Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Reinforcement Learning for Adaptive Grasping of Objects by a Collaborative Robot: from Simulation to a Real System
1. K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret, IEEE Trans. Robot. 36, 328–347 (2020).
2. Y. Chebotar et al., “Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience,” in 2019 International Conference on Robotics and Automation (ICRA) (IEEE, Montreal, 2019), pp. 8973–8979.
3. A. Handa et al., “DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to Reality,” in 2023 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, London, 2023), pp. 5977–5984.
4. A. Allshire et al., “Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Kyoto, 2022), pp. 11802–11809.
5. E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, IEEE Access 9, 153171–153187 (2021).
6. J. Josifovski, M. Malmir, N. Klarmann, B. L. Žagar, N. Navarro-Guerrero, and A. Knoll, “Analysis of Randomization Effects on Sim2Real Transfer in Reinforcement Learning for Robotic Manipulation Tasks,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Kyoto, 2022), pp. 10193–10200.
7. J. Huber, F. Hélénon, H. Watrelot, F. B. Amar, and S. Doncieux, “Domain Randomization for Sim2real Transfer of Automatically Generated Grasping Datasets,” in 2024 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Yokohama, 2024), pp. 4112–4118.
8. W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE, Canberra, 2020), pp. 737–744.
9. C. Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Long Beach, 2019), pp. 3338–3347.
10. Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Seattle, 2020), pp. 11629–11638.
11. M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-Real Transfer of Accurate Grasping with Eye-In-Hand Observations and Continuous Control,” arXiv:1712.03303 (2017).
12. J. L. Elman, “Learning and development in neural networks: The importance of starting small,” Cognition 48, 71–99 (1993).
13. C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse Curriculum Generation for Reinforcement Learning,” in Proceedings of the 1st Annual Conference on Robot Learning (PMLR, 2017), pp. 482–495.
14. T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher-Student Curriculum Learning,” IEEE Trans. Neural Netw. Learn. Syst. 31, 3732–3740 (2020).