Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
2.Induced Superfluid Cosmology: A Theoretical Framework for Emergent Gravity and Dark Matter V2
1. References
2. [1] Kiefer, C. (2007). Quantum Gravity. Oxford University Press.
3. [2] Sakharov, A. D. (1968). “Vacuum quantum fluctuations in curved space and the theory of
4. gravitation”. Sov. Phys. Dokl. 12, 1040.
5. [3] Volovik, G. E. (2003). The Universe in a Helium Droplet. Oxford University Press.
6. [4] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). “Theory of Superconductivity”.
7. Phys. Rev. 108, 1175.
8. [5] Particle Data Group (Navas, S. et al.) (2024). “Review of Particle Physics”. Phys. Rev. D
9. 110, 030001.
10. [6] Koide, Y. (1982). “A new formula for the masses of charged leptons”. Lett. Nuovo Cim.
11. 34, 201.
12. [7] Lelli, F. et al. (2016). “SPARC: A High-Quality Rotation Curve Sample”. Astron. J. 152,
13. [8] Vainshtein, A. I. (1972). “To the problem of nonvanishing gravitation mass”. Phys. Lett.
14. B 39, 393.
15. [9] Clowe, D. et al. (2006). “A Direct Empirical Proof of the Existence of Dark Matter”.
16. Astrophys. J. 648, L109.
17. [10] Abbott, B. P. et al. (LIGO/Virgo) (2017). “GW170817: Observation of Gravitational
18. Waves from a Binary Neutron Star Inspiral”. Phys. Rev. Lett. 119, 161101.
19. [11] Riess, A. G. et al. (SH0ES) (2022). “A Comprehensive Measurement of the Local Value
20. of the Hubble Constant”. Astrophys. J. Lett. 934, L7.
21. [12] KATRIN Collaboration (2022). “Direct neutrino-mass measurement with sub-electronvolt
22. sensitivity”. Nature Phys. 18, 160.
23. [13] LZ Collaboration (2023). “First Dark Matter Search Results from the LUX-ZEPLIN Ex-
24. periment”. Phys. Rev. Lett. 131, 041002.
25. [14] XENON Collaboration (2023). “First Dark Matter Search with Nuclear Recoils from the
26. XENONnT Experiment”. Phys. Rev. Lett. 131, 041003.
27. [15] CRESST Collaboration (2019). “Results on light dark matter from CRESST-III”. Phys.
28. Rev. D 100, 102002.
29. [16] SuperCDMS Collaboration (2020). “Constraints on low-mass dark matter from Super-
30. CDMS HVeV”. Phys. Rev. D 102, 091101.
31. [17] PandaX-4T Collaboration (2022). “Dark Matter Search Results from the PandaX-4T
32. Commissioning Run”. Phys. Rev. Lett. 129, 121801.
33. [18] CDF Collaboration (2022). “High-precision measurement of the W boson mass with the
34. CDF II detector”. Science 376, 170.
35. [19] ATLAS Collaboration (2024). “Measurement of the W-boson mass in pp collisions at
36. √s = 7 TeV with the ATLAS detector”. Eur. Phys. J. C 84, 1309. (Note: See also ATLAS-
37. CONF-2023-004 for updated combination.)
38. [20] Nicolis, A., Rattazzi, R., & Trincherini, E. (2009). “The Galileon as a local modification
39. of gravity”. Phys. Rev. D 79, 064036.
40. [21] de Rham, C. (2014). “Massive Gravity”. Living Rev. Relativ. 17, 7.
41. [22] Berezhiani, L. & Khoury, J. (2015). “Theory of dark matter superfluidity”. Phys. Rev. D
42. 92, 103510.
43. [23] Khoury, J. (2016). “Another path for the emergence of modified galactic dynamics from
44. dark matter superfluidity”. Phys. Rev. D 93, 103533.
45. [24] Liberati, S. (2013). “Tests of Lorentz invariance: a 2013 update”. Class. Quantum Grav.
46. 30, 133001.
47. [25] Fermi-LAT Collaboration (2009). “A limit on the variation of the speed of light arising
48. from quantum gravity effects”. Nature 462, 331.
49. [26] Muon g-2 Collaboration (2023). “Measurement of the Positive Muon Anomalous Mag-
50. netic Moment to 0.20 ppm”. Phys. Rev. Lett. 131, 161802.
51. [27] LEP Electroweak Working Group (2006). “Precision electroweak measurements on the Z
52. resonance”. Phys. Rept. 427, 257.
53. [28] Kaloper, N. & Padilla, A. (2014). “Sequestering the Standard Model Vacuum Energy”.
54. Phys. Rev. Lett. 112, 091304.
55. [29] Planck Collaboration (2020). “Planck 2018 results. VI. Cosmological parameters”. As-
56. tron. Astrophys. 641, A6.
57. [30] Belle II Collaboration (2023). “Search for an invisible Z’ in a final state with two muons
58. and missing energy”. Phys. Rev. Lett. 130, 181801.
59. [31] Tulin, S. & Yu, H.-B. (2018). “Dark Matter Self-interactions and Small Scale Structure”.
60. Phys. Rept. 730, 1.
61. [32] Horndeski, G. W. (1974). “Second-order scalar-tensor field equations in a four-
62. dimensional space”. Int. J. Theor. Phys. 10, 363.
63. [33] Alam, S. et al. (eBOSS Collaboration) (2021). “Completed SDSS-IV extended Baryon
64. Oscillation Spectroscopic Survey”. Phys. Rev. D 103, 083533.
65. [34] Bertotti, B., Iess, L., & Tortora, P. (2003). “A test of general relativity using radio links
66. with the Cassini spacecraft”. Nature 425, 374.
67. [35] Spergel, D. N. & Steinhardt, P. J. (2000). “Observational evidence for self-interacting cold
68. dark matter”. Phys. Rev. Lett. 84, 3760.
69. 51