Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Распределение размеров штатов, округов и городов США: новая информация о форме неравенства
1. Allen, P. M. (1996) Cities and Regions as Self-Organizing Systems: Models of Complexity, Gordon and Breach Science Publishers.
2. Antoniou, I. et al. (2004) ‘On the eecient resources distribution in economics based on entropy’, Physica A, 336, pp. 549–562. doi: 10.1016/j.physa.2003.12.051.
3. Arshad, S., Hu, S. and Ashraf, N. (2018) ‘Zipf’s law and city size distribution: A survey of the literature and future research agenda’, Physica A, 492, pp. 75–92. doi: 10.1016/j.physa.2017.10.005.
4. Auerbach, F. (1913) ‘Das Gesetz der Bevölkerungskonzentration’, Petermanns Geographische, pp. 74–76.
5. Banerjee, S. et al. (2020) ‘On the Kolkata index as a measure of income inequality’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 545, p. 123178. doi: 10.1016/j.physa.2019.123178.
6. Bee, M. et al. (2013) ‘The size distribution of US cities: Not Pareto, even in the tail’, Economics Letters, 120, pp. 232–237. Available at: https://www.sciencedirect.com/science/article/pii/S0165176513002139 (Accessed: 25 February 2020).
7. Bee, M., Riccaboni, M. and Schiavo, S. (2019) ‘Distribution of city size: Gibrat, pareto, zipf’, in Modeling and Simulation in Science, Engineering and Technology. Springer Basel, pp. 77–91. doi: 10.1007/978-3-030-12381-9_4.
8. Benguigui, L. and Blumenfeld-Lieberthal, E. (2007) ‘Beyond the power law-a new approach to analyze city size distributions’, Computers, Environment and Urban Systems, 31, pp. 648–666. doi: 10.1016/j.compenvurbsys.2006.11.002.
9. Berry, B. J. L. and Okulicz-Kozaryn, A. (2012) ‘The city size distribution debate: Resolution for US urban regions and megalopolitan areas’, Cities. Pergamon, 29(SUPPL. 1), pp. S17–S23. doi: 10.1016/j.cities.2011.11.007.
10. Carroll, G. R. (1982) ‘National city-size distributions: what do we know after 67 years of research?’, Progress in Human Geography, 6(1), pp. 1–43. doi: 10.1177/030913258200600101.
11. Champernowne, D. G. (1956) ‘Discussion on a paper by Hart and Prais’, Journal of the Royal Statistical Socienty, part II(119), pp. 181–183.
12. Chatterjee, A., Ghosh, A. and Chakrabarti, B. K. (2017) ‘Socio-economic inequality: Relationship between Gini and Kolkata indices’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 466, pp. 583–595. doi: 10.1016/j.physa.2016.09.027.
13. Clauset, A., Shalizi, C. R. and Newman, M. E. J. (2009) ‘Power-law distributions in empirical data’, SIAM Review, pp. 661–703. doi: 10.1137/070710111.
14. Dagum, C. (1980) ‘Inequality Measures between Income Distributions with Applications’, Econometrica. Econometric Society, 48(7), pp. 1791–1803. Available at: https://ideas.repec.org/a/ecm/emetrp/v48y1980i7p1791-1803.html (Accessed: 10 July 2020).
15. Damgaard, C. and Weiner, J. (2000) ‘DESCRIBING INEQUALITY IN PLANT SIZE OR FECUNDITY’, Ecology. John Wiley & Sons, Ltd, 81(4), pp. 1139–1142. doi: 10.1890/0012-9658(2000)081[1139:DIIPSO]2.0.CO;2.
16. Ghosh, A. and Basu, B. (2019) ‘Universal City-size distributions through rank ordering’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 528. doi: 10.1016/j.physa.2019.121094.
17. Ghosh, A., Chattopadhyay, N. and Chakrabarti, B. K. (2014) ‘Inequality in societies, academic institutions and science journals: Gini and k-indices’, Physica A: Statistical Mechanics and its Applications, 410, pp. 30–34. doi: 10.1016/j.physa.2014.05.026.
18. Gibrat, R. (1931) Les Inégalités Économiques: Applications, aux Inégalités des Richesses, a la Concentration des Entreprises, aux Populations des Villes, aux Statistiques des Familles, etc.: d’une Loi Nouvelle la Loi de l’Effet Proportionnel. Recueil Sirey, Paris.
19. Gini, C. (1912) Variabilità e mutabilità : contributo allo studio delle distribuzioni e delle relazioni statistiche. Bologna: Tipografia di Paolo Cuppini.
20. Inoue, J. I. et al. (2015) ‘Measuring social inequality with quantitative methodology: Analytical estimates and empirical data analysis by Gini and k indices’, Physica A: Statistical Mechanics and its Applications. Elsevier, 429, pp. 184–204. doi: 10.1016/j.physa.2015.01.082.
21. Jefferson, M. (1939) ‘The Law of the Primate City’, Geographical Review. JSTOR, 29(2), p. 226. doi: 10.2307/209944.
22. Kakwani, N. (1980) Income inequality and poverty : methods of estimation and policy applications. Published for the World Bank [by] Oxford University Press.
23. Osberg, L. (2017) ‘On the Limitations of Some Current Usages of the Gini Index’, Review of Income and Wealth. Blackwell Publishing Ltd, 63(3), pp. 574–584. doi: 10.1111/roiw.12256.
24. Pareto, V. (1916) Trattato di sociologia generale, G. Barbera, Firenze. Available at: https://books.google.ru/books/about/Trattato_di_sociologia_generale.html?id=j04uAAAAYAAJ&redir_esc=y (Accessed: 8 July 2020).
25. Pareto, V. (1935) The Mind and Society., New York, Harcourt, Brace and Company. Available at: https://www.peterharrington.co.uk/the-mind-and-society-131510.html (Accessed: 8 July 2020).
26. Rosen, K. T. and Resnick, M. (1980) ‘The size distribution of cities: An examination of the Pareto law and primacy’, Journal of Urban Economics, 8(2), pp. 165–186. doi: 10.1016/0094-1190(80)90043-1.
27. Sánchez, E. (2019) ‘Burr type-XII as a superstatistical stationary distribution’, Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 516, pp. 443–446. doi: 10.1016/j.physa.2018.10.044.
28. Sarabia, J. M., Jordá, V. and Trueba, C. (2013) ‘The Lamé class of Lorenz curves’, Communications in Statistics - Theory and Methods. Taylor and Francis Inc., 46(11), pp. 5311–5326. doi: 10.1080/03610926.2013.775306.
29. Soo, K. T. (2012) ‘The size and growth of state populations in the United States’, Economics Bulletin. AccessEcon, 32(2), pp. 1238–1249.
30. Stanley, H. (1971) Introduction to phase transitions and critical phenomena. New York: Oxford University Press.
31. Voitchovsky, S. (2005) Does the Profile of Income Inequality Matter for Economic Growth?: Distinguishing Between the Effects of Inequality in Different Parts of the Income Distribution, Journal of Economic Growth.
32. Weiner, J. and Damgaard, C. (2006) ‘Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition’, Ecol Res, (21), pp. 707–712. doi: 10.1007/s11284-006-0178-6.
33. Xu, K. (2005) ‘How has the Literature on Gini’s Index Evolved in the Past 80 Years?’, SSRN Electronic Journal. Elsevier BV. doi: 10.2139/ssrn.423200.
34. Грачёв, Г. А. (2009) ‘Системные закономерности неравенства доходов населения’, Экономические науки, 8(57), pp. 327–331.
35. Грачёв, Г. А. (2010) ‘Модель оптимального состояния системы городского расселения’, Известия Российской академии наук. Серия географическая, (3), pp. 46–51.
36. Грачёв, Г. А. (2011a) ‘К оценке политической стабильности по результатам голосования на выборах’, Полис. Политические исследования, (5), pp. 123–127.
37. Грачёв, Г. А. (2011b) ‘К прогнозированию оптимальной структуры российской банковской системы’, Проблемы прогнозирования, 22(5), pp. 103–109.
38. Грачёв, Г. А. (2011c) Моделирование принципа Парето, Ростов-на-Дону : Изд-во Южного федерального ун-та.
39. Грачёв, Г. А. (2012) ‘Оценка политической стабильности на прошедших выборах парламента и президента России’, Полис. Политические исследования, (3), pp. 30–35.