Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
ProLab: психофизически равномерная проективная система цветовых координат
1. H. Grassmann. Zur theorie der farbenmischung. Annalen der Physik, 165(5):69–84, 1853. (In German).
2. T. Smith and J. Guild. The c.i.e. colorimetric standards and their use. Transactions of the Optical Society, 33(3):73–134, 1931.
3. M. D. Fairchild. Color appearance models. John Wiley & Sons, 2013.
4. M. R. Luo. CIE Chromatic Adaptation; Comparison of von Kries, CIELAB, CMCCAT97 and CAT02, pages 1–8. Springer Berlin Heidelberg, 2014.
5. R. S. Hunter. Accuracy, precision, and stability of new photoelectric color-difference meter. J. Opt. Soc. Am., 38(12):1094–1094, 1948.
6. Commission Internationale de l’Eclairage. Proceedings of the 14th session, Brussels, 1959, volume A, 1960.
7. G. Wyszecki. Proposal for a new color-difference formula. J. Opt. Soc. Am., 53(11):1318–1319, 1963.
8. K. McLaren. XIII—the development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. Journal of the Society of Dyers and Colourists, 92(9):338–341, 1976.
9. R. G. Kuehni. Towards an improved uniform color space. Color Research & Application, 24(4):253–265, 1999.
10. Commission Internationale de l’Eclairage. Improvement to industrial colour-difference evaluation. Technical Report “Publication CIE 142-2001”, Central Bureau of the CIE, Vienna, 2001.
11. M. R. Luo, G. Cui, and B. Rigg. The development of the cie 2000 colour-difference formula: Ciede2000. Color Research & Application, 26(5):340–350, 2001.
12. H. Wang, G. Cui, M. R. Luo, and H. Xu. Evaluation of colour-difference formulae for different colour-difference magnitudes. Color Research & Application, 37(5):316–325, 2012.
13. C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H Brill, and M. Pointer. Comprehensive color solutions: Cam16, cat16, and cam16-ucs. Color Research & Application, 42(6):703–718, 2017.
14. H. Can Karaimer and M. S. Brown. Improving color reproduction accuracy on cameras. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6440–6449, 2018.
15. G. Hong, M. R. Luo, and P. A. Rhodes. A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application, 26(1):76–84, 2001.
16. G. D. Finlayson, M. Mackiewicz, and A. Hurlbert. Color correction using root-polynomial regression. IEEE Transactions on Image Processing, 24(5):1460–1470, 2015.
17. S. Bianco, A. R. Bruna, F. Naccari, and R. Schettini. Color correction pipeline optimization for digital cameras. Journal of Electronic Imaging, 22(2):1–11, 2013.
18. A. Kordecki. Practical testing of irradiance-independent camera color calibration. In Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018), volume 11041, pages 340–345, 2019.
19. J. Vazquez-Corral, D. Connah, and M. Bertalm o. Perceptual color characterization of cameras. Sensors, 14(12):23205–23229, 2014.
20. S. A. Shafer. Using color to separate reflection components. Color Research & Application, 10(4):210–218, 1985.
21. P. P. Nikolaev. Some algorithms for surface color recognition. In Simulation of learning and behavior, pages 121–151. Nauka, 1975. (In Russian).
22. M. H. Brill. Image segmentation by object color: a unifying framework and connection to color constancy. J. Opt. Soc. Am. A, 7(10):2041–2047, 1990.
23. D. P. Nikolaev and P. P. Nikolayev. Linear color segmentation and its implementation. Computer Vision and Image Understanding, 94(1):115–139, 2004. Special Issue: Colour for Image Indexing and Retrieval.
24. G. J. Klinker, S. A. Shafer, and T. Kanade. Image segmentation and reflection analysis through color. In Proc. SPIE 0937, Applications of Artificial Intelligence VI, volume 0937, pages 229 – 244, 1988.
25. H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang. Color image segmentation: advances and prospects. Pattern recognition, 34(12):2259–2281, 2001.
26. Yu. V. Vinogradova, D. P. Nikolaev, and D. G. Slugin. Image segmentation of color documents using color clustering. Journal of Information Technologies and Computing Systems, 2:40–49, 2015. (In Russian).
27. H.-C. Lee. Method for computing the scene-illuminant chromaticity from specular highlights. J. Opt. Soc. Am. A, 3(10):1694–1699, 1986.
28. J. Toro and B. Funt. A multilinear constraint on dichromatic planes for illumination estimation. IEEE Transactions on Image Processing, 16(1):92–97, 2007.
29. J. Toro. Dichromatic illumination estimation without pre-segmentation. Pattern Recognition Letters, 29(7):871–877, 2008.
30. S. Woo, S. Lee, J. Yoo, and J. Kim. Improving color constancy in an ambient light environment using the phong reflection model. IEEE Transactions on Image Processing, 27(4):1862–1877, 2018.
31. T. Zickler, S. P. Mallick, D. J. Kriegman, and P. N. Belhumeur. Color subspaces as photometric invariants. International Journal of Computer Vision, 79(1):13–30, 2008.
32. A. V. Nikonorov. Spectrum shape elements model for correction of multichannel images. Computer Optics, 38(2):304–313, 2014. (In Russian).
33. G. D. Finlayson, B. V. Funt, and K. Barnard. Color constancy under varying illumination. In Proceedings of IEEE International Conference on Computer Vision, pages 720–725, 1995.
34. A. Gijsenij, T. Gevers, and J. Van De Weijer. Computational color constancy: Survey and experiments. IEEE Transactions on Image Processing, 20(9):2475–2489, 2011.
35. G. Hemrit, G. D. Finlayson, A. Gijsenij, P. Gehler, S. Bianco, B. Funt, M. Drew, and L. Shi. Rehabilitating the colorchecker dataset for illuminant estimation. In 26th Color and Imaging Conference Final Program and Proceedings, pages 350–353, 2018.
36. G. D. Finlayson and R. Zakizadeh. Reproduction angular error: An improved performance metric for illuminant estimation. In Proceedings of British Machine Vision Conference, pages 1–11, 2014.
37. J. Bernd. Digital Image Processing. Springer, 6th revised and extended edition edition, 2005.
38. J. Liang, K. Xiao, M. R. Pointer, X. Wan, and C. Li. Spectra estimation from raw camera responses based on adaptive local-weighted linear regression. Optics express, 27(4):5165–5180, 2019.
39. G. Finlayson, H. Gong, and R. B. Fisher. Color homography: theory and applications. IEEE transactions on pattern analysis and machine intelligence, 41(1):20–33, 2019.
40. D. L. MacAdam. Projective transformations of i. c. i. color specifications. J. Opt. Soc. Am., 27(8):294–299, 1937.
41. G. Wallace, H. Chen, and K. Li. Color gamut matching for tiled display walls. In EGVE ’03: Proceedings of the workshop on Virtual environments 2003, pages 293–302, 2003.
42. H. Gong, G. D. Finlayson, R. B. Fisher, and F. Fang. 3D color homography model for photo-realistic color transfer re-coding. The Visual Computer, 35(3):323–333, 2019.
43. A. Smagina, V. P. Bozhkova, S. Gladilin, and D. Nikolaev. Linear colour segmentation revisited. In Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018), volume 11041, pages 107–119, 2019.
44. I. Konovalenko, A. Smagina, V. Kokhan, and D. Nikolaev. Prolab: perceptually uniform projective colour coordinates system. In The 25th Symposium of the International Colour Vision Society. Abstract Book, page 70, 2019.
45. P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239–256, 1992.
46. J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.
47. P. A. García, R. Huertas, M. Melgosa, and G. Cui. Measurement of the relationship between perceived and computed color differences. J. Opt. Soc. Am. A, 24(7):1823–1829, 2007.
48. Q. Pan and S. Westland. Comparative evaluation of color differences between color palettes. In 26th Color and Imaging Conference Final Program and Proceedings, pages 110–115, 2018.
49. K. Thomsen. A euclidean color space in high agreement with the cie94 color difference formula. Color Research & Application, 25(1):64–65, 2000.
50. P. Urban, M. R. Rosen, R. S. Berns, and D. Schleicher. Embedding non-euclidean color spaces into euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A, 24(6):1516–1528, 2007.
51. V. V. Maximov. Transformation of colour under the changing illumination. Nauka, 1984. (In Russian).
52. T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. IOP Publishing Ltd., 1st edition, 1997.
53. G. Sharma, W. Wu, and E. N. Dalal. The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application, 30(1):21–30, 2005.
54. J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2006.
55. R. Mart’i, J. A Lozano, A. Mendiburu, and L. Hernando. Multi-start methods, pages 155–175. Springer International Publishing, 2018.
56. N. Ohta and A. R. Robertson. CIE Standard Colorimetric System, chapter 3, pages 63–114. John Wiley & Sons, Ltd, 2006.
57. A. Smagina, E. Ershov, and A. Grigoryev. Multiple light source dataset for colour research. In Proc. SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019), volume 11433, pages 635–642, 2020.
58. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A standard default color space for the internet – srgb, version 1.10. Technical report, International Color Consortium, 1996.
59. D. L. MacAdam. Visual sensitivities to color differences in daylight . J. Opt. Soc. Am., 32(5):247–274, 1942.
60. S. Bianco and R. Schettini. Two new von kries based chromatic adaptation transforms found by numerical optimization. Color Research & Application, 35(3):184–192, 2010.
61. I. G. Palchikova, E. S. Smirnov, and E. I. Palchikov. Quantization noise as a determinant for color thresholds in machine vision. J. Opt. Soc. Am. A, 35(4):B214–B222, 2018.