Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Исследование передаточных характеристик активного кольцевого резонатора на нелинейной феррит-сегнетоэлектрической линии задержки
1. Landau L.D., Lifshitz E.M., Mechanics (Course of Theoretical Physics, Volume 1), 3rd Edition –Elsevier, Oxford, 2013.
2. Weiss M. T. Microwave and low-frequency oscillation due to resonance instabilities in ferrites //Physical Review Letters. – 1958. – V. 1. – №. 7. – P. 239.
3. Stancil D.D. and Prabhakar A., Spin Waves: Theory and Applications – Springer, NY, 2010.
4. Gibbs H. M., McCall S. L., Venkatesan T. N. C. Differential gain and bistability using a sodium-filled Fabry-Perot interferometer //Physical Review Letters. – 1976. – Т. 36. – №. 19. – P. 1135.
5. Boyd R.W., Nonlinear Optics – Academic Press, Amsterdam; Boston, 2020.
6. Fetisov Y. K., Patton C. E. Thermal microwave foldover and bistability in ferromagnetic resonance //IEEE transactions on magnetics. – 2004. – Т. 40. – №. 2. – С. 473-482.
7. Wang Q. et al. A nonlinear magnonic nano-ring resonator //npj Computational Materials. – 2020. – Т. 6. – №. 1. – С. 1-7.
8. Vitko V. V. et al. Performance characteristics of bistable active ring resonators based on ferrite films //Journal of Physics: Conference Series. – IOP Publishing, 2021. – Т. 2103. – №. 1. – С. 012059.
9. Gui Y. S., Wirthmann A., Hu C. M. Foldover ferromagnetic resonance and damping in permalloy microstrips //Physical Review B. – 2009. – Т. 80. – №. 18. – С. 184422.
10. Kawase M., Iwaba M., Sekiguchi K. Electric detection of nonlinear effect upon spin-wave spin current //Japanese Journal of Applied Physics. – 2020. – Т. 59. – №. SE. – С. SEED01.
11. Fetisov Y. K. et al. Bistability in a multiferroic composite resonator //Applied Physics Letters. – 2018. – Т. 113. – №. 2. – С. 022903.
12. Chu Z. et al. Voltage-driven nonlinearity in magnetoelectric heterostructures //Physical Review Applied. – 2019. – Т. 12. – №. 4. – С. 044001.
13. Vitko V. V. et al. Microwave bistability in active ring resonators with dual spin-wave and optical nonlinearities //IEEE Magnetics Letters. – 2018. – Т. 9. – С. 1-4.
14. Xiong Y. et al. Experimental parameters, combined dynamics, and nonlinearity of a magnonic-opto-electronic oscillator (MOEO) //Review of Scientific Instruments. – 2020. – Т. 91. – №. 12. – С. 125105.
15. Almeida V. R., Lipson M. Optical bistability on a silicon chip //Optics letters. – 2004. – Т. 29. – №. 20. – С. 2387-2389.
16. Savchenkov A. A. et al. Surface acoustic wave opto-mechanical oscillator and frequency comb generator //Optics letters. – 2011. – Т. 36. – №. 17. – С. 3338-3340.
17. Nikitin A. A. et al. Carrier-induced optical bistability in the silicon micro-ring resonators under continuous wave pumping //Optics Communications. – 2021. – Т. 480. – С. 126456.
18. Rabus D.G. and Sada C., Integrated Ring Resonators: A Compendium – Springer International Publishing, Cham, 2020.
19. Ustinov A. B. et al. Progressive development of spin wave chaos in active-ring oscillators //Physical Review B. – 2021. – Т. 104. – №. 14. – С. L140410.
20. Wu M. Nonlinear spin waves in magnetic film feedback rings //Solid State Physics. – 2010. – Т. 62. – С. 163-224.
21. Watt S., Kostylev M., Ustinov A. B. Enhancing computational performance of a spin-wave reservoir computer with input synchronization //Journal of Applied Physics. – 2021. – Т. 129. – №. 4. – С. 044902.
22. Watt S. et al. Implementing a magnonic reservoir computer model based on time-delay multiplexing //Physical Review Applied. – 2021. – Т. 15. – №. 6. – С. 064060.
23. Nikitin A. A. et al. Theoretical model for nonlinear spin-wave transient processes in active-ring oscillators with variable gain and its application for magnonic reservoir computing //Journal of Applied Physics. – 2022. – Т. 131. – №. 11. – С. 113903.
24. Janantha P. A. P., Kalinikos B., Wu M. Foldover of nonlinear eigenmodes in magnetic thin film based feedback rings //Physical Review B. – 2017. – Т. 95. – №. 6. – С. 064422.
25. Demidov V. E. et al. Electrical tuning of dispersion characteristics of surface electromagnetic-spin waves propagating in ferrite-ferroelectric layered structures //IEEE transactions on microwave theory and techniques. – 2003. – Т. 51. – №. 10. – С. 2090-2096.
26. Никитин А. А. и др. Теоретическое исследование резонансных свойств активного кольца на основе слоистой структуры феррит-сегнетоэлектрик //Журнал технической физики. – 2012. – Т. 82. – №. 7. – С. 98-101.
27. Nikitin A. A. et al. Spin-electromagnetic waves in planar multiferroic multilayers //Journal of Applied Physics. – 2017. – Т. 122. – №. 1. – С. 014102.
28. Nikitin A. A. et al. Nonlinear frequency response of the multi-resonant ring cavities //Results in Physics. – 2020. – Т. 18. – С. 103279.
29. Смоленский Г. А. и др. Физика сегнетоэлектрических явлений. – 1985.
30. Черкасский М. А., Никитин А. А., Калиникос Б. А. Теория мультинелинейных сред и ее приложение к солитонным процессам в феррит-сегнетоэлектрических структурах //ЖЭТФ. – 2016. – Т. 149. – №. 4. – С. 839.