Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Структурные и электрические свойства стеклокерамических сегнетоэлектрических композитных материалов
1. Borderon, C.; Ginestar, S.; Gundel, H. W.; Haskou, A.; Nadaud, K.; Renoud, R.; Sharaiha, A. Design and Development of a tunable ferroelectric microwave surface mounted device. IEEE Trans. Ultrason. Ferroelectrics. Freq. Contr. – Sept. 2020, vol. 67, iss. 9, pp. 1733 – 1737. doi: 10.1109/TUFFC.2020.2986227
2. Huitema L. et al. Frequency tunable antennas based on innovative materials. IEEE International Conference on Computational Electromagnetics (ICCEM). Kumamoto, Japan, 8-10 March 2017. pp. 28-30. doi: 10.1109/COMPEM.2017.7912722
3. Crunteanu A. et al. Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals – 2021, vol. 11, iss. 3, pp. 277. doi; 10.3390/cryst11030277
4. Nguyen, Q. M.; Anthony, T. K.; Zaghloul, A. I. Free-Space-Impedance-Matched composite dielectric metamaterial with high refractive index. IEEE Antennas Wirel. Propag. Lett. – 2019, vol. 18, iss. 12, pp. 2751-2755. doi: 10.1109/LAWP.2019.2951122
5. Hao, Xihong. "A review on the dielectric materials for high energy-storage application." Journal of Advanced Dielectrics – Sept. 2020. vol. 67. iss. 9. pp. 1733 – 1737. doi: 10.1142/S2010135X13300016
6. Yao Z. et al. Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances. Advanced Materials. – 2017, vol. 29, iss. 20, pp. 1601727. doi: 10.1002/adma.201601727
7. Qi H., Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. Journal of Materials Chemistry A. – 2019, vol. 7, iss. 8, pp. 3971-3978. doi: 10.1039/C8TA12232F
8. Zheng D. et al. Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead‐free relaxor ferroelectric ceramics for energy‐storage capacitors. Journal of the American Ceramic Society. – 2015, vol. 98, iss. 9, pp. 2692-2695. doi: 10.1111/jace.13737
9. Nenasheva, E. A., Kartenko, N. F., Gaidamaka, I. M., Redozubov, S. S., Kozyrev, A. B., & Kanareykin, A. D. Low permittivity ferroelectric composite ceramics for tunable applications. Ferroelectrics – 2017, vol. 506, iss. 1, pp. 174-183. doi: 10.1080/00150193.2017.1282761
10. Kozyrev, A. B., Kanareykin, A. D., Nenasheva, E. A., Osadchy, V. N., & Kosmin, D. M. Observation of an anomalous correlation between permittivity and tunability of a doped (Ba,Sr)TiO3 ferroelectric ceramic developed for microwave applications. Applied Physics Letters – 2009,vol. 95, iss. 1, pp. 012908. doi: 10.1063/1.3168650
11. He Z. et al. Microstructures and dielectric tunable properties of Ba0.5Sr0.5TiO3–MgO–Mg3B2O6 composite ceramics. Ceramics International. – 2015, vol. 41, iss. 5, pp. 6286-6292. doi: 10.1016/j.ceramint.2015.01.053
12. Mahmoud A. E., Moeen S., Gerges M. K. Enhancing the tunability properties of pure (Ba,Sr)TiO3 lead-free ferroelectric by polar nanoregion contributions. Journal of Materials Science: Materials in Electronics. – 2021, vol. 32, iss. 10, pp. 13248-13260. doi: 10.1007/s10854-021-05879-6
13. Nenasheva a E. A. et al. High-Frequency Characteristics of (Ba,Sr)TiO3 Tunable Ceramics with Various Additives Intended for Accelerator Physics. Integrated Ferroelectrics. – 2005, vol. 70, iss. 1, pp. 107-113. doi: 10.1080/10584580490895275
14. Ma X. et al. The abnormal increase of tunability in ferroelectric-dielectric composite ceramics and its origin. Journal of Alloys and Compounds. – 2018, vol. 739, pp. 755-763. doi: 10.1016/j.jallcom.2017.12.279
15. Zhang M. et al. The effect of transition metal oxides on the tunablility and microwave dielectric properties of Ba0.5Sr0.5TiO3–BaWO4 composite ceramics. Materials Chemistry and Physics. – 2011, vol. 128, iss. 3, pp. 525-529. doi: 10.1016/j.matchemphys.2011.03.043