Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Особенности микробиома кишечника и секрета простаты у пациентов с доброкачественной гиперплазией предстательной железы
1. Pfail J., Drobner J., Doppalapudi K., Saraiya B., Packiam V., Ghodoussipour S. The Role of Tumor and Host Microbiome on Immunotherapy Response in Urologic Cancers. J Cancer Immunol (Wilmington). 2024;6(1):1-13. doi:10.33696/cancerimmunol.6.078
2. Zhang W., An Y., Qin X., Wu X., Wang X., Hou H., et al. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges. Front Oncol. 2021;11:739648. doi:10.3389/fonc.2021.739648
3. Chen J., Chen B., Lin B., Huang Y., Li J., Li J., et al. The role of gut microbiota in prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Heliyon. 2024;10(19):e38302. doi:10.1016/j.heliyon.2024.e38302
4. Liu J., Tian R., Sun C., Guo Y., Dong L., Li Y., et al. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol. 2023;14:1290414. doi:10.3389/fimmu.2023.1290414
5. Li J., Li Y., Zhou L., Li C., Liu J., Liu D., et al. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications. Microbiol Res. 2024;281:127596. doi:10.1016/j.micres.2023.127596
6. Miya T.V., Marima R., Damane B.P., Ledet E.M., Dlamini Z. Dissecting Microbiome-Derived SCFAs in Prostate Cancer: Analyzing Gut Microbiota, Racial Disparities, and Epigenetic Mechanisms. Cancers (Basel). 2023;15(16). doi:10.3390/cancers15164086
7. Miyake M., Tatsumi Y., Ohnishi K., Fujii T., Nakai Y., Tanaka N., et al. Prostate diseases and microbiome in the prostate, gut, and urine. Prostate Int. 2022;10(2):96-107. doi:10.1016/j.prnil.2022.03.004
8. Ratajczak-Zacharko W., Skonieczna-Zydecka K., Laszczynska M., Sipak O., Lubkowska A. Identification of an intestinal microbiota enterotypes in ageing man diagnosed with benign prostatic hyperplasia (BPH). Sci Rep. 2025;15(1):15603. doi:10.1038/s41598-025-00466-9
9. Деревянко И.И. Бактериальный простатит: этиология, клиника, лечение Consilium Medicum. 2004;6(7): C. 497-9. doi
10. Shrestha E., Coulter J.B., Guzman W., Ozbek B., Hess M.M., Mummert L., et al. Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer. Proc Natl Acad Sci U S A. 2021;118(32). doi:10.1073/pnas.2018976118
11. Yow M.A., Tabrizi S.N., Severi G., Bolton D.M., Pedersen J., Australian Prostate Cancer B., et al. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect Agent Cancer. 2017;12:4. doi:10.1186/s13027-016-0112-7
12. Feng Y., Ramnarine V.R., Bell R., Volik S., Davicioni E., Hayes V.M., et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics. 2019;20(1):146. doi:10.1186/s12864-019-5457-z
13. Cohen R.J., Shannon B.A., McNeal J.E., Shannon T., Garrett K.L. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol. 2005;173(6):1969-74. doi:10.1097/01.ju.0000158161.15277.78
14. Oseni S.O., Naar C., Pavlovic M., Asghar W., Hartmann J.X., Fields G.B., et al. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel). 2023;15(12). doi:10.3390/cancers15123110
15. Bae Y., Ito T., Iida T., Uchida K., Sekine M., Nakajima Y., et al. Intracellular Propionibacterium acnes infection in glandular epithelium and stromal macrophages of the prostate with or without cancer. PLoS One. 2014;9(2):e90324. doi:10.1371/journal.pone.0090324
16. Alexeyev O.A., Marklund I., Shannon B., Golovleva I., Olsson J., Andersson C., et al. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol. 2007;45(11):3721-8. doi:10.1128/JCM.01543-07
17. Kakegawa T., Bae Y., Ito T., Uchida K., Sekine M., Nakajima Y., et al. Frequency of Propionibacterium acnes Infection in Prostate Glands with Negative Biopsy Results Is an Independent Risk Factor for Prostate Cancer in Patients with Increased Serum PSA Titers. PLoS One. 2017;12(1):e0169984. doi:10.1371/journal.pone.0169984
18. Kaltsas A., Giannakas T., Stavropoulos M., Kratiras Z., Chrisofos M. Oxidative Stress in Benign Prostatic Hyperplasia: Mechanisms, Clinical Relevance and Therapeutic Perspectives. Diseases. 2025;13(2). doi:10.3390/diseases13020053
19. Ho C.K., Habib F.K. Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol. 2011;8(1):29-41. doi:10.1038/nrurol.2010.207
20. Baker J.M., Al-Nakkash L., Herbst-Kralovetz M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45-53. doi:10.1016/j.maturitas.2017.06.025
21. Kwa M., Plottel C.S., Blaser M.J., Adams S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. J Natl Cancer Inst. 2016;108(8). doi:10.1093/jnci/djw029
22. Ohlsson C., Li L., Horkeby K., Lawenius L., Collden H., Sjogren K., et al. The circulating dihydrotestosterone/testosterone ratio is increased by gut microbial 5alpha-reductase activity in females. EBioMedicine. 2025;121:105978. doi:10.1016/j.ebiom.2025.105978
23. Kaltsas A., Giannakodimos I., Markou E., Stavropoulos M., Deligiannis D., Kratiras Z., et al. The Androbactome and the Gut Microbiota-Testis Axis: A Narrative Review of Emerging Insights into Male Fertility. Int J Mol Sci. 2025;26(13). doi:10.3390/ijms26136211
24. Jacoby C., Scorza K., Ecker L., Nol Bernardino P., Little A.S., McMillin M., et al. Gut bacteria metabolize natural and synthetic steroid hormones via the reductive OsrABC pathway. Cell Host Microbe. 2025;33(11):1873-85 e7. doi:10.1016/j.chom.2025.09.014
25. Tao J., Dai W., Lyu Y., Liu H., Le J., Sun T., et al. Role of intestinal testosterone-degrading bacteria and 3/17beta-HSD in the pathogenesis of testosterone deficiency-induced hyperlipidemia in males. NPJ Biofilms Microbiomes. 2024;10(1):123. doi:10.1038/s41522-024-00599-1
26. Madhogaria B., Bhowmik P., Kundu A. Correlation between human gut microbiome and diseases. Infect Med (Beijing). 2022;1(3):180-91. doi:10.1016/j.imj.2022.08.004
27. Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L., et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213-7. doi:10.1038/nature18309
28. Lei L., Zhao N., Zhang L., Chen J., Liu X., Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne). 2022;13:950826. doi:10.3389/fendo.2022.950826
29. Facchin S., Bertin L., Bonazzi E., Lorenzon G., De Barba C., Barberio B., et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel). 2024;14(5). doi:10.3390/life14050559
30. Zwartjes M.S.Z., Gerdes V.E.A., Nieuwdorp M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites. 2021;11(8). doi:10.3390/metabo11080531
31. Bennett B.J., de Aguiar Vallim T.Q., Wang Z., Shih D.M., Meng Y., Gregory J., et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49-60. doi:10.1016/j.cmet.2012.12.011
32. Chiang J.Y.L., Ferrell J.M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol. 2022;548:111618. doi:10.1016/j.mce.2022.111618
33. Kuhajda K., Kevresan S., Kandrac J., Fawcett J.P., Mikov M. Chemical and metabolic transformations of selected bile acids. Eur J Drug Metab Pharmacokinet. 2006;31(3):179-235. doi:10.1007/BF03190713
34. Flaig B., Garza R., Singh B., Hamamah S., Covasa M. Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients. 2023;15(1). doi:10.3390/nu15010228
35. Ho C.H., Lu Y.C., Fan C.K., Yu H.J., Liu H.T., Wu C.C., et al. Testosterone regulates the intracellular bacterial community formation of uropathogenic Escherichia coli in prostate cells via STAT3. Int J Med Microbiol. 2020;310(7):151450. doi:10.1016/j.ijmm.2020.151450
36. Lu J., Tong Q. From pathogenesis to treatment: the impact of bacteria on cancer. Front Microbiol. 2024;15:1462749. doi:10.3389/fmicb.2024.1462749
37. Fu A., Yao B., Dong T., Chen Y., Yao J., Liu Y., et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185(8):1356-72 e26. doi:10.1016/j.cell.2022.02.027
38. Vella G., Rescigno M. Cancer microbiota: a focus on tumor-resident bacteria. EMBO Rep. 2025;26(12):2977-93. doi:10.1038/s44319-025-00482-w
39. Galeano Nino J.L., Wu H., LaCourse K.D., Kempchinsky A.G., Baryiames A., Barber B., et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 2022;611(7937):810-7. doi:10.1038/s41586-022-05435-0
40. Ly L.K., Rowles J.L., 3rd, Paul H.M., Alves J.M.P., Yemm C., Wolf P.M., et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol. 2020;199:105567. doi:10.1016/j.jsbmb.2019.105567
41. Sarkar P., Malik S., Banerjee A., Datta C., Pal D.K., Ghosh A., et al. Differential Microbial Signature Associated With Benign Prostatic Hyperplasia and Prostate Cancer. Front Cell Infect Microbiol. 2022;12:894777. doi:10.3389/fcimb.2022.894777
42. Hurst R., Meader E., Gihawi A., Rallapalli G., Clark J., Kay G.L., et al. Microbiomes of Urine and the Prostate Are Linked to Human Prostate Cancer Risk Groups. Eur Urol Oncol. 2022;5(4):412-9. doi:10.1016/j.euo.2022.03.006
43. Hurst R., Brewer D.S., Gihawi A., Wain J., Cooper C.S. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol. 2024;73(3). doi:10.1099/jmm.0.001817