Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Non-local convolution type operators with potential: essential and infinite discrete spectrum
1. F. Andreu-Vaillo, J.M. Mazon, J.D. Rossi, J.J. Toledo-Melero, {\sl Nonlocal Diffusion Problems},
2. AMS, Providence, RI (2010).
3. R. Blankenbecler, M. L. Goldberger, and B. Simon, {\it The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians} // {\it Ann. Phys.} {\bf 108}, 69--78 (1977).
4. D. Borisov, A. Piatnitski, E. Zhizhina, On the spectrum of convolution operator with a potential // \textit{J. Math. Anal. Appl.}, {\bf 517}:1, 126568 (2023).
5. D. Borisov, {\it Perturbation of threshold of essential spectrum for waveguide with window. I. Decaying resonance solutions} // J. Math. Sci. {\bf 205}:2, 19--54
6. (2015).
7. D.I. Borisov, D.A. Zezyulin, {\it Sequences of closely spaced resonances and eigenvalues for bipartite complex potentials} // Appl. Math. Lett. {\bf 100}, 106049 (2020).
8. D.I. Borisov, D.A. Zezyulin, M. Znojil, {\it Bifurcations of thresholds in essential spectra of elliptic operators under localized non-Hermitian perturbations} // Stud. Appl. Math. {\bf 146}:4, 834--880 (2021).
9. D.I. Borisov and D.A. Zezyulin, {\it Bifurcations of essential spectra generated by a small non-Hermitian small hole. II. Eigenvalues and resonances} // Russ. J. Math. Phys. {\bf 29}:3, 321--341 (2022).
10. D.I. Borisov, D.A. Zezyulin, {\it On bifurcations of thresholds in essential spectrum under presence of spectral singularity} // Diff. Equat. {\bf 59}:2, 278--282 (2023).
11. A. Braides, A.; A. Piatnitski, {\it Homogenization of random convolution energies} // J. London Math. Soc. {\bf 10}:2, 295--319 (2021).
12. P. Exner, H. Kova\v{r}\'{\i}k.
13. {\it Quantum Waveguides}, Springer, Cham (2015)
14. D. Finkelshtein, Yu. Kondratiev, O. Kutoviy, {\it Individual Based Model with Competition in Spatial Ecology} // SIAM J. Math. Anal. 41:1, 297-317 (2009).
15. F. Gesztesy and H. Holden, {\it A unified approach to eigenvalues and resonances of Schr\"odinger
16. operators using Fredholm determinants} // J. Math. Anal. Appl. {\bf 123}:1, 181--198 (1987).
17. M. Klaus, {\it On the bound state of Schr\"odinger operators in one dimension} // {\it Ann. Phys.} {\bf 108}, 288--300 (1977).
18. M. Klaus and B. Simon, {\it Coupling constant thresholds in nonrelativistic quantum mechanics, I. Short range two-body case} // {\it Ann. Phys.} {\bf 130},
19. 251--281 (1980).
20. Yu. Kondratiev, S. Pirogov, E. Zhizhina, {\it A Quasispecies Continuous Contact Model
21. in a Critical Regime} // J. Stat. Phys. {\bf 163}:2, 357--373 (2016).
22. Yu. Kondratiev, O. Kutoviy, S. Pirogov, {\it Correlation functions
23. and invariant measures in continuous contact model} // Infin. Dimens. Anal. Quantum Probab. Relat. Top. {\bf 11}:2, 231--258 (2008).
24. Yu. Kondratiev, S. Molchanov, S. Pirogov, E. Zhizhina, {\it On ground state of some non-local Schr\"{o}dinger operators} // Appl. Anal. {\bf 96}:8, 1390--1400 (2017).
25. Yu. Kondratiev, S. Molchanov, B. Vainberg, {\it Spectral analysis of non-local Schr\"{o}dinger operators} // J. Func. Anal. {\bf 273}:3, 1020--1048 (2017).
26. L.B. Koralov, Ya.G. Sinai, {\it Theory of Probability and Random Processes}, Springer, Berlin (2007).
27. A. Piatnitski, E. Zhizhina, {\it Periodic homogenization of nonlocal operators with a convolution-type kernel} // {\it SIAM J. Math. Anal.} {\bf 49}:1, 64--81 (2017).
28. S. Pirogov, E. Zhizhina, {\it General contact processes: inhomogeneous models, models on graphs and on
29. manifolds} // Elect. J. Prob. {\bf 27}, 41 (2022). %, 1-14, doi.org/10.1214/22-EJP765
30. V. Rabinovich, S. Roch, B. Silbermann, {\it Limit Operators and Their Applications in the Operator Theory},
31. Springer, Basel AG (2004).
32. M. Reed, B. Simon, {\it Methods of Modern Mathematical Physics, V. IV: Analysis of operators}, Academic Press, London (1978).
33. B. Simon, {\it The bound state of weakly coupled Schr\"odinger operators in one and two dimensions} // {\it Ann. Phys.} {\bf 97}, 279--288 (1976).
34. I.B. Simonenko, Operators of convolution type in cones, {\it Math USSR Sbornik}, {\bf 3}(2), 279--293,
35. (1967).
36. M.I. Vishik, L.A. Lusternik, Regular degeneration and boundary layer for linear
37. differential equations with small parameter // in ``Six Papers on Partial Differential Equations'', Russian. Uspehi Mat. Nauk (N.S.) 12(5),