Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
SkinCheck AI: Web-Based Instant Diagnosis of Skin Conditions Using Machine Learning
2025-12-12
SkinCheck AI is a lightweight web application that enables users to upload skin images and receive instant diagnostic feedback powered by machine learning. The system integrates a neural network classifier into a multi-model pipeline and supports personalized health profiles including age, gender, skin type, chronic conditions, and allergies. Built with Ruby on Rails and deployed with Puma server, the application demonstrates the feasibility of accessible AI-powered dermatological screening. This preprint presents the architecture, training process, and evaluation results, highlighting the system’s potential for scalable, privacy-conscious healthcare tools.
Ссылка для цитирования:
Asakeeva B. B. 2025. SkinCheck AI: Web-Based Instant Diagnosis of Skin Conditions Using Machine Learning. PREPRINTS.RU. https://doi.org/10.24108/preprints-3114047
Список литературы
1. Meir, S., Keidar, T. D., Reuveni, S., & Hirshberg, B. (2025). Optimizing Perturbations for Improved Training of Machine Learning Models. arXiv:2502.04121
2. Usupova, E., & Khan, A. (2025). Optimizing ML Training with Perturbed Equations. Proceedings of the 6th International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, pp. 1–6.
3. Liu, X., Qi, H., Jia, S., Guo, Y., & Liu, Y. (2025). Recent Advances in Optimization Methods for Machine Learning: A Systematic Review. Mathematics, 13(13), 2210.
4. Gómez-Talal, I. (2025). A Study on Efficient Perturbation-Based Explanations. Engineering Applications of Artificial Intelligence.
5. AIP Publishing. (2025). Scaling of Hardware-Compatible Perturbative Training Methods for ML. APL Machine Learning.
6. Jeddi, A., Shafiee, M. J., Karg, M., Scharfenberger, C., & Wong, A. (2020). Learn2Perturb: End-to-End Feature Perturbation Learning to Improve Adversarial Robustness. arXiv:2003.01090