Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Foldy-Wouthuysen Green’s function and WKB transfer matrix method for Dirac tunneling through monolayer graphene with a mass gap
1. M. Barbier, P. Vasilopoulos, F. Peeters, Extra dirac points in the energy spectrum for superlattices on single-layer graphene, Physical Review B 81 (2010) 075438. doi:https://doi.org/10.1103/PhysRevB.81.075438.
2. M. Barbier, F. Peeters, P. Vasilopoulos, J. M. Pereira, Dirac and klein gordon particles in one-dimensional periodic potentials, Phys. Rev. B 77 (2008) 115446. doi:https://doi.org/10.1103/PhysRevB.77.115446.
3. D. Arovas, L. Brey, H. Fertig, E. A. Kim, K. Ziegler, Dirac spectrum in piecewise constant one-dimensional (1d) potentials, New Journal of Physics 12 (2010) 123020. doi:https://doi.org/10.1088/1367-2630/12/12/123020.
4. F. Guinea, M. Katsnelson, A. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nature Physics 6 (2010) 30–33. doi:https://doi.org/10.1038/nphys1420.
5. K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto, 2d materials and van der waals heterostructures, Science 353 (2016). doi:https://doi.org/10.1126/science.aac9439.
6. C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G. J. Snyder, et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide tis 2, Nature materials 14 (2015) 622–627. doi:https://doi.org/10.1038/nmat4251.
7. Y. Song, H.-C. Wu, Y. Guo, Negative differential resistances in graphene double barrier resonant tunneling diodes, Applied Physics Letters 102 (2013) 093118. doi:https://doi.org/10.1063/1.4794952.
8. E. Sonin, Effect of klein tunneling on conductance and shot noise in ballistic graphene, Physical Review B 79 (2009) 195438. doi:https://doi.org/10.1103/PhysRevB.79.195438.
9. T. Tudorovskiy, K. Reijnders, M. I. Katsnelson, Chiral tunneling in single-layer and bilayer graphene, Physica Scripta 2012 (2012) 014010. doi:https://doi.org/10.1088/0031-8949/2012/T146/014010.
10. V. Zalipaev, C. Linton, M. Croitoru, A. Vagov, Resonant tunneling and localized states in a graphene monolayer with a mass gap, Physical Review B 91 (2015) 085405. doi:https://doi.org/10.1103/PhysRevB.91.085405.
11. L. L. Foldy, S. A. Wouthuysen, On the dirac theory of spin 1/2 particles and its non-relativistic limit, Physical Review 78 (1950) 29. doi:https://doi.org/10.1103/PhysRev.78.29.
12. M. B. Doost, Resonant-state-expansion born approximation with a correct eigen-mode normalisation, Journal of Optics 18 (2016) 085607. doi:https://doi.org/10.1088/2040-8978/18/8/085607.
13. M. B. Doost, Resonant-state-expansion born approximation for waveguides with dispersion, Physical Review A 93 (2016) 023835. doi:https://doi.org/10.1103/PhysRevA.93.023835.
14. D. Y. K. Ko, J. Sambles, Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals, JOSA A 5 (1988) 1863–1866. doi:https://doi.org/10.1364/JOSAA.5.001863.
15. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara, Quasiguided modes and optical properties of photonic crystal slabs, Phys. Rev. B 66 (2002) 045102. doi:https://doi.org/10.1103/PhysRevB.66.045102.
16. A. Calogeracos, N. Dombey, History and physics of the klein paradox, Contemporary physics 40 (1999) 313–321. doi:https://doi.org/10.1080/001075199181387.
17. H. Dosch, V. Muller, J. Jensen, Kleins paradox, Physica Norvegica 5 (1971) 151.
18. O. Klein, Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac, Zeitschrift für Physik 53 (1929) 157–165. doi:https://doi.org/10.1007/BF01339716.
19. E. A. Muljarov, W. Langbein, R. Zimmermann, Brillouin-wigner perturbation theory in open electromagnetic systems, EPL (Europhysics Letters) 92 (2011) 50010. doi:https://doi.org/10.1209/0295-5075/92/50010.
20. M. B. Doost, W. Langbein, E. A. Muljarov, Resonant-state expansion applied to three-dimensional open optical systems, Physical Review A 90 (2014) 013834. doi:https://doi.org/10.1103/PhysRevA.90.013834.
21. L. J. Armitage, M. B. Doost, W. Langbein, E. A. Muljarov, Resonant-state expansion applied to planar waveguides, Physical Review A 89 (2014) 053832. doi:https://doi.org/10.1103/PhysRevA.89.053832.
22. M. R. Masir, P. Vasilopoulos, A. Matulis, F. Peeters, Direction dependent tunneling through nanostructured magnetic barriers in graphene, Physical Review B 77 (2008) 235443. doi:https://doi.org/10.1103/PhysRevB.77.235443.
23. M. R. Masir, P. Vasilopoulos, F. Peeters, Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures, Applied Physics Letters 93 (2008) 242103. doi:https://doi.org/10.1063/1.3049600.