Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Gauss--Berezin integral operators, spinors over orthosymplectic supergroups, and Lagrangian super-Grassmannians
1. Adams J. D. Discrete spectrum of reductivedual pair $(\mathrm{O} (p,q)$, $\text{\rm Sp}\,(2m))$, Inv.
2. Math., 74 (1983), 449--475.
3. Arnold V.I. Mathematical methods of classical mechanics. Springer-Verlag, New York-Heidelberg, 1978.
4. Barbier S., Claerebout S., De Bie H. A Fock model and the Segal-Bargmann transform for the minimal representation of the orthosymplectic Lie superalgebra $\mathrm{osp}(m,2|2n)$. SIGMA -Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 085, 33 pp.
5. Barbier S., Frahm J. A minimal representation of the orthosymplectic Lie supergroup. Int. Math. Res. Not. IMRN 2021 (2021), no. 21, 16359--16422.
6. Berezin F. A. Canonical operator transformation in representation of secondary quantization.} (Russian)
7. Dokl. Akad. Nauk SSSR 137 (1961), 311--314; translated as Soviet Physics Dokl. 6 1961 212--215.
8. Berezin F. A. The method of second quantization. (Russian) Nauka, Moscow 1965; English transl.:
9. Academic Press, New York-London, 1966.
10. Berezin F. A. Automorphisms of Grassmann algebra. Math. Notes, 1:3 (1967), 180--184.
11. Berezin F. A. Introduction to algebra and analysis with anticommuting variables}. (Russian), edited by A.A.Kirillov and V.P.Palamodov, Moscow State University, Moscow, 1983; English transl.: Introduction to superanalysis. Edited and with a foreword by A.A.Kirillov. With an appendix by V.I.Ogievetsky. Translated from the Russian by J.Niederle and R.Kotecky. Translation edited by D.Leites. D.Reidel Publishing Co., Dordrecht, 1987; Second Russian edition: edited by D.A.Leites with additions by D.A.Leites, V.N.Shander, I.M.Shchepochkina, MCCME publishers, Moscow, 2013.
12. Berezin F.A., Kats G.I. Lie groups with commuting and anticommuting parameters. Math. USSR-Sb. 11:3 (1971), 311--325.
13. Berezin, F.A., Tolstoy, V.N. The group with Grassmann structure ${\rm UOSP}(1.2)$. Comm. Math. Phys. 78 (1980/81), no.3, 409--428.
14. Bernstein I. N., Leites D. A., Shander V. N.,
15. Seminar on supersymmetries. (Russian) MCCME publishers, 2011.
16. Carmeli C., Caston, L., Fioresi R. Mathematical Foundations of Supersymmetry, European Mathematical Society, 2011.
17. Cartan E. Les groupes projectifs qui ne laissent invariante aucune multiplicite plane. (French) S. M. F. Bull. 41 (1913), 53--96.
18. Cheng Shun-Jen, Wang Weiqiang. Howe duality for Lie superalgebras. Compositio Math. 128 (2001), no. 1, 55--94.
19. Cheng Shun-Jen, Zhang R.~B. Howe duality and combinatorial character formula for orthosymplectic Lie
20. superalgebras. Adv. Math. 182 (2004), no. 1, 124--172.
21. Coulembier K. The orthosymplectic supergroup in harmonic analysis. J. Lie Theory 23 (2013) 55--83.
22. Deligne P., Morgan J. W. Notes on supersymmetry (following Joseph Bernstein) in Deligne P. (ed.) et al., {\it Quantum fields and strings: a course for mathematicians. Vol. 1,}
23. Providence, RI, Amer. Math. Soc., 1999.
24. DeWitt B. Supermanifolds. 2nd ed. Cambridge University Press, 1992.
25. Eisenbud D. Commutative algebra. Berlin, Springer, 1995.
26. Fioresi R., Gavarini F. Chevalley Supergroups, Memoirs of the AMS 215 (2012), no. 1014.
27. Frappat L., Sciarrino A., Sorba P. Dictionary on Lie algebras and superalgebras. San Diego, CA: Academic Press, 2000
28. Friedrichs K.~O. Mathematical aspects of the quantum theory of fields. Interscience Publishers, Inc.,
29. London, 1953.
30. Furutsu H., Nishiyama K. Classification of irreducible super-unitary representations of $\mathfrak{su}(p,q/n)$.} Comm. Math. Phys. 141:3 (1991), 475--502.
31. Furutsu H., Nishiyama K. Realization of irreducible unitary representations of $\mathfrak{osp}(M/N;\R)$ on Fock spaces.In: Representation theory of Lie groups and Lie algebras (Fuji-Kawaguchiko, 1990), eds. T.~Kawazoe, T.~Oshima and S.~Sano, 1--21.World Scientific, River Edge, NJ, 1992
32. Green M. B., Schwarz J. H., Witten E. Superstring theory. Vol. 1. Introduction. Cambridge University Press, Cambridge, 1987.
33. Golfand, Yu. A., Likhtman E. P. Extension of the algebra of Poincare group generators and violation of $P$-invariance} JETP Lett., 13 (1971), 422--455.
34. Grozman P.Invariant bilinear differential operators. Commun. Math. 30:3 (2022), 129--188.
35. Grozman P., Leites D., Shchepochkina I. Lie superalgebras of string theories. Acta Math. Vietnam. 26:1 (2001), 27--63.
36. Harish-Chandra, Representations of semisimple Lie groups. IV. Amer. J. Math.77 (1955), 743--777.
37. Howe R. Transcending classical invariant theory. J. Amer. Math. Soc. 2:3 (1989), n 535--552.
38. Jakobsen H. P. The full set of unitarizable highest weight modules of basic classical Lie superalgebras. Mem. Amer. Math. Soc.111(1994), no.532.
39. Kac V. G. Lie superalgebras. Advances in Math. 26:1 (1977) 8--96.
40. Kac V. G., van de Leur, J. W. On classification of superconformal algebras. In collection: Strings '88 (eds. S. J. Gates, Jr., C. R. Preitschopf, and W. Siegel), 77--106, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
41. Karabegov A. Neretin Yu., Voronov Th. Felix Alexandrovich Berezin and his work. In: Geometric methods in physics (eds. P. Kielanowski, S. T. Ali, A. Odzijewicz, M. Schlichenmaier and Th. Voronov), 3--33,
42. Birkhauser/Springer, Basel, 2013.
43. Kashiwara M., Vergne M. On the Segal-Shale-Weil representations and harmonic polynomials.} Invent. Math. 44:1 (1978) 1--47.
44. Khudaverdian H., Voronov Th. Thick morphisms of supermanifolds, quantum mechanics, and spinor representation. J. Geom. Phys. 148 (2020), 103540, 14 pp.
45. Kirillov A. A. The orbits of the group of diffeomorphisms of the circle, and local Lie superalgebras. Funct.
46. Anal. Appl., 15:2 (1981), 135--137.
47. Kolar, I., Michor P. W., Slovak J. Natural operations in differential geometry. Springer-Verlag, Berlin, 1993.
48. Lavaud P. Superpfaffian. J. Lie Theory 16:2 (2006), 271--296.
49. Leites D. A. Introduction to the theory of supermanifolds. Russian Math. Surveys, 35:1 (1980), 1--64.
50. Leites D., Shchepochkina I. The Howe duality and Lie superalgebras. In
51. Noncommutative structures in mathematics and physics (Kiev, 2000), (eds. S.Duplij and J.Wess) 93--111, Kluwer Acad. Publ.,Dordrecht, 2001
52. Manin Yu. I. Gauge field theory and complex geometry. Springer-Verlag, Berlin, 1997.
53. Milnor J. W., Moore J. C. On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211--264.
54. Molotkov V. Infinite-dimensional and colored supermanifolds, J.Nonlinear Math.Phys., Vol. 17, Suppl. 1 (2010) 375--446
55. Nazarov M., Neretin Yu., Olshanskii G. Semi-groupes engendres par la representation de Weil du groupe symplectique de dimension infinie. C. R. Acad. Sci. Paris Ser. I Math. 309:7 (1989), 443--446.
56. Neretin Yu. A. Unitary representations with highest weight of the group of diffeomorphisms of a circle. Functional Anal. Appl. 17 (1983), no. 3, 235--237.
57. Neretin Yu. A. Spinor representation of an infinite-dimensional orthogonal semigroup and the Virasoro algebra. Funct. Anal. Appl. 23:3 (1990), 196--207.
58. Neretin Yu. A. On a semigroup of operators in the bosonic Fock space. Funct. Anal. Appl. 24:2 (1990), 135--144.
59. Neretin Yu. A. Holomorphic continuations of representations of the group of diffeomorphisms of the circle. Math. USSR-Sb. 67:1 (1990), 75--97.
60. Neretin Yu. A. Categories of symmetries and infinite-dimensional groups.The Clarendon Press, Oxford University Press, New York, 1996.
61. Neretin Yu. A. Gauss--Berezin integral operators and spinors over supergroups $\OSp(2p|2q)$, Preprint ESI--1930, 2007.
62. Neretin Yu. A. "Method of second quantization" of Berezin. View 40 years after.} In D.Leites, R.A.Minlos, I.Tyutin (eds.) "Recollections about Felix Alexandrovich Berezin, the discoverer of supersymmetries", Moscow, MCCME publishers, 2008; French translation: La methode de la seconde quantification de F.A.Berezin regards quarante ans plus tard.} In Les "supermathematiques'' et F. A. Berezin} (eds. Anne C., Roubtsov V.), 15--58, Ser. T, Soc. Math. France, Paris, 2018.
63. Neretin Yu. A. Lectures on Gaussian integral operators and classical groups, European Math. Soc., 2011.
64. Nishiyama K. Super dual pairs and highest weight modules of orthosymplectic algebras. Adv.Math., 104 (1994), 66--89.
65. Olshanski G. I. Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series. Functional Anal. Appl. 15:4 (1981), 275--285.
66. Olshanski G. I. Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R.~Howe. In Representation of Lie groups and related topics} (eds. A.M.Vershik, D.P.Zhelobenko), 269--463, Gordon and Breach, New York, 1990.
67. Olshanski G. I. The Weil representation and the norms of Gaussian operators. Funct. Anal. Appl. 28:1 (1994), 42--54.
68. Salam A., Strathdee J.A. Supersymmetry and Nonabelian Gauges. Phys. Lett. B. 51 (4) (1974), 353--355.
69. Sato M., Miwa T., Jimbo M. Studies on holonomic quantum fields. I. Proc. Japan Acad. Ser. A Math. Sci. 53:1 (1977), 6--10.
70. Schmitt T. Supergeometry and quantum field theory, or: what is a classical configuration? Rev. Math. Phys. 9:8 (1997), 993--1052.
71. Segal G. Unitary representations of some infinite-dimensional groups. Comm. Math. Phys. 80:3 (1981), 301--342.
72. Segal I.E., Foundations of the theory of dynamical systems of infinitely many degrees of freedom (1), Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 31 (12) (1959), 1--39.
73. Serganova V. V. Classification of real simple Lie superalgebras and symmetric superspaces. Funct. Anal. and Appl. 17:3 (1983), 200--207
74. Sergeev A. The invariant polynomials on simple Lie superalgebras.Represent. Theory,
75. 3 (1999) 250--280.
76. Serov A. A. The Clifford-Weyl algebra and the spinor group. In: Problems in group theory and homological algebra,} ed. A.L..Onishchik (Russian), 143--145, Yaroslav. Gos. Univ., Yaroslavl, 1985.
77. Shale D. Linear symmetries of free boson fields. Trans. Amer. Math. Soc. 103 (1962), 149--167.
78. Shale D., Stinespring W. F. Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 (1965) 315--322.
79. Varadarajan V. S. Supersymmetry for mathematicians: an introduction. Amer. Math. Soc., Providence, RI, 2004.
80. Volkov D. V., Akulov V. P. {\it Is the neutrino a Goldstone partile? Phys. Lett.,
81. B46 (1973), 109--112.
82. Volkov D.V., Soroka V.A. Higgs effect for Goldstone particles with spin $1/2$, JETP Lett. 18:8 (1973), 312--314.