Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Вывод уравнений Шредингера на основании объединения принципов наименьшего действия и максимума энтропии
1. E. Schrödinger "Quantisierung als Eigenwertproblem, Vierte Mitteilung", An-nalen der Physik, №18 (1926).
2. E. Nelson Derivation of the Schrödinger Equation from Newtonian Mechan-ics. Phys. Rev. 150 (4): 1079 –1085, (1966) doi:10.1103/physrev.150.1079.
3. E. Nelson Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J., (1967) zbMATH Google Scholar.
4. Е. Nelson Quantum fluctuations. Princeton: Princeton University Press (1985).
5. R. Furth "On certain relations between classical Statistics and Quantum Me-chanics" Zeitschrift für Physik 81, 143 (1933) arXiv: 2006.03740 .
6. I. Fenyes Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik, Zeitschrift für Physik, 132, 81- 106 (1952).
7. W. Weizel Ableitung der Quantentheorie aus einem klassischen, kausal de-terminierten Modell. (German) Z. Physik 134, 264–285 (1953).
8. M. Pavon Stochastic mechanics and the Feynman integral. J. Math. Phys. 41 (9): 6060–6078 (2000) arXiv:quant-ph/0007015. doi:10.1063/1.1286880.
9. R. Tsekov "Bohmian Mechanics versus Madelung Quantum Hydrodynamics". Ann. Univ. Sofia, Fac. Phys. SE: 11219 (2012) arXiv:0904.0723, doi:10.13140/RG.2.1.3663.8245.
10. Л.Д. Ландау, Е.М., Лифшиц Механика. Наука, Москва (1988) c. 237.
11. Л.Э. Эльсгольц Дифференциальные уравнения и вариационное исчисле-ние. Наука, Москва (1969), c. 424. (Elsgolts_LE_VI)
12. А.H. Матвеев Атомная физика. Высшая школа, Москва (1989), с. 439, ISBN 5-06-000056-7.
13. N. Rosen The relation between classical and quantum mechanics. Am J Phys 32:597–600. (1964) Google Scholar.
14. N. Rosen Quantum particles and classical particles. Found Phys 16:687–700. (1986), Google Scholar.
15. R.L.W. Chen Derivation of the real form of Schrödinger’s equation for a nonconservative system and the unique relation between Re(ψ) and Im(ψ) Journal of Mathematical Physics 30, 83 (1989), https://doi.org/10.1063/1.528593.
16. V.J.H. Vleck The correspondence principle in the statistical interpretation of quantum mechanics. Proc Natl Acad Sci USA 14(2):178–188, (1994), Google Scholar.
17. Yang & H. Y. Jick Derivation of the modified Schrödinger equation for a particle with a spatially varying mass through path integrals . Phys. Rev. A 50, 104. (1994).
18. F. Ogiba Phenomenological Derivation of the Schrödinger Equation, Pro-gress in Physics, 2011, 4, p. 25-28. 4. Piece P., Another Schrodinger Deriva-tion of the Equation, Eur. J. Phys., 17, (1996), p. 116 - 117.
19. J. Briggs & J.M. Rost On the derivation of the time-dependent equation of Schrödinger, Foundations of Physics, 31 (2001), p. 693-712.
20. J. Briggs, S. Boonchui & S. Khemmani (2007) The derivation of the time-dependent Schrödinger equation, J. Phys. A: Math. Theor. 40 1289-1302.
21. M.J.W. Hall & M. Reginatto Schrodinger Equation from an Exact Uncertain-ty Principle, J. Phys. A, 35 (2002), p. 3289-3303.
22. G. Grössing Derivation of the Schrödinger Equation and the Klein-Gordon Equation from First Principles, (2002), [v6] arXiv:quant-ph/0205047.
23. S. Inage One Approach on Derivation of the Schrodinger Equation of Free Particle, (2006), arXiv:physics/0610097.
24. D.W. Ward, S.M. Volkmer How to Derive the Schrodinger Equation. Am.J.Phys./Ward (2008) and [v1] arXiv:physics/0610121.
25. C-S. Ricardo Heuristic Derivation Of The Schrödinger Equation and the Momentum Operator, (2010), [v2] arXiv:1004.4935.
26. A. Szepessy Stochastic and deterministic molecular dynamics derived from the time-independent Schrödinger equation, (2010), [v5] arXiv:0812.4338.
27. R.S. Pranab, Direct Derivation of Schrödinger Equation from Hamilton-Jacobi Equation Using Uncertainty Principle, Romanian Journal of Physics, 2011, 56(9-10), (2011), p. 1053-1056.
28. J.H. Field Derivation of the Schrödinger equation from the Hamilton-Jacobi equation in Feynman's path integral formulation of quantum mechanics. Eur. J. Phys. 32 (2011) 63-87 and arXiv:1204.0653.
29. P. Chiarelli) The Schrödinger equation and its generalized analogs derived by the quantum hydrodynamic representation. (2012 [v7] arXiv:1210.1138 .
30. W.P. Schleich, D.M. Greenberger, M.O. Scully Schrödinger equation revisit-ed. Proceedings of the National Academy of Sciences (2013), DOI:10.1073/pnas.1302475110 Corpus ID: 26266485.
31. L. Nanni A New Derivation of the Time-Dependent Schrödinger Equation from Wave and Matrix Mechanics. Advances in Physics Theories and Appli-cations, Vol. 43 (2015) ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 43, (2015), [v1] arXiv:1506.03180.
32. N.P. Barde, P.M. Kokne & P. P. Bardapurkar Deriving time dependent Schrö-dinger equation from Wave-Mechanics, Schrödinger time independent equa-tion, Classical and Hamilton-Jacobi equations. Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 26, January-June, (2015), p. 31-4831 http://lejpt.academicdirect.org/A26/031_048.pdf.
33. R. Wieser Derivation of a time dependent Schrödinger equation as quantum mechanical Landau-Lifshitz-Bloch equation. Eur. Phys. J. B 88, 77 (2015) DOI 10.1088/0953-8984/28/39/396003 and arXiv:1607.06184.
34. M. Godart Stochastic Theory of Quantum Mechanics. (2014) [v2] arXiv: 1206.2917.
35. M. Godart Stochastic theory of quantum mechanics and the Schrödinger equation. (2016) [v1] arXiv:1603.08966.
36. L.S.F. Olavo Quantum Mechanics: Principles, New Perspectives, Extensions and Interpretation (Physics Research and Technology). Nova Science Pub-lishers, Incorporated (2016), ISBN: 978-1-63117-450-6.
37. L.S.F. Olavo Quantum Mechanics as a Classical Theory XV: Thermodynam-ical Derivation. (2019), [v2] https://arxiv.org/abs/quant-ph/9703006.
38. J. G. Baixaul Derivation of the Schrodinger Equation from Classical Physics International journal of scientific research. (2016) Corpus ID: 124057573.
39. B.A. Faycal Space-Time Geodesics and the Derivation of Schrödinger's equa-tion. (2018) arXiv:1805.03509 .
40. P.-H. Chavanis Derivation of a generalized Schrödinger equation from the theory of scale relativity. Eur. Phys. J. Plus, 132, 286 (2017) and arXiv:1612.02323.
41. X.-S. Wang Derivation of the Schrödinger equation based on a fluidic con-tinuum model of vacuum and a sink model of particles. (2018), arXiv:physics/0610224.
42. С.М. Рытов Введение в статистическую радиофизику Ч.1. Наука, Москва, (1976), с. 494.
43. В.И. Тиханов Статистическая радиофизика. Радио и связь, Москва, (1982), с. 622.
44. M. Batanov-Gaukhman The Diffraction of Microparticles on Single-layer and Multi-layer Statistically Uneven Surfaces, (2020) arXiv:2007.13527.
45. Д.И. Блохинцев Основы квантовой механики. Высшая школа, Москва, (1963), с. 620.
46. R.P. Feynman & A.R. Hibbs (1965) Quantum Mechanics and Path Inte-grals. DOI:10.1063/1.3048320 Corpus ID: 117361245.
47. D.M. Fradkin Three-dimensional isotropic harmonic oscillator and SU3. American Journal of Physics 33 (3) 207–211, (1965), https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator.
48. L. Arnold Stochastic Differential Equations: Theory and Applications. John Wiley & Sons, New York, (1974).
49. Prigogine, I. & Stengers, I. Order Out of Chaos. URSS. (2021). 320 s. ISBN 978-5-354-01695-2.
50. Namsrai, K. (1985). Nonlocal Quantum Field Theory and Stochastic Quan-tum Mechanics. Dordrecht; Boston: D. Reidel Publishing Co. doi:10.1007/978-94-009-4518-0. ISBN 90-277-2001-0.
51. Lindgren, J. & Liukkonen, J. (2019) "Quantum Mechanics can be understood through stochastic optimization on spacetimes". Scientific Reports. 9 (1): 19984. doi:10.1038/s41598-019-56357-3.
52. Koide, T. & Kodama, T. (2018) Generalization of uncertainty relation for quantum and stochastic systems. Physics Letters A, Volume 382.
53. Batanov, M.S. (2017) Excited states of nuclei of spherical vacuum formations (fundamentals of quantum geometrophysics) // Education and science in mod-ern realities: materials of Intern. scientific - practical. conf. / - Cheboksary: CNS "Interactive Plus", - pp. 17-43. - ISBN 978-5-9500297-9-0. Doi: 10.21661/r-462206
54. Batanov-Gaukhman, M. (2020) Derivation of the Generalized Time - inde-pendent Schrodinger Equation. The New Stochastic Quantum Mechanics: Think and calculate arXiv:1702.01880
55. Courant, R. & Hilbert, D. (1953). Methods of Mathematical Physics. Vol. I (First English ed.). New York: Interscience Publishers, Inc. ISBN 978-0471504474.
56. Gelfand, I. M. (1963) Calculus of Variations. Dover. ISBN 0-486-41448-5.
57. Александров А.Г. Оптимальные и адаптивные системы. Учебное пособие для вузов по спец. «Автоматика и управление в технических системах. – М.: высшая школа, 1989. 263 с.
58. Kuipers, F. (2023). Stochastic Mechanics: the Unification of Quantum Me-chanics with Brownian Motion, Briefs in Physics (Springer, Cham). arXiv:2301.05467 .
59. Simon, M. & Kavan, M. (2021). Tutorial Quantum Stochastic Processes and Quantum non-Markovian Phenomena. PRX QUANTUM 2, 030201.
60. Tsekov, R. (2017). On the Stochastic Origin of Quantum Mechanics. Rep. Adv. Phys. Sci. 1 1750008. arXiv:1703.00140 .