Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Разработка позиционно-чувствительных преобразователей с расширенным спектром переменных, конвертируемых в оптический сигнал для оптофлюидики, нанофотоники и систем безлинзовой голографической / томографической микроскопии
1. López-Huerta F., Herrera-May A.L., Estrada-López J.J., Zuñiga-Islas C., Cervantes-Sanchez B., Soto E., Soto-Cruz B.S. Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array // Sensors. – 2011. – 11(11). – P. 10940-11057.
2. Huang Y., Mason A. Lab-on-CMOS integration of microfluidics and electrochemical sensors // Lab Chip. – 2013. – 13(19). – P. 3929-3934.
3. Christensen D.A., Herron J.N. Optical System Design for Biosensors Based on CCD Detection // Methods in Molecular Biology. – 2009. – 503. – P. 239-258
4. Walczak R. Non-Cooled Low-Cost CCD Camera Module as Fluorescence Detector for Lab-on-a-Chip Life-Science Applications // Procedia Engineering – 2011. – 25. – P. 160-163
5. Cheek B.J., Steel A.B., Torres M.P., Yu Y., Yang H. Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip // Anal. Chem. – 2001. – 73(24). – P. 5777-5783.
6. Rasooly A., Bruck H.A., Kostov Y. An ELISA Lab-on-a-Chip (ELISA-LOC) // Methods in Molecular Biology – 2013. – 949. – P. 451-471.
7. Eteshola E., Balberg M. Microfluidic ELISA: on-chip fluorescence imaging // Biomed. Microdevices. – 2004. – 6(1). – P. 7-9.
8. Ozawa T., Kinoshita K., Kadowaki S., Tajiri K., Kondo S., Honda R., Ikemoto M., Piao L., Morisato A., Fukurotani K., Kishi H., Muraguchi A. MAC-CCD system: a novel lymphocyte microwell-array chip system equipped with CCD scanner to generate human monoclonal antibodies against influenza virus // Lab Chip. – 2009. – 9(1). – P. 158-163.
9. Balsam J., Bruck H.A., Rasooly A. Two-Layer Lab-on-a-Chip (LOC) with Passive Capillary Valves for mHealth Medical Diagnostics // Methods in Molecular Biology – 2014. – 1256. – P. 247-258.
10. Rasooly A., Kostov Y., Bruck H.A. Charged-Coupled Device (CCD) Detectors for Lab-on-a Chip (LOC) Optical Analysis // Methods in Molecular Biology – 2013. – 949. – P. 365-385.
11. Walczak R. Fluorescence detection by miniaturized instrumentation based on non-cooled CCD minicamera and dedicated for lab-on-a-chip applications // BioChip. – 2011. – 5. – 271.
12. Moon S., Keles H.O., Ozcan A., Khademhosseini A., Haeggstrom E., Kuritzkes D., Demirci U. Integrating microfluidics and lensless imaging for point-of-care testing // Biosens. Bioelectron. – 2009. – 24(11). – P. 3208-3214.
13. Balsam J., Ossandon M., Kostov Y., Bruck H.A., Rasooly A. Lensless CCD-based fluorometer using a micromachined optical Söller collimator // Lab Chip. – 2011. –11(5). – P. 941-949.
14. Balsam J., Ossandon M., Bruck H.A., Rasooly A. Modeling and design of micro-machined optical Söller collimators for lensless CCD-based fluorometry // Analyst. – 2012. – 137(21). – P. 5011-5017.
15. Gradov O. V., Jablokov A. G. Novel morphometrics-on-a-chip: CCD- or CMOS-lab-on-a-chip based on discrete converters of different physical and chemical parameters of histological samples into the optical signals with positional sensitivity for morphometry of non-optical patterns // J. Biomed. Tech. — 2016. — 2. — P. 1–29.
16. Jablokov A. G., Gradov O. V. Multiparametric qualimetric microsurgical scanning chip-lancet model: theoretical metrological and biomedical considerations // Micro Medicine (form. known as Arch. Biol. Sci.). — 2015. — 3(2). — P. 31–35.
17. Notchenko A. V., Gradov O. V. Elementary morphometric labs-on-a-chip based on hemocytometric chambers with radiofrequency culture identification and relay of spectrozonal histochemical monitoring // Visualization, Image Processing and Computation in Biomedicine. — 2013. — Vol. 2.