of Reproduction. 2019;100(1):101-111. doi:10.1093/biolre/ioy172
33. Xia X, Burn MS, Chen Y, Karakaya C, Kallen A. The relationship between H19 and parameters of ovarian reserve. Reproductive Biology and Endocrinology. 2020;18(1):46. doi:10.1186/s12958-020-00578-z
34. Sun X, Yan X, Liu K, et al. lncRNA H19 acts as a ceRNA to regulate the expression of CTGF by targeting miR-19b in polycystic ovary syndrome. Brazilian Journal of Medical and Biological Research. 2020;53(11). doi:10.1590/1414-431x20209266
35. Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cellular & Molecular Immunology. 2021;18(9):2114-2127. doi:10.1038/s41423-021-00740-6
36. Pan J, Xie J, Huang L, et al. miR‐29a‐3p promotes the regulatory role of eicosapentaenoic acid in the NLRP3 inflammasome and autophagy in microglial cells. The Kaohsiung Journal of Medical Sciences. 2023;39(6):565-575. doi:10.1002/kjm2.12670
37. Chen J, Zhu Z, Xu S, et al. HDAC1 participates in polycystic ovary syndrome through histone modification by regulating H19/miR-29a-3p/NLRP3-mediated granulosa cell pyroptosis. Molecular and Cellular Endocrinology. 2023;573:111950. doi:10.1016/j.mce.2023.111950
38. Barber TM, Dimitriadis GK, Andreou A, Franks S. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance. Clinical Medicine. 2015;15(6):s72-s76. doi:10.7861/clinmedicine.15-6-s72
39. Moghetti P. Insulin Resistance and Polycystic Ovary Syndrome. Current Pharmaceutical Design. 2016;22(36):5526-5534. doi:10.2174/1381612822666160720155855
40. Wang Q, Shang J, Zhang Y, Zhou W. Metformin and sitagliptin combination therapy ameliorates polycystic ovary syndrome with insulin resistance through upregulation of lncRNA H19. Cell Cycle. 2019b;18(19):2538-2549. doi:10.1080/15384101.2019.1652036
41. Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. International Journal of Molecular Sciences. 2022;23(24):16054. doi:10.3390/ijms232416054
42. Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long noncoding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: A preliminary study. Bosnian Journal of Basic Medical Sciences. Published online January 30, 2020. doi:10.17305/bjbms.2019.4533
43. Goyal N, Sivadas A, Shamsudheen K v., et al. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output. Scientific Reports. 2017;7(1):8312. doi:10.1038/s41598-017-08281-7
44. Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Research. 2014;42(22):13799-13811. doi:10.1093/nar/gku1160
45. Li Y, Tang Y, Shi S, et al. Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus via the PI3K/Akt Pathway. ACS Applied Materials & Interfaces. 2021;13(34):40354-40364. doi:10.1021/acsami.1c11468
46. Taheri R, Mokhtari Y, Yousefi A, Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biology International. 2024;48(8):1049-1068. doi:10.1002/cbin.12189
47. Li T, Mo H, Chen W, et al. Role of the PI3K-Akt Signaling Pathway in the Pathogenesis of Polycystic Ovary Syndrome. Reproductive Sciences. 2017;24(5):646-655. doi:10.1177/1933719116667606
48. Hodge DR, Cho E, Copeland TD, et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics. 2007;4(6):387-398.
49. Li B, Zhao J, Ma J xiong, et al. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone. 2018;111:82-91. doi:10.1016/j.bone.2018.03.017
50. Lerchbaum E, Schwetz V, Rabe T, Giuliani A, Obermayer-Pietsch B. Hyperandrogenemia in Polycystic Ovary Syndrome: Exploration of the Role of Free Testosterone and Androstenedione in Metabolic Phenotype. PLoS ONE. 2014;9(10):e108263. doi:10.1371/journal.pone.0108263
51. Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocrine Reviews. 2016;37(5):467-520. doi:10.1210/er.2015-1104
52. Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF, McAllister. JM. Differential Activity of the Cytochrome P450 17α-Hydroxylase and Steroidogenic Acute Regulatory Protein Gene Promoters in Normal and Polycystic Ovary Syndrome Theca Cells. The Journal of Clinical Endocrinology & Metabolism. 2000;85(6):2304-2311. doi:10.1210/jcem.85.6.6631
53. Men Y, Fan Y, Shen Y, Lu , Lingeng, Kallen AN. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis. Endocrinology. 2017;158(2):402-409. doi:10.1210/en.2016-1340
54. Frost RJA, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proceedings of the National Academy of Sciences. 2011;108(52):21075-21080. doi:10.1073/pnas.1118922109
55. Xia Z, Yan R, Duan F, Song C, Wang P, Wang K. Genetic Polymorphisms in Long Noncoding RNA H19 Are Associated With Susceptibility to Breast Cancer in Chinese Population. Medicine. 2016;95(7):e2771. doi:10.1097/MD.0000000000002771
56. Ghasemi M, Heidari Nia M, Hashemi M, et al. An association study of polymorphisms in the H19 imprinted gene in an Iranian population with the risk of polycystic ovary syndrome. Biology of Reproduction. 2020;103(5):978-985. doi:10.1093/biolre/ioaa131
57. Wang G, Liu Q, Cui K, Ma A, Zhang H. Association between H19 polymorphisms and NSCLC risk in a Chinese Population. J BUON. 2019c;24(3):913-917.
58. Harati‐Sadegh M, Kohan L, Teimoori B, Salimi S. The long non‐coding RNA H19 rs217727 polymorphism is associated with PE susceptibility. Journal of Cellular Biochemistry. 2018;119(7):5473-5480. doi:10.1002/jcb.26708
59. Ge L, Wang Q, Hu S, Yang X. Rs217727 polymorphism in H19 promotes cell apoptosis by regulating the expressions of H19 and the activation of its downstream signaling pathway. Journal of Cellular Physiology. 2019;234(5):7279-7291. doi:10.1002/jcp.27485
60. Yang M, Zhang M, Wang Q, et al. Six polymorphisms in the lncRNA H19 gene and the risk of cancer: a systematic review and meta-analysis. BMC Cancer. 2023;23(1):688. doi:10.1186/s12885-023-11164-y