Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
AI Strategy Agent for Airline Logistics: A Multi-Layered, KPI-Governed Architecture for Real-Time Optimization and Ethical Orchestration
1. Kolmykova, A. (2020). KI in der Logistik – Multiagentenbasierte Planung und Steuerung in der Transportlogistik (pp. 299–310). Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-29550-9_16
2. Castro, A. J. M., & Rocha, A. P. (2017). Managing Disruptions with a Multi-Agent System for Airline Operations Control (pp. 307–310). Springer, Cham. https://doi.org/10.1007/978-3-319-59930-4_26
3. Tse, Y. K., Chan, T. M., & Lie, R. H. (2009). Solving Complex Logistics Problems with Multi-Artificial Intelligent System. International Journal of Engineering Business Management, 1(1), 1–8. https://doi.org/10.5772/6781
4. Yüksel, K. A., & Sawaf, H. (2024). A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops. https://doi.org/10.48550/arxiv.2412.17149
5. Zong, Z., Yan, H., Sui, H., Li, H., & Jiang, P. (2023). An AI-based Simulation and Optimization Framework for Logistic Systems. https://doi.org/10.1145/3583780.3614732
6. Kitzmann, H., Strimovskaya, A., & Elena, S. (2023). Application of Artificial Intelligence Methods for Improvement of Strategic Decision-Making in Logistics (pp. 132–143). Springer Science+Business Media. https://doi.org/10.1007/978-3-031-50192-0_13
7. Chen, W., Men, Y., Fuster, N., Osorio, C., & Juan, À. A. (2024). Artificial Intelligence in Logistics Optimization with Sustainable Criteria: A Review. Sustainability, 16(21), 9145. https://doi.org/10.3390/su16219145
8. Raghavan, S. (2023). Metrics for sustainable aviation finance. Journal of International Finance and Economics, 23(1), 129–141. https://doi.org/10.18374/jife-23-1.9
9. Fatorachian, H. (2024). Leveraging Artificial Intelligence for Optimizing Logistics Performance: A Comprehensive Review. Global Journal of Business & Social Science Review, 12(3), 146–160. https://doi.org/10.35609/gjbssr.2024.12.3(5)
10. Royappa, A., Venkatesh, K., Purushothaman, N., Moorthy, A., & Solainayagi, P. (2024). AI-Driven Optimization for Freight and Logistics Management Using Predictive Analytics. 677–682. https://doi.org/10.1109/cybercom63683.2024.10803177
11. Alsakhen, I., Buics, L., & Süle, E. (2024). AI-driven resilience in revolutionizing supply chain management: A systematic literature review. Journal of Infrastructure, Policy and Development, 8(16), 9474. https://doi.org/10.24294/jipd9474
12. Attah, R. U., Garba, B. M. P., Gil-Ozoudeh, I., & Iwuanyanwu, O. (2024). Enhancing supply chain resilience through artificial intelligence: Analyzing problem-solving approaches in logistics management. International Journal of Management & Entrepreneurship Research, 6(12), 3883–3901. https://doi.org/10.51594/ijmer.v6i12.1745
13. Narayanan, P. N. S., Ghapar, F., Chew, L. L., Sundram, V. P. K., Naidu, B. M., Zulfakar, M. H., & Daud, A. (2024). Artificial Intelligence-Powered Risk Assessment in Supply Chain Safety. Information Management and Business Review, 16(3S(I)a), 107–114. https://doi.org/10.22610/imbr.v16i3s(i)a.4124
14. Rathi, V. K., Chaudhary, V., Rajput, N. K., Ahuja, B., Jaiswal, A. K., Gupta, D., Elhoseny, M., & Hammoudeh, M. (2020). A Blockchain-Enabled Multi Domain Edge Computing Orchestrator. 3(2), 30–36. https://doi.org/10.1109/IOTM.0001.1900089
15. Wang, F., & Kang, T. (2015). Governance Mechanisms of Logistics Service Integrated Network. Social Science Research Network. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2998599
16. Bento, A. I., Ferreira, L. M. D. F., & Fernandes, G. (2023). The interplay between governance mechanisms and the integration of logistics operations: a literature review. 1–9. https://doi.org/10.1109/ice/itmc58018.2023.10332284
17. Poe, W. Y., Vaishnavi, I., Tusa, F., Melian, J., & Ramos, A. (2017). System architecture of Intelligent Monitoring in multi-domain orchestration. European Conference on Networks and Communications, 1–5. https://doi.org/10.1109/EUCNC.2017.7980673
18. Ejjami, R. (2024). The Adaptive Human-AI Synergy in Logistics (AHASL) Theory. https://doi.org/10.70792/jngr5.0.v1i1.12
19. Brochado, Â. F., Rocha, E. M., & Costa, D. (2024). A Modular IoT-Based Architecture for Logistics Service Performance Assessment and Real-Time Scheduling towards a Synchromodal Transport System. Sustainability. https://doi.org/10.3390/su16020742
20. Fernández, J. M., Vidal, I., & Valera, F. (2019). Enabling the Orchestration of IoT Slices through Edge and Cloud Microservice Platforms. Sensors, 19(13), 2980. https://doi.org/10.3390/S19132980
21. Mandal, J., & Mohammed, I. (2024). Implementation of AI Transportation Routing in Reverse Logistics to Reduce CO2 Footprint. International Journal of Supply Chain Management, 9(5), 1–12. https://doi.org/10.47604/ijscm.3079
22. Budd, T., Intini, M., & Volta, N. (2020). Environmentally Sustainable Air Transport: A Focus on Airline Productivity (pp. 55–77). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-28661-3_4
23. Paul, P. O., Aderoju, A. V., Shitu, K., Ononiwu, M. I., Igwe, A. N., Ofodile, O. C., & Ewim, C. P.-M. (2024). Predictive analytics and AI in sustainable logistics: A review of applications and impact on SMEs. Magna Scientia Advanced Research and Reviews, 12(1), 231–251.
24. Tanveer, M. (2022). Supply Chain and Logistics Operations Management Under the Era of Advanced Technology (pp. 126–136). https://doi.org/10.4018/978-1-7998-7642-7.ch008
25. Hofman, W., Punter, L. M., Bastiaansen, H. J. M., Cornelisse, E., Dalmolen, S., Palaskas, Z., Karakostas, B., Gato, J., Garcia, J., Herrero, G., & Gonzalez-Rodrigues, M. (2016). An interorganizational IT infrastructure for self-organization in logistics: situation awareness and real-time chain composition. 5(2), 101–115. https://doi.org/10.1080/2287108X.2016.1195101
26. MoghadasNian, S. (2025). AI-Driven Inventory Optimization in Airline Logistics: Enhancing Efficiency, Sustainability, and Operational Performance. In Proceedings of the International Conference on Artificial Intelligence in the Age of Digital Transformation.
27. MoghadasNian, S., & MahMoudy, M. (2025). Airline logistics AI performance framework: A 360-degree, multi-layered KPI approach for safety, sustainability, efficiency, and innovation. In Proceedings of the 20th Iranian International Industrial Engineering Conference.
28. MoghadasNian, S., & NaziriHosseinpour, P. (2024). Airline logistics efficiency: KPI-driven strategies. Proceedings of the Fourth International Conference on Advanced Research in Management and Humanities.
29. MoghadasNian, S. (2025, April 18). AI-powered predictive maintenance in aviation operations. In Proceedings of the 16th International Conference on Advanced Research in Science, Engineering and Technology. Bern, Switzerland.
30. MoghadasNian, S., & BeheshtiNia, F. (2024). Advancing airworthiness assurance in airlines: A KPI-driven framework for CAMO excellence. In Proceedings of the Eighth International Conference on Science and Technology of Electrical, Computer and Mechanical Engineering of Iran.