ПРЕПРИНТ

Эта статья является препринтом и не была отрецензирована.
О результатах, изложенных в препринтах, не следует сообщать в СМИ как о проверенной информации.
Non-local convolution type operators with potential: essential and infinite discrete spectrum
2025-01-15

The goal of this note is to study the spectrum of a self-adjoint convolution operator in $L^2(\mathbb R^d)$ with an integrable kernel that is perturbed by an essentially bounded real-valued potential tending to zero at infinity. We show that the essential spectrum of such operator is the union of the spectrum of the convolution operator and of the essential range of the potential. Then we provide several sufficient conditions for the existence of a countable sequence of discrete eigenvalues. For operators having non-connected essential spectrum we give sufficient conditions for the existence of discrete eigenvalues in the corresponding spectral gaps.

Ссылка для цитирования:

Борисов Д. И., Жижина Е. А., Пятницкий А. Л. 2025. Non-local convolution type operators with potential: essential and infinite discrete spectrum. PREPRINTS.RU. https://doi.org/10.24108/preprints-3113345

Список литературы