Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Пример двух разных максимизирующих спектр матричных произведений с неравным числом одноименных сомножителей
1. Барабанов Н. Е. О показателе Ляпунова дискретных включений. I // Автом. и телемех. 1988. № 2. С. 40–46. URL: https://mi.mathnet.ru/at6544.
2. Гельфанд И. М. Нормированные кольца // Матем. сб. 1941. Т. 9. С. 3–24.
3. Barabanov N. E. Stability of inclusions of linear type // American Control Conference, Proceedings of the 1995. Vol. 5. 1995. — June. P. 3366–3370.
4. Berger M. A., Wang Y. Bounded semigroups of matrices // Linear Algebra Appl. 1992. Vol. 166. P. 21–27.
5. Blondel V. D., Theys J., Vladimirov A. A. An elementary counterexample to the finiteness conjecture // SIAM J. Matrix Anal. Appl. 2003. Vol. 24, no. 4. P. 963–970 (electronic).
6. Bochi J., Laskawiec P. Spectrum Maximizing Products Are Not Generically Unique // SIAM J. Matrix Anal. Appl. 2024. Vol. 45, no. 1. P. 585–600. arXiv:2301.12574.
7. Bousch T., Mairesse J. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture // J. Amer. Math. Soc. 2002. Vol. 15, no. 1. P. 77–111 (electronic).
8. Breuillard E. On the joint spectral radius // Analysis at Large: Dedicated to the Life and Work of Jean Bourgain / Ed. by A. Avila, M. T. Rassias, Y. Sinai. Cham: Springer International Publishing, 2022. P. 1–16. arXiv:2103.09089.
9. Daubechies I., Lagarias J. C. Sets of matrices all infinite products of which converge // Linear Algebra Appl. 1992. Vol. 161. P. 227–263.
10. Guglielmi N., Protasov V. Exact computation of joint spectral characteristics of linear operators // Found. Comput. Math. 2013. Vol. 13, no. 1. P. 37–97. arXiv:1106.3755.
11. Guglielmi N., Zennaro M. An algorithm for finding extremal polytope norms of matrix families // Linear Algebra Appl. 2008. Vol. 428, no. 10. P. 2265–2282.
12. Hare K. G., Morris I. D., Sidorov N., Theys J. An explicit counterexample to the Lagarias-Wang finiteness conjecture // Adv. Math. 2011. Vol. 226, no. 6. P. 4667–4701. arXiv:1006.2117.
13. Jenkinson O., Pollicott M. Joint spectral radius, Sturmian measures, and the finiteness conjecture // Ergodic Theory Dynam. Systems. 2017. P. 1–39. arXiv:1501.03419.
14. Kozyakin V. A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture // Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 2005. P. 2338–2343.
15. Kozyakin V. Non-Sturmian sequences of matrices providing the maximum growth rate of matrix products // Automatica J. IFAC. 2022. — November. Vol. 145. P. Paper No. 110574, 10. arXiv:2112.00391.
16. Lagarias J. C., Wang Y. The finiteness conjecture for the generalized spectral radius of a set of matrices // Linear Algebra Appl. 1995. Vol. 214. P. 17–42.
17. Laskawiec P. Partial classification of spectrum maximizing products for pairs of 2×2 matrices. ArXiv.org e-Print archive. 2024. — June. arXiv:2406.16680.
18. Morris I., Sidorov N. On a Devil’s staircase associated to the joint spectral radii of a family of pairs of matrices // J. Eur. Math. Soc. (JEMS). 2013. Vol. 15, no. 5. P. 1747–1782. arXiv:1107.3506.
19. Plischke E., Wirth F. Duality results for the joint spectral radius and transient behavior // Linear Algebra Appl. 2008. Vol. 428, no. 10. P. 2368–2384.
20. Rota G.-C., Strang G. A note on the joint spectral radius // Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae. 1960. Vol. 22. P. 379–381.
21. Vankeerberghen G., Hendrickx J., Jungers R. et al. The JSR Toolbox. MATLAB® Central. 2011. URL: https://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox.
22. Vladimirov A. Joint spectral radius and forbidden products. ArXiv.org e-Print archive. 2024. — June. arXiv:2406.17524.
23. Wirth F. The generalized spectral radius and extremal norms // Linear Algebra Appl. 2002. Vol. 342. P. 17–40