Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Нейросети, глубокое обучение, машинное зрение в сельском хозяйстве. Краткий обзор для 2021 года
1. Ip, P., & Ang, L. (2018). Big data and machine learning for crop protection. Computers and Electronics in Agriculture, 151, 376-383
2. Wang, A., Ang, W., & Seng, K. (2019). A review on weed detection using ground-based machine vision and image processing techniques. Computers and Electronics in Agriculture, 158, 226-240
3. Nejati, H., Azimifar, Z., & Destain, M. (2011). Weed detection in 3D images. Precision Agriculture 12(5), 607-622
4. Nejati, H., Azimifar, Z., & Zamani, M. (2008). Using Fast Fourier Transform for Weed Detection in Corn Fields. IEEE International Conference on Systems, Man and Cybernetics, 1215-1219
5. Rueda-Ayala, V., Gerhards, R., & Rasmussen, J. (2010). Mechanical weed control. Precision Crop Protection - the Challenge and Use of Heterogeneity, 45, 279-294
6. Utstumo, T. (2018). Robotic in-row weed control in vegetables. Computers and Electronics in Agriculture, 154, 36-45
7. Alba, O., Syrov, L., & Shirtliffe, S. (2019). Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Research,6, 245
8. Melander, B., Lattanzi, B., & Pannacci, E. (2015). Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage. Crop Protection, 72, 1-8
9. Syrov, L. (2016). Effects of mechanical weed control or cover crop on the growth and economic viability of two short-rotation willow cultivars. Biomass and Bioenergy, 91, 296-305
10. Panqueba, B., & Medina, C. (2016). A computer vision application to detect unwanted weed in early stage crops, 4, 41-45
11. Reddy , R., Laasya,G. and Basha, M., 2017. Image Processing for Weed Detection, 5, Issue 4, 485-489
12. Vikhram, G., Agarwal, R., & Prasanth, V. (2018). Automatic Weed Detection and Smart Herbicide Sprayer Robot. International Journal of Engineering & Technology, 7, 115-118
13. Pasha, I., Reddy, A., & Mahima, P. (2018). DESIGN OF A WEED DETECTION SYSTEM FOR COTTON FIELD. International Journal of Pure and Applied Mathematics, 118, 1314-3395
14. García-Santillán, I., & Guerrero, J. (2018). Curved and straight crop row detection by accumulation of green pixels from images in maize fields. Precision Agriculture, 19, Issue 1, 18–41
15. Murawwat, S. (2018). Weed Detection Using SVMs. Engineering, Technology & Applied Science Research, 8, 2412-2416
16. Pulido-Rojas, C. (2016). Machine vision system for weed detection using image filtering in vegetables cropssa. Revista Facultad de Ingeniería, 56, 356-360
17. Bhongal, K., & Gore,S. (2017). USING IMAGE PROCESSING TECHNIQUES AND SMART HERBICIDE SPRAYER ROBOT, 7, 10-16
18. Michen, S., & Lawer, A. (2019). Deep learning n agriculture, 187, 278-291
19. Ambika, N., & Supriya, P. (2018). Detection of Vanilla Species by Employing Image Processing Approach. Procedia Computer Science, 143, 474-480
20. Ferreira, A., Freitas, D., Silva, G., Pistorib, H., & Folhesc, M. (2017). Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture, 143, 314-324
21. Sabanci, K., & Aydin,C. (2016). Smart Robotic Weed Control System for Sugar Beet. J. Agr. Sci. Tech, 19, 73-83
22. Young, S. (2018). Future Directions for Automated Weed Management in Precision Agriculture. , Automation: The Future of Weed Control in Cropping Systems, 6, 249–259
23. Frasconi, C., & Fontanell, M. (2014). Design and full realization of physical weed control (PWC) automated machine within the RHEA project. Proceedings International Conference of Agricultural Engineering, 134-143
24. Kulkarni, V. (2013). Advanced Agriculture Robotic Weed Control System. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2, Issue 10, 5073-5081
25. Bakhshipour, A. (2017). Weed segmentation using texture features extracted from wavelet sub-images. Biosystems Engineering, 157, 1-12
26. Kargar, A. (2013). AUTOMATIC WEED DETECTION AND SMART HERBICIDE SPRAY ROBOT FOR CORN FIELDS. Robotics and Mechatronics (ICRoM), First RSI/ISM International Conference, 451-470
27. Potena, C. (2016). Fast and Accurate Crop and Weed Identification with Summarized Train Sets for Precision Agriculture. International Conference on Intelligent Autonomous Systems IAS. Intelligent Autonomous Systems, 14, 105-121
28. Slaughter, D., & Giles, D. (2018). Autonomous robotic weed control systems: A review. Computers and electronics in agriculture, 61, 63–78
29. Ospina, R. (2018). Smart Agricultural Vehicle by Integrating Motion Model with Machine Vision Data. Dissertation. Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
30. Dyrmann, M. (2015). Automatic Detection and Classification of Weed Seedlings under Natural Light Conditions. Thesis for: PhD. DOI: 10.13140/RG.2.2.29212.18560
31. Alba, O. (2019). Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Research, 245, 107-117
32. Bah, M. (2018). Deep Learning with unsupervised data labeling for weeds detection on UAV images. Remote Sensing 10(11), 15-17
33. Priya, S. (2019). Identification of Weeds using Hsv Color Spaces and Labelling with Machine Learning Algorithms. International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, 8, Issue-1, 1781-1786
34. Potena, C. (2019). Fast and Accurate Crop and Weed Identification with Summarized Train Sets for Precision Agriculture. Intelligent Autonomous Systems 14: Proceedings of the 14th International Conference IAS-14,105-121
35. Ahmed, F. (2019). Machine Learning for Crop and Weed Classification. Performance Analysis of Support Vector Machine and Bayesian Classifier for Crop and Weed Classification from Digital Images. World Applied Sciences Journal, 12(4), 432-440
36. Sharma, P. (2019). Crops and weeds classification using Convolutional Neural Networks via optimization of transfer learning parameters. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958, 8, Issue-5, 2285-2294
37. Zhang, W. (2018). Broad-leaf weed detection in pasture. IEEE 3rd International Conference on Image, Vision and Computing, 15-23
38. Huang, H. (2016). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery Huasheng. PLoS ONE, 450-470
39. Hameed, S. (2018). Detection of Weed and Wheat Using Image Processing. Conference: 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), 34-39
40. Wang, S., & Liu, H. (2018). Low-Altitude Remote Sensing Based on Convolutional Neural Network for Weed Classification in Ecological Irrigation Area. IFAC-PapersOnLine, 51, Issue 17, 298-303
41. Huang, Y. (2019). UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technology, 32, 1-5